summaryrefslogtreecommitdiffstats
path: root/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_conv_3x3_s8.c
blob: d5569b39b2c13932fd9297d911e1301178a853c7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
/*
 * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/* ----------------------------------------------------------------------
 * Project:      CMSIS NN Library
 * Title:        arm_depthwise_conv_3x3_s8.c
 * Description:  Optimized s8 depthwise convolution function for channel
 *               multiplier of 1 and 3x3 kernel size.
 *
 * $Date:        09. October 2020
 * $Revision:    V.2.0.1
 *
 * Target Processor:  Cortex-M CPUs
 *
 * -------------------------------------------------------------------- */

#include "arm_nnfunctions.h"
#include "arm_nnsupportfunctions.h"

/**
 *  @ingroup groupNN
 */

/**
 * @addtogroup NNConv
 * @{
 */

/*
 * Optimized s8 depthwise convolution function with constraint that
 * in_channel == out_channel and kernel_x == kernel_y == 3 with pads at most 1
 *
 *  Refer prototype header file for details.
 *
 */

arm_status arm_depthwise_conv_3x3_s8(const cmsis_nn_context *ctx,
                                     const cmsis_nn_dw_conv_params *dw_conv_params,
                                     const cmsis_nn_per_channel_quant_params *quant_params,
                                     const cmsis_nn_dims *input_dims,
                                     const q7_t *input,
                                     const cmsis_nn_dims *filter_dims,
                                     const q7_t *kernel,
                                     const cmsis_nn_dims *bias_dims,
                                     const int32_t *bias,
                                     const cmsis_nn_dims *output_dims,
                                     q7_t *output)
{
    (void)ctx;
    (void)bias_dims;

    const int32_t input_x = input_dims->w;
    const int32_t input_y = input_dims->h;
    const int32_t input_ch = input_dims->c;
    const int32_t output_ch = output_dims->c;
    const int32_t pad_x = dw_conv_params->padding.w;
    const int32_t pad_y = dw_conv_params->padding.h;
    const int32_t stride_x = dw_conv_params->stride.w;
    const int32_t stride_y = dw_conv_params->stride.h;
    const int32_t *output_shift = quant_params->shift;
    const int32_t *output_mult = quant_params->multiplier;
    const int32_t output_x = output_dims->w;
    const int32_t output_y = output_dims->h;
    const int32_t output_offset = dw_conv_params->output_offset;
    const int32_t input_offset = dw_conv_params->input_offset;
    const int32_t output_activation_min = dw_conv_params->activation.min;
    const int32_t output_activation_max = dw_conv_params->activation.max;

    /* Check input constraints input_ch == output_ch */
    if (input_ch != output_ch)
    {
        return ARM_MATH_SIZE_MISMATCH;
    }
    /* Check input constraints pad_x <= 1 */
    if (pad_x > 1 || filter_dims->w != 3 || filter_dims->h != 3)
    {
        return ARM_MATH_ARGUMENT_ERROR;
    }

    for (int32_t in_h = -pad_y, out_h = 0, out_idx = 0; out_h < output_y; in_h += stride_y, ++out_h)
    {
        for (int32_t in_w = -pad_x, out_w = 0, ker_h_start = MAX(0, -in_h); out_w < output_x; in_w += stride_x, ++out_w)
        {
            int32_t in_ch = 0;
            int32_t ker_w_start = MAX(0, -in_w);

            for (; in_ch <= (input_ch - 4); in_ch += 4)
            {
                int32_t out_buff0 = bias[in_ch + 0];
                int32_t out_buff1 = bias[in_ch + 1];
                int32_t out_buff2 = bias[in_ch + 2];
                int32_t out_buff3 = bias[in_ch + 3];

                const int8_t *input_ptr = input + (in_h + ker_h_start) * (input_ch * input_x) + in_w * input_ch + in_ch;
                const int8_t *kernel_ptr = kernel + ker_h_start * (input_ch * 3) + in_ch;

                for (int32_t ker_h = ker_h_start; ker_h < MIN(3, input_y - in_h); ++ker_h)
                {
                    int32_t in_val = 0;
                    int32_t ker_val = 0;

                    if (ker_w_start == 0)
                    {
                        in_val = arm_nn_read_q7x4(input_ptr);
                        ker_val = arm_nn_read_q7x4(kernel_ptr);

                        out_buff0 += ((int8_t)in_val + input_offset) * (int8_t)ker_val;
                        out_buff1 += ((int8_t)(in_val >> 8) + input_offset) * (int8_t)(ker_val >> 8);
                        out_buff2 += ((int8_t)(in_val >> 16) + input_offset) * (int8_t)(ker_val >> 16);
                        out_buff3 += ((int8_t)(in_val >> 24) + input_offset) * (int8_t)(ker_val >> 24);
                    }

                    in_val = arm_nn_read_q7x4(input_ptr + input_ch);
                    ker_val = arm_nn_read_q7x4(kernel_ptr + input_ch);

                    out_buff0 += ((int8_t)in_val + input_offset) * (int8_t)ker_val;
                    out_buff1 += ((int8_t)(in_val >> 8) + input_offset) * (int8_t)(ker_val >> 8);
                    out_buff2 += ((int8_t)(in_val >> 16) + input_offset) * (int8_t)(ker_val >> 16);
                    out_buff3 += ((int8_t)(in_val >> 24) + input_offset) * (int8_t)(ker_val >> 24);

                    if ((input_x - in_w) >= 3)
                    {
                        in_val = arm_nn_read_q7x4(input_ptr + (input_ch << 1));
                        ker_val = arm_nn_read_q7x4(kernel_ptr + (input_ch << 1));

                        out_buff0 += ((int8_t)in_val + input_offset) * (int8_t)ker_val;
                        out_buff1 += ((int8_t)(in_val >> 8) + input_offset) * (int8_t)(ker_val >> 8);
                        out_buff2 += ((int8_t)(in_val >> 16) + input_offset) * (int8_t)(ker_val >> 16);
                        out_buff3 += ((int8_t)(in_val >> 24) + input_offset) * (int8_t)(ker_val >> 24);
                    }

                    input_ptr += (input_ch * input_x);
                    kernel_ptr += (input_ch * 3);
                }

                out_buff0 = arm_nn_requantize(out_buff0, output_mult[in_ch + 0], output_shift[in_ch + 0]);
                out_buff1 = arm_nn_requantize(out_buff1, output_mult[in_ch + 1], output_shift[in_ch + 1]);
                out_buff2 = arm_nn_requantize(out_buff2, output_mult[in_ch + 2], output_shift[in_ch + 2]);
                out_buff3 = arm_nn_requantize(out_buff3, output_mult[in_ch + 3], output_shift[in_ch + 3]);

                out_buff0 += output_offset;
                out_buff1 += output_offset;
                out_buff2 += output_offset;
                out_buff3 += output_offset;

                out_buff0 = MIN(MAX(out_buff0, output_activation_min), output_activation_max);
                out_buff1 = MIN(MAX(out_buff1, output_activation_min), output_activation_max);
                out_buff2 = MIN(MAX(out_buff2, output_activation_min), output_activation_max);
                out_buff3 = MIN(MAX(out_buff3, output_activation_min), output_activation_max);

                output[out_idx++] = (int8_t)out_buff0;
                output[out_idx++] = (int8_t)out_buff1;
                output[out_idx++] = (int8_t)out_buff2;
                output[out_idx++] = (int8_t)out_buff3;
            }

            // Leftover
            for (; in_ch < input_ch; ++in_ch)
            {
                int32_t out_buff = bias[in_ch];

                const int8_t *input_ptr = input + (in_h + ker_h_start) * (input_ch * input_x) + in_w * input_ch + in_ch;
                const int8_t *kernel_ptr = kernel + ker_h_start * (input_ch * 3) + in_ch;

                for (int32_t ker_h = ker_h_start; ker_h < MIN(3, input_y - in_h); ++ker_h)
                {
                    if (ker_w_start == 0)
                    {
                        out_buff += (*(input_ptr) + input_offset) * *(kernel_ptr);
                    }

                    out_buff += (*(input_ptr + input_ch) + input_offset) * *(kernel_ptr + input_ch);

                    if ((input_x - in_w) >= 3)
                    {
                        out_buff += (*(input_ptr + (input_ch << 1)) + input_offset) * *(kernel_ptr + (input_ch << 1));
                    }

                    input_ptr += (input_ch * input_x);
                    kernel_ptr += (input_ch * 3);
                }

                out_buff = arm_nn_requantize(out_buff, output_mult[in_ch], output_shift[in_ch]);
                out_buff += output_offset;
                out_buff = MIN(MAX(out_buff, output_activation_min), output_activation_max);
                output[out_idx++] = (int8_t)out_buff;
            }
        }
    }

    /* Return to application */
    return ARM_MATH_SUCCESS;
}

/**
 * @} end of NNConv group
 */