summaryrefslogtreecommitdiffstats
path: root/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_wrapper_s8.c
blob: bf1cd702e6818f6041529c4369e7815615fcb600 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
/*
 * Copyright (C) 2010-2021 Arm Limited or its affiliates.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/* ----------------------------------------------------------------------
 * Project:      CMSIS NN Library
 * Title:        arm_convolve_wrapper_s8.c
 * Description:  s8 convolution layer wrapper function with the main purpose to call the optimal kernel available in
 * cmsis-nn to perform the convolution.
 *
 * $Date:        02. December 2021
 * $Revision:    V.1.1.0
 *
 * Target Processor:  Cortex-M cores
 *
 * -------------------------------------------------------------------- */

#include "arm_nnfunctions.h"

/**
 *  @ingroup groupNN
 */

/**
 * @addtogroup NNConv
 * @{
 */

/*
 * Convolution layer
 *
 * Refer header file for details.
 *
 */

arm_status arm_convolve_wrapper_s8(const cmsis_nn_context *ctx,
                                   const cmsis_nn_conv_params *conv_params,
                                   const cmsis_nn_per_channel_quant_params *quant_params,
                                   const cmsis_nn_dims *input_dims,
                                   const q7_t *input_data,
                                   const cmsis_nn_dims *filter_dims,
                                   const q7_t *filter_data,
                                   const cmsis_nn_dims *bias_dims,
                                   const int32_t *bias_data,
                                   const cmsis_nn_dims *output_dims,
                                   q7_t *output_data)
{
    if ((conv_params->padding.w == 0) && (conv_params->padding.h == 0) && (input_dims->c % 4 == 0) &&
        (conv_params->stride.w == 1) && (conv_params->stride.h == 1) && (filter_dims->w == 1) &&
        (filter_dims->h == 1) && (conv_params->dilation.w == 1 && conv_params->dilation.h == 1))
    {
        return arm_convolve_1x1_s8_fast(ctx,
                                        conv_params,
                                        quant_params,
                                        input_dims,
                                        input_data,
                                        filter_dims,
                                        filter_data,
                                        bias_dims,
                                        bias_data,
                                        output_dims,
                                        output_data);
    }
    else if ((output_dims->h == 1) && (input_dims->h == 1) && (filter_dims->h == 1) && (output_dims->w % 4 == 0) &&
             (input_dims->n == 1) && (conv_params->dilation.w == 1 && conv_params->dilation.h == 1))
    {
        return arm_convolve_1_x_n_s8(ctx,
                                     conv_params,
                                     quant_params,
                                     input_dims,
                                     input_data,
                                     filter_dims,
                                     filter_data,
                                     bias_dims,
                                     bias_data,
                                     output_dims,
                                     output_data);
    }
    else
    {
        return arm_convolve_s8(ctx,
                               conv_params,
                               quant_params,
                               input_dims,
                               input_data,
                               filter_dims,
                               filter_data,
                               bias_dims,
                               bias_data,
                               output_dims,
                               output_data);
    }
}

int32_t arm_convolve_wrapper_s8_get_buffer_size(const cmsis_nn_conv_params *conv_params,
                                                const cmsis_nn_dims *input_dims,
                                                const cmsis_nn_dims *filter_dims,
                                                const cmsis_nn_dims *output_dims)
{
    if ((conv_params->padding.w == 0) && (conv_params->padding.h == 0) && (input_dims->c % 4 == 0) &&
        (conv_params->stride.w == 1) && (conv_params->stride.h == 1) && (filter_dims->w == 1) &&
        (filter_dims->h == 1) && (conv_params->dilation.w == 1 && conv_params->dilation.h == 1))
    {
        return arm_convolve_1x1_s8_fast_get_buffer_size(input_dims);
    }
    else if ((output_dims->h == 1) && (input_dims->h == 1) && (filter_dims->h == 1) && (output_dims->w % 4 == 0) &&
             (input_dims->n == 1) && (conv_params->dilation.w == 1 && conv_params->dilation.h == 1))
    {
        return arm_convolve_1_x_n_s8_get_buffer_size(input_dims, filter_dims);
    }
    else
    {
        return arm_convolve_s8_get_buffer_size(input_dims, filter_dims);
    }
}

/**
 * @} end of NNConv group
 */