summaryrefslogtreecommitdiffstats
path: root/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_conv_s8.c
blob: 297b7afbc2759b9d4ac38a68a355f8fc43e8949b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
/*
 * Copyright (C) 2010-2021 Arm Limited or its affiliates.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/* ----------------------------------------------------------------------
 * Project:      CMSIS NN Library
 * Title:        arm_depthwise_conv_s8.c
 * Description:  s8 version of depthwise convolution.
 *
 * $Date:        30. Dec 2021
 * $Revision:    V.2.7.1
 *
 * Target Processor:  Cortex-M CPUs
 *
 * -------------------------------------------------------------------- */

#include "arm_nnfunctions.h"
#include "arm_nnsupportfunctions.h"

/**
 *  @ingroup groupNN
 */

/**
 * @addtogroup NNConv
 * @{
 */

static void depthwise_conv_s8_mult_4(const int8_t *input,
                                     const int32_t input_x,
                                     const int32_t input_y,
                                     const int32_t input_ch,
                                     const int8_t *kernel,
                                     const int32_t output_ch,
                                     const int32_t ch_mult,
                                     const int32_t kernel_x,
                                     const int32_t kernel_y,
                                     const int32_t pad_x,
                                     const int32_t pad_y,
                                     const int32_t stride_x,
                                     const int32_t stride_y,
                                     const int32_t *bias,
                                     int8_t *output,
                                     const int32_t *output_shift,
                                     const int32_t *output_mult,
                                     const int32_t output_x,
                                     const int32_t output_y,
                                     const int32_t output_offset,
                                     const int32_t input_offset,
                                     const int32_t output_activation_min,
                                     const int32_t output_activation_max)
{
    for (int32_t in_h = -pad_y, out_h = 0, out_idx = 0; out_h < output_y; in_h += stride_y, ++out_h)
    {
        for (int32_t in_w = -pad_x, out_w = 0, ker_h_start = MAX(0, -in_h); out_w < output_x; in_w += stride_x, ++out_w)
        {
            for (int32_t in_ch = 0, out_ch = 0, ker_w_start = MAX(0, -in_w); out_ch < output_ch;
                 ++in_ch, out_ch += ch_mult)
            {
                for (int mult_tile = 0; mult_tile < ch_mult; mult_tile += 4)
                {
                    int32_t out_buff[4] = {0, 0, 0, 0};
                    if (bias)
                    {
                        out_buff[0] = bias[out_ch + 0 + mult_tile];
                        out_buff[1] = bias[out_ch + 1 + mult_tile];
                        out_buff[2] = bias[out_ch + 2 + mult_tile];
                        out_buff[3] = bias[out_ch + 3 + mult_tile];
                    }

                    for (int32_t ker_h = ker_h_start; ker_h < MIN(kernel_y, input_y - in_h); ++ker_h)
                    {
                        int32_t ker_idx = ker_h * (output_ch * kernel_x) + ker_w_start * output_ch + out_ch;
                        int32_t in_idx = (in_h + ker_h) * (input_ch * input_x) + in_w * input_ch + in_ch;
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
#pragma clang loop unroll(disable)
#endif
                        for (int32_t ker_w = ker_w_start; ker_w < MIN(kernel_x, input_x - in_w);
                             ++ker_w, ker_idx += output_ch)
                        {
                            int32_t in_val = input[in_idx + ker_w * input_ch] + input_offset;
                            out_buff[0] += in_val * kernel[ker_idx + 0 + mult_tile];
                            out_buff[1] += in_val * kernel[ker_idx + 1 + mult_tile];
                            out_buff[2] += in_val * kernel[ker_idx + 2 + mult_tile];
                            out_buff[3] += in_val * kernel[ker_idx + 3 + mult_tile];
                        }
                    }
#if defined(ARM_MATH_MVEI)
                    (void)out_idx;
                    int32x4_t res = vldrwq_s32(out_buff);
                    res = arm_requantize_mve_32x4(res,
                                                  vldrwq_s32(&output_mult[out_ch + mult_tile]),
                                                  vldrwq_s32(&output_shift[out_ch + mult_tile]));
                    res = vaddq_n_s32(res, output_offset);

                    res = vmaxq_s32(res, vdupq_n_s32(output_activation_min));
                    res = vminq_s32(res, vdupq_n_s32(output_activation_max));
                    vstrbq_s32(output, res);
                    output += 4;
#else
                    out_buff[0] = arm_nn_requantize(
                        out_buff[0], output_mult[out_ch + 0 + mult_tile], output_shift[out_ch + 0 + mult_tile]);
                    out_buff[1] = arm_nn_requantize(
                        out_buff[1], output_mult[out_ch + 1 + mult_tile], output_shift[out_ch + 1 + mult_tile]);
                    out_buff[2] = arm_nn_requantize(
                        out_buff[2], output_mult[out_ch + 2 + mult_tile], output_shift[out_ch + 2 + mult_tile]);
                    out_buff[3] = arm_nn_requantize(
                        out_buff[3], output_mult[out_ch + 3 + mult_tile], output_shift[out_ch + 3 + mult_tile]);

                    out_buff[0] += output_offset;
                    out_buff[1] += output_offset;
                    out_buff[2] += output_offset;
                    out_buff[3] += output_offset;

                    out_buff[0] = MIN(MAX(out_buff[0], output_activation_min), output_activation_max);
                    out_buff[1] = MIN(MAX(out_buff[1], output_activation_min), output_activation_max);
                    out_buff[2] = MIN(MAX(out_buff[2], output_activation_min), output_activation_max);
                    out_buff[3] = MIN(MAX(out_buff[3], output_activation_min), output_activation_max);

                    output[out_idx++] = (int8_t)out_buff[0];
                    output[out_idx++] = (int8_t)out_buff[1];
                    output[out_idx++] = (int8_t)out_buff[2];
                    output[out_idx++] = (int8_t)out_buff[3];

#endif
                }
            }
        }
    }
}

static void depthwise_conv_s8_generic(const q7_t *input,
                                      const uint16_t input_batches,
                                      const uint16_t input_x,
                                      const uint16_t input_y,
                                      const uint16_t input_ch,
                                      const q7_t *kernel,
                                      const uint16_t output_ch,
                                      const uint16_t ch_mult,
                                      const uint16_t kernel_x,
                                      const uint16_t kernel_y,
                                      const uint16_t pad_x,
                                      const uint16_t pad_y,
                                      const uint16_t stride_x,
                                      const uint16_t stride_y,
                                      const int32_t *bias,
                                      q7_t *output,
                                      const int32_t *output_shift,
                                      const int32_t *output_mult,
                                      const uint16_t output_x,
                                      const uint16_t output_y,
                                      const int32_t output_offset,
                                      const int32_t input_offset,
                                      const int32_t output_activation_min,
                                      const int32_t output_activation_max,
                                      const uint16_t dilation_x,
                                      const uint16_t dilation_y)

{
    (void)output_ch;
    int i_out = 0;
    int i_batch;

    for (i_batch = 0; i_batch < input_batches; i_batch++)
    {
        for (int i_out_y = 0; i_out_y < output_y; i_out_y++)
        {
            const int16_t base_idx_y = (i_out_y * stride_y) - pad_y;
            for (int i_out_x = 0; i_out_x < output_x; i_out_x++)
            {
                const int16_t base_idx_x = (i_out_x * stride_x) - pad_x;
                for (int i_input_ch = 0; i_input_ch < input_ch; i_input_ch++)
                {
                    for (int i_ch_mult = 0; i_ch_mult < ch_mult; i_ch_mult++)
                    {
                        const int idx_out_ch = i_ch_mult + i_input_ch * ch_mult;
                        int32_t acc_0 = 0;

                        int ker_y_start;
                        int ker_x_start;
                        int ker_y_end;
                        int ker_x_end;

                        if (dilation_x > 1)
                        {
                            const int32_t start_x_max = (-base_idx_x + dilation_x - 1) / dilation_x;
                            ker_x_start = MAX(0, start_x_max);
                            const int32_t end_min_x = (input_x - base_idx_x + dilation_x - 1) / dilation_x;
                            ker_x_end = MIN(kernel_x, end_min_x);
                        }
                        else
                        {
                            ker_x_start = MAX(0, -base_idx_x);
                            ker_x_end = MIN(kernel_x, input_x - base_idx_x);
                        }

                        if (dilation_y > 1)
                        {
                            const int32_t start_y_max = (-base_idx_y + dilation_y - 1) / dilation_y;
                            ker_y_start = MAX(0, start_y_max);
                            const int32_t end_min_y = (input_y - base_idx_y + dilation_y - 1) / dilation_y;
                            ker_y_end = MIN(kernel_y, end_min_y);
                        }
                        else
                        {
                            ker_y_start = MAX(0, -base_idx_y);
                            ker_y_end = MIN(kernel_y, input_y - base_idx_y);
                        }

                        if (bias)
                        {
                            acc_0 = bias[idx_out_ch];
                        }

                        for (int i_ker_y = ker_y_start; i_ker_y < ker_y_end; i_ker_y++)
                        {
                            const int32_t idx_y = base_idx_y + dilation_y * i_ker_y;
                            for (int i_ker_x = ker_x_start; i_ker_x < ker_x_end; i_ker_x++)
                            {
                                const int32_t idx_x = base_idx_x + dilation_x * i_ker_x;
                                int32_t idx_0 = (idx_y * input_x + idx_x) * input_ch + i_input_ch;
                                int32_t ker_idx_0 = (i_ker_y * kernel_x + i_ker_x) * (input_ch * ch_mult) + idx_out_ch;

                                acc_0 += (input[idx_0] + input_offset) * kernel[ker_idx_0];
                            }
                        }

                        /* Requantize and clamp output to provided range */
                        acc_0 = arm_nn_requantize(acc_0, output_mult[idx_out_ch], output_shift[idx_out_ch]);
                        acc_0 += output_offset;
                        acc_0 = MAX(acc_0, output_activation_min);
                        acc_0 = MIN(acc_0, output_activation_max);

                        output[i_out++] = acc_0;
                    }
                }
            }
        }
        /* Advance to the next batch */
        input += (input_x * input_y * input_ch);
    }
}

/*
 *  Basic s8 depthwise convolution function.
 *
 *  Refer header file for details.
 *  Optimization using DSP extension is not available for the generic case where channel multiplier is > 1.
 *
 */
arm_status arm_depthwise_conv_s8(const cmsis_nn_context *ctx,
                                 const cmsis_nn_dw_conv_params *dw_conv_params,
                                 const cmsis_nn_per_channel_quant_params *quant_params,
                                 const cmsis_nn_dims *input_dims,
                                 const q7_t *input,
                                 const cmsis_nn_dims *filter_dims,
                                 const q7_t *kernel,
                                 const cmsis_nn_dims *bias_dims,
                                 const int32_t *bias,
                                 const cmsis_nn_dims *output_dims,
                                 q7_t *output)
{
    const uint16_t dilation_x = dw_conv_params->dilation.w;
    const uint16_t dilation_y = dw_conv_params->dilation.h;

    (void)dw_conv_params->dilation;
    (void)bias_dims;
    (void)ctx;

    if (dw_conv_params->ch_mult % 4 == 0 && input_dims->n == 1 && dw_conv_params->dilation.w == 1 &&
        dw_conv_params->dilation.h == 1)
    {
        depthwise_conv_s8_mult_4(input,
                                 input_dims->w,
                                 input_dims->h,
                                 input_dims->c,
                                 kernel,
                                 output_dims->c,
                                 dw_conv_params->ch_mult,
                                 filter_dims->w,
                                 filter_dims->h,
                                 dw_conv_params->padding.w,
                                 dw_conv_params->padding.h,
                                 dw_conv_params->stride.w,
                                 dw_conv_params->stride.h,
                                 bias,
                                 output,
                                 quant_params->shift,
                                 quant_params->multiplier,
                                 output_dims->w,
                                 output_dims->h,
                                 dw_conv_params->output_offset,
                                 dw_conv_params->input_offset,
                                 dw_conv_params->activation.min,
                                 dw_conv_params->activation.max);
    }
    else
    {
        depthwise_conv_s8_generic(input,
                                  input_dims->n,
                                  input_dims->w,
                                  input_dims->h,
                                  input_dims->c,
                                  kernel,
                                  output_dims->c,
                                  dw_conv_params->ch_mult,
                                  filter_dims->w,
                                  filter_dims->h,
                                  dw_conv_params->padding.w,
                                  dw_conv_params->padding.h,
                                  dw_conv_params->stride.w,
                                  dw_conv_params->stride.h,
                                  bias,
                                  output,
                                  quant_params->shift,
                                  quant_params->multiplier,
                                  output_dims->w,
                                  output_dims->h,
                                  dw_conv_params->output_offset,
                                  dw_conv_params->input_offset,
                                  dw_conv_params->activation.min,
                                  dw_conv_params->activation.max,
                                  dilation_x,
                                  dilation_y);
    }

    /* Return to application */
    return ARM_MATH_SUCCESS;
}

/**
 * @} end of NNConv group
 */