summaryrefslogtreecommitdiffstats
path: root/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_s8.c
blob: e884b31e73b03d699ab0803c1405f0f807e0106c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
/*
 * Copyright (C) 2010-2021 Arm Limited or its affiliates.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/* ----------------------------------------------------------------------
 * Project:      CMSIS NN Library
 * Title:        arm_convolve_s8.c
 * Description:  s8 version of convolution using symmetric quantization.
 *
 * $Date:        December 14, 2021
 * $Revision:    V.2.1.0
 *
 * Target Processor:  Cortex-M cores
 *
 * -------------------------------------------------------------------- */

#include "arm_nnfunctions.h"
#include "arm_nnsupportfunctions.h"

/**
 *  @ingroup groupNN
 */

/**
 * @addtogroup NNConv
 * @{
 */

/*
 * Basic s8 convolution function.
 *
 * Refer header file for details. Optimal use case for the DSP/MVE implementation is when input and output channels
 * are multiples of 4 or atleast greater than 4.
 *
 */

arm_status arm_convolve_s8(const cmsis_nn_context *ctx,
                           const cmsis_nn_conv_params *conv_params,
                           const cmsis_nn_per_channel_quant_params *quant_params,
                           const cmsis_nn_dims *input_dims,
                           const q7_t *input_data,
                           const cmsis_nn_dims *filter_dims,
                           const q7_t *filter_data,
                           const cmsis_nn_dims *bias_dims,
                           const int32_t *bias_data,
                           const cmsis_nn_dims *output_dims,
                           q7_t *output_data)
{
    (void)bias_dims;

    if (ctx->buf == NULL && arm_convolve_s8_get_buffer_size(input_dims, filter_dims) > 0)
    {
        return ARM_MATH_ARGUMENT_ERROR;
    }
    q15_t *buffer_a = (q15_t *)ctx->buf;

    const int32_t input_batches = input_dims->n;
    const uint16_t input_x = input_dims->w;
    const uint16_t input_y = input_dims->h;
    const uint16_t input_ch = input_dims->c;
    const uint16_t kernel_x = filter_dims->w;
    const uint16_t kernel_y = filter_dims->h;
    const uint16_t output_x = output_dims->w;
    const uint16_t output_y = output_dims->h;
    const uint16_t output_ch = output_dims->c;

    const uint16_t pad_x = conv_params->padding.w;
    const uint16_t pad_y = conv_params->padding.h;
    const uint16_t stride_x = conv_params->stride.w;
    const uint16_t stride_y = conv_params->stride.h;

    const int32_t input_offset = conv_params->input_offset;
    const int32_t out_offset = conv_params->output_offset;
    const int32_t out_activation_min = conv_params->activation.min;
    const int32_t out_activation_max = conv_params->activation.max;
    int32_t *output_mult = quant_params->multiplier;
    int32_t *output_shift = quant_params->shift;

    int i_batch;
    for (i_batch = 0; i_batch < input_batches; i_batch++)
    {
#if defined(ARM_MATH_MVEI)
        /* Generate upto four columns from the input tensor a GEMM computation */
        q7_t *im2col_buf = (q7_t *)buffer_a;
        q7_t *out = output_data;
        int32_t buffer_fill_cnt = 0;
        int32_t padded = 0;
        const int32_t num_elem = kernel_x * kernel_y * input_ch;
        const int32_t dilation_x = conv_params->dilation.w;
        const int32_t dilation_y = conv_params->dilation.h;

        /* This part implements the im2col function */
        for (int i_out_y = 0; i_out_y < output_y; i_out_y++)
        {
            for (int i_out_x = 0; i_out_x < output_x; i_out_x++)
            {
                const int32_t base_idx_x = stride_x * i_out_x - pad_x;
                const int32_t base_idx_y = stride_y * i_out_y - pad_y;

                for (int32_t i_ker_y = 0; i_ker_y < kernel_y; i_ker_y++)
                {
                    for (int32_t i_ker_x = 0; i_ker_x < kernel_x; i_ker_x++)
                    {
                        const int32_t k_y = base_idx_y + dilation_y * i_ker_y;
                        const int32_t k_x = base_idx_x + dilation_x * i_ker_x;

                        if (k_y < 0 || k_y >= input_y || k_x < 0 || k_x >= input_x)
                        {
                            memset(im2col_buf, (int8_t)-input_offset, sizeof(q7_t) * input_ch);
                            padded = 1;
                        }
                        else
                        {
                            arm_memcpy_q7(im2col_buf, input_data + (k_y * input_x + k_x) * input_ch, input_ch);
                        }
                        im2col_buf += input_ch;
                    }
                }

                buffer_fill_cnt++;

                /* Computation is filed for every 4 columns */
                if (buffer_fill_cnt == 4 && (padded == 0))
                {
                    buffer_fill_cnt = 0;
                    out = arm_nn_mat_mul_core_4x_s8(num_elem,
                                                    num_elem,
                                                    (q7_t *)buffer_a,
                                                    filter_data,
                                                    output_ch,
                                                    conv_params,
                                                    quant_params,
                                                    bias_data,
                                                    out);
                    im2col_buf = (q7_t *)buffer_a;
                }
                else if (buffer_fill_cnt == 4 && (padded != 0))
                {
                    buffer_fill_cnt = 0;
                    out = arm_nn_mat_mult_s8(filter_data,
                                             (q7_t *)buffer_a,
                                             output_ch,
                                             4,
                                             output_shift,
                                             output_mult,
                                             out_offset,
                                             input_offset,
                                             0,
                                             out_activation_min,
                                             out_activation_max,
                                             num_elem,
                                             bias_data,
                                             out);

                    im2col_buf = (q7_t *)buffer_a;
                    padded = 0;
                }
            }
        }
        /* Handle left over columns */
        if (buffer_fill_cnt != 0)
        {
            out = arm_nn_mat_mult_s8(filter_data,
                                     (q7_t *)buffer_a,
                                     output_ch,
                                     buffer_fill_cnt,
                                     output_shift,
                                     output_mult,
                                     out_offset,
                                     input_offset,
                                     0,
                                     out_activation_min,
                                     out_activation_max,
                                     num_elem,
                                     bias_data,
                                     out);
        }
#else // #if defined(ARM_MATH_MVEI)
        const uint16_t dilation_x = conv_params->dilation.w;
        const uint16_t dilation_y = conv_params->dilation.h;

        int32_t i_out_y, i_out_x, i_ker_y, i_ker_x;

        /* Generate two columns from the input tensor a GEMM computation */
        q15_t *two_column_buf = buffer_a;
        q7_t *out = output_data;

        /* This part implements the im2col function */
        for (i_out_y = 0; i_out_y < output_y; i_out_y++)
        {
            for (i_out_x = 0; i_out_x < output_x; i_out_x++)
            {
                const int32_t base_idx_y = stride_y * i_out_y - pad_y;
                const int32_t base_idx_x = stride_x * i_out_x - pad_x;

                for (i_ker_y = 0; i_ker_y < kernel_y; i_ker_y++)
                {
                    for (i_ker_x = 0; i_ker_x < kernel_x; i_ker_x++)
                    {
                        const int32_t k_y = base_idx_y + dilation_y * i_ker_y;
                        const int32_t k_x = base_idx_x + dilation_x * i_ker_x;

                        if (k_y < 0 || k_y >= input_y || k_x < 0 || k_x >= input_x)
                        {
                            /* Filling 0 for out-of-bound paddings */
                            memset(two_column_buf, 0, sizeof(q15_t) * input_ch);
                        }
                        else
                        {
                            /* Copying the pixel data to column */
                            arm_q7_to_q15_with_offset(
                                input_data + (k_y * input_x + k_x) * input_ch, two_column_buf, input_ch, input_offset);
                        }
                        two_column_buf += input_ch;
                    }
                }

                /* Computation is filed for every 2 columns */
                if (two_column_buf == buffer_a + 2 * input_ch * kernel_y * kernel_x)
                {
                    out = arm_nn_mat_mult_kernel_s8_s16(filter_data,
                                                        buffer_a,
                                                        output_ch,
                                                        output_shift,
                                                        output_mult,
                                                        out_offset,
                                                        out_activation_min,
                                                        out_activation_max,
                                                        input_ch * kernel_y * kernel_x,
                                                        bias_data,
                                                        out);

                    /* counter reset */
                    two_column_buf = buffer_a;
                }
            }
        }

        /* left-over because odd number of output pixels */
        if (two_column_buf != buffer_a)
        {
            const q7_t *ker_a = filter_data;
            int i;

            for (i = 0; i < output_ch; i++)
            {
                /* Load the accumulator with bias first */
                q31_t sum = 0;
                if (bias_data)
                {
                    sum = bias_data[i];
                }

                /* Point to the beginning of the im2col buffer where the input is available as a rearranged column */
                const q15_t *ip_as_col = buffer_a;

                /* 4 multiply and accumulates are done in one loop. */
#if defined(ARM_MATH_DSP)
                uint16_t col_count = (input_ch * kernel_y * kernel_x) >> 2;

                while (col_count)
                {
                    q31_t ker_a1, ker_a2;
                    q31_t ip_b1, ip_b2;

                    ker_a = read_and_pad(ker_a, &ker_a1, &ker_a2);

                    ip_b1 = arm_nn_read_q15x2_ia(&ip_as_col);
                    sum = __SMLAD(ker_a1, ip_b1, sum);
                    ip_b2 = arm_nn_read_q15x2_ia(&ip_as_col);
                    sum = __SMLAD(ker_a2, ip_b2, sum);

                    col_count--;
                }
                /* Handle left over mac */
                col_count = input_ch * kernel_y * kernel_x & 0x3;
#else
                uint16_t col_count = input_ch * kernel_y * kernel_x;
#endif
                while (col_count)
                {
                    q7_t ker_a1 = *ker_a++;
                    q15_t ip_b1 = *ip_as_col++;
                    sum += ker_a1 * ip_b1;
                    col_count--;
                }

                sum = arm_nn_requantize(sum, output_mult[i], output_shift[i]);
                sum += out_offset;
                sum = MAX(sum, out_activation_min);
                sum = MIN(sum, out_activation_max);
                *out++ = (q7_t)sum;
            }
        }
#endif // #if defined(ARM_MATH_MVEI)
        /* Advance to the next batch */
        input_data += (input_x * input_y * input_ch);
        output_data += (output_x * output_y * output_ch);
    }

    /* Return to application */
    return ARM_MATH_SUCCESS;
}

int32_t arm_convolve_s8_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims)
{
#if defined(ARM_MATH_MVEI)
    int32_t col_length = input_dims->c * filter_dims->w * filter_dims->h;
    // Get number of complete int16 lanes(multiple of 8) for given col_length. This is dependent on
    // implementation of  arm_nn_mat_mult_s8
    col_length = (col_length + 7) / 8;
    // 4 -> number of im2col buffers, 8 -> 8 elements per Q register
    return 4 * col_length * 8 * (int32_t)sizeof(int8_t);
#else
    return (2 * input_dims->c * filter_dims->w * filter_dims->h) * (int32_t)sizeof(int16_t);
#endif
}

/**
 * @} end of NNConv group
 */