support c++14

master
Clyne 1 year ago
parent 3234772a90
commit bd157e503a

@ -1,10 +1,12 @@
# constexpr-to-string
Requires C++14 or later.
**Features:**
* Convert any integral type to a string at compile-time
* Supports converting to any base between 2 and 36 inclusive
* No external dependencies, only includes `type_traits` for template parameter checking
* Supports converting to bases 2 through 36
* No external dependencies
* Supports custom character types, e.g. `to_string<123, 10, wchar_t>`
* C++20: Supports floating-point-to-string conversion with `f_to_string`
@ -32,48 +34,11 @@ puts(f_to_string<{3.1415926, 7}>); // Specify precision: "3.1415926"
# How it works
The basic structure of `to_string` is shown below:
```cpp
template<auto N, unsigned int base, typename char_type, /* N type-check and base bounds-check */>
struct to_string_t {
char_type buf[]; // Array size determination explained later.
constexpr to_string_t() {} // Converts the integer to a string stored in buf.
constexpr operator char_type *() {} // These allow for the object to be implicitly converted
constexpr operator const char_type *() {} // to a character pointer.
// begin() and end() are supported too.
};
template<auto N, unsigned int base = 10, typename char_type = char>
constexpr to_string_t<N, base, char_type> to_string; // Simplifies usage, e.g. to_string_t<367>() becomes to_string<367>.
```
Since the number and base are template parameters, each differing `to_string` use will get its own character buffer.
C++14 greatly expanded the capabilities of compile-time code execution through `constexpr`. In particular, it allows for non-trivial constructors to be `constexpr`.
The integer/string conversion is done using a simple method I learned over the years, where the string is built in reverse using `n % base` to calculate the value of the lowest digit:
`to_string` takes advantage of this by providing an object that converts a template-parameter integer to a string using a basic `itoa` implementation in the constructor. Through an additional `constexpr` member function, we can calculate the length of the resulting string; this can be used to size the object's string buffer for a perfect fit.
(*Note: The below examples of code are not up-to-date, though they still give a general idea of how `to_string` works.*)
Beyond this, `to_string` simply provides familiar member functions that allow for iteration and data access. The expansion of the capabilities of `auto` in C++14 help make these definitions concise.
```cpp
constexpr char digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
constexpr to_string_t() {
auto ptr = buf + sizeof(buf) / sizeof(buf[0]);
*--ptr = '\0';
for (auto n = N < 0 ? -N : N; n; n /= base)
*--ptr = digits[n % base];
if (N < 0)
*--ptr = '-';
}
```
As you may have noticed, `buf` needs to be given a size for all this to work; in fact, the above code relies on the buffer having a size equal to the generated string (or else `buf[0]` would still be uninitialized). This is actually the case: a lambda is used within `buf`'s declaration to count how many characters long the string will ultimately be. This counting is done in a manner similar to conversion loop shown above:
The floating-point implementation `f_to_string` takes a similar approach, but requires C++20 as it needs a `double_wrapper` object to capture the `double` value. `double` and `float` cannot directly be template parameters as of C++20, and a non-type template parameter like the `double_wrapper` structure was not allowed before C++20.
```cpp
char buf[([] {
unsigned int len = N >= 0 ? 1 : 2; // Need one byte for '\0', two if there'll be a minus
for (auto n = N < 0 ? -N : N; n; len++, n /= base);
return len;
}())];
```

@ -7,11 +7,12 @@
#ifndef TCSULLIVAN_TO_STRING_HPP_
#define TCSULLIVAN_TO_STRING_HPP_
#include <cstdint>
#include <type_traits>
namespace constexpr_to_string {
inline constexpr char digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
constexpr char digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
/**
* @struct to_string_t
@ -19,17 +20,17 @@ inline constexpr char digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
* @tparam N Number to convert
* @tparam base Desired base, can be from 2 to 36
*/
template<auto N, int base, typename char_type,
std::enable_if_t<std::is_integral_v<decltype(N)>, int> = 0,
template<std::intmax_t N, int base, typename char_type,
std::enable_if_t<(base > 1 && base < sizeof(digits)), int> = 0>
class to_string_t {
// The lambda calculates what the string length of N will be, so that `buf`
// fits to the number perfectly.
char_type buf[([]() constexpr noexcept {
unsigned int len = N > 0 ? 1 : 2;
for (auto n = N; n; len++, n /= base);
return len;
}())] = {};
constexpr static auto buflen() noexcept {
unsigned int len = N > 0 ? 1 : 2;
for (auto n = N; n; len++, n /= base);
return len;
}
char_type buf[buflen()] = {};
public:
/**
@ -38,6 +39,7 @@ class to_string_t {
constexpr to_string_t() noexcept {
auto ptr = end();
*--ptr = '\0';
if (N != 0) {
for (auto n = N; n; n /= base)
*--ptr = digits[(N < 0 ? -1 : 1) * (n % base)];
@ -53,6 +55,7 @@ class to_string_t {
constexpr operator const char_type *() const noexcept { return buf; }
constexpr auto size() const noexcept { return sizeof(buf) / sizeof(buf[0]); }
// Element access
constexpr auto data() noexcept { return buf; }
constexpr const auto data() const noexcept { return buf; }
@ -62,6 +65,7 @@ class to_string_t {
constexpr const auto& front() const noexcept { return buf[0]; }
constexpr auto& back() noexcept { return buf[size() - 1]; }
constexpr const auto& back() const noexcept { return buf[size() - 1]; }
// Iterators
constexpr auto begin() noexcept { return buf; }
constexpr const auto begin() const noexcept { return buf; }
@ -74,7 +78,8 @@ class to_string_t {
/**
* Simplifies use of `to_string_t` from `to_string_t<N>()` to `to_string<N>`.
*/
template<auto N, int base = 10, typename char_type = char>
template<std::intmax_t N, int base = 10, typename char_type = char>
constexpr constexpr_to_string::to_string_t<N, base, char_type> to_string;
#endif // TCSULLIVAN_TO_STRING_HPP_

Loading…
Cancel
Save