summaryrefslogtreecommitdiffstats
path: root/Drivers/CMSIS/NN/Source/SoftmaxFunctions/arm_nn_softmax_common_s8.c
blob: 84d1ac858ea1aeab0105ba4f892ee0db2c9acd90 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
/*
 * Copyright (C) 2022 Arm Limited or its affiliates.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/* ----------------------------------------------------------------------
 * Project:      CMSIS NN Library
 * Title:        arm_nn_softmax_common_s8.c
 * Description:  Softmax with s8 input and output of s8 or s16.
 *
 * $Date:        17 March 2022
 * $Revision:    V.1.0.1
 *
 * Target Processor:  Cortex-M processors
 * -------------------------------------------------------------------- */

#include "arm_nnsupportfunctions.h"

#define ACCUM_BITS 12

/**
 * @ingroup groupSupport
 */

/**
 * @addtogroup Softmax
 * @{
 */

/*
 * Softmax function with s8 input and output of s8 or s16.
 *
 * Refer header file for details.
 *
 */
void arm_nn_softmax_common_s8(const int8_t *input,
                              const int32_t num_rows,
                              const int32_t row_size,
                              const int32_t mult,
                              const int32_t shift,
                              const int32_t diff_min,
                              const bool int16_output,
                              void *output)
{
    const int32_t mask = (1 << shift);

    int32_t col = 0;
    int32_t row_idx;

    for (row_idx = 0; row_idx < num_rows; ++row_idx)
    {
        // Find the maximum value in order to ensure numerical stability
        int8_t max = *input;

        for (col = 1; col < row_size; ++col)
        {
            max = MAX(max, input[col]);
        }

        int32_t diff = 0;
        int32_t sum = 0;

        for (col = 0; col < row_size; ++col)
        {
            diff = input[col] - max;
            if (diff >= diff_min)
            {
                sum += DIV_POW2(EXP_ON_NEG(MUL_SAT(diff * mask, mult)), ACCUM_BITS);
            }
        }

        const int32_t headroom = __CLZ(sum);
        const int32_t shifted_scale = ONE_OVER1((sum > 0 ? sum << headroom : 0) - (1 << 31));
        int32_t bits_over_unit;

        if (int16_output)
        {
            int16_t *output_s16 = (int16_t *)output + row_idx * row_size;

            bits_over_unit = ACCUM_BITS - headroom + 15;

            for (col = 0; col < row_size; ++col)
            {
                diff = input[col] - max;

                if (diff >= diff_min)
                {
                    const int32_t res =
                        DIV_POW2(MUL_SAT(shifted_scale, EXP_ON_NEG(MUL_SAT(diff * mask, mult))), bits_over_unit) +
                        NN_Q15_MIN;
                    output_s16[col] = (int16_t)CLAMP(res, (int32_t)NN_Q15_MAX, (int32_t)NN_Q15_MIN);
                }
                else
                {
                    output_s16[col] = NN_Q15_MIN;
                }
            }
        }
        else
        {
            int8_t *output_s8 = (int8_t *)output + row_idx * row_size;

            bits_over_unit = ACCUM_BITS - headroom + 23;

            for (col = 0; col < row_size; ++col)
            {
                diff = input[col] - max;
                if (diff >= diff_min)
                {
                    const int32_t res =
                        DIV_POW2(MUL_SAT(shifted_scale, EXP_ON_NEG(MUL_SAT(diff * mask, mult))), bits_over_unit) +
                        NN_Q7_MIN;
                    output_s8[col] = (int8_t)CLAMP(res, (int32_t)NN_Q7_MAX, (int32_t)NN_Q7_MIN);
                }
                else
                {
                    output_s8[col] = NN_Q7_MIN;
                }
            }
        }

        input += row_size;
    }
}

/**
 * @} end of NNBasicMath group
 */