convert boot.s to c++

main
Clyne 3 months ago
parent 0f5bbed9a9
commit 56f5c483ee
Signed by: clyne
GPG Key ID: 1B74EE6C49C96795

@ -1,9 +1,8 @@
ASFLAGS := --32
CXXFLAGS := -m32 -ggdb -g3 -O0 -fno-pic -ffreestanding -fno-rtti -fno-exceptions -std=c++23 CXXFLAGS := -m32 -ggdb -g3 -O0 -fno-pic -ffreestanding -fno-rtti -fno-exceptions -std=c++23
LDFLAGS := -m32 -static -T link.ld -ffreestanding -nostdlib LDFLAGS := -m32 -static -T link.ld -ffreestanding -nostdlib
ASFILES := boot.s CXXFILES := boot.cpp \
CXXFILES := gdt.cpp \ gdt.cpp \
idt.cpp \ idt.cpp \
memory.cpp \ memory.cpp \
multiboot.cpp \ multiboot.cpp \
@ -13,8 +12,7 @@ CXXFILES := gdt.cpp \
vgaterminal.cpp \ vgaterminal.cpp \
kernel.cpp kernel.cpp
OBJS := $(subst .s,.o,$(ASFILES)) \ OBJS := $(subst .cpp,.o,$(CXXFILES))
$(subst .cpp,.o,$(CXXFILES))
all: myos.iso all: myos.iso
@ -27,10 +25,6 @@ myos.bin: $(OBJS) link.ld
@echo " LD " $@ @echo " LD " $@
@g++ $(LDFLAGS) -o $@ $(OBJS) @g++ $(LDFLAGS) -o $@ $(OBJS)
%.o: %.s
@echo " AS " $<
@as $(ASFLAGS) -c $< -o $@
%.o: %.cpp %.o: %.cpp
@echo " CXX " $< @echo " CXX " $<
@g++ $(CXXFLAGS) -c $< -o $@ @g++ $(CXXFLAGS) -c $< -o $@
@ -41,5 +35,5 @@ clean:
run: myos.iso run: myos.iso
@echo " QEMU" @echo " QEMU"
@qemu-system-i386 -cdrom $< -monitor stdio -no-reboot -s -S #-d int @qemu-system-i386 -cdrom $< -monitor stdio -no-reboot #-s -S #-d int

@ -0,0 +1,72 @@
#include <array>
#include <cstdint>
extern void kernel_main();
struct multiboot2
{
static constexpr std::uint32_t MAGIC = 0xE85250D6;
static constexpr std::uint32_t FLAGS = 0;
static constexpr std::uint32_t LENGTH = 16;
static constexpr std::uint32_t CHECKSUM = -(MAGIC + FLAGS + LENGTH);
alignas(8)
std::uint32_t magic = MAGIC;
std::uint32_t flags = FLAGS;
std::uint32_t length = LENGTH;
std::uint32_t checksum = CHECKSUM;
} __attribute__((packed));
struct multiboot2_tag
{
alignas(8)
std::uint16_t id;
std::uint16_t flags;
std::uint32_t length;
std::uint32_t data[];
} __attribute__((packed));
__attribute__((section(".multiboot2")))
multiboot2 multibootHeader;
__attribute__((section(".multiboot2")))
multiboot2_tag multibootTagInfoRequest = {
1, 0, sizeof(multiboot2_tag) + sizeof(std::uint32_t),
{4}
};
__attribute__((section(".multiboot2")))
multiboot2_tag multibootTagEnd = {
0, 0, sizeof(multiboot2_tag), {}
};
alignas(16)
std::array<std::uint8_t, 16384> stack;
extern "C"
__attribute__((naked))
void _start()
{
asm volatile(R"(
mov %%eax, multiboot_magic
mov %%ebx, multiboot_ptr
mov %0, %%esp
)" :: "i" (stack.data() + stack.size()));
extern std::uint32_t __init_array_start;
extern std::uint32_t __init_array_end;
auto it = &__init_array_start;
while (it < &__init_array_end) {
auto fn = reinterpret_cast<void (*)()>(*it);
fn();
++it;
}
kernel_main();
asm volatile("cli");
for (;;)
asm volatile("hlt");
}

127
boot.s

@ -1,127 +0,0 @@
/* Declare constants for the multiboot header. */
.set MAGIC, 0xE85250D6
.set FLAGS, 0x0
.set LENGTH, 16
.set CHECKSUM, -(MAGIC + FLAGS + LENGTH)
.section .multiboot2
.align 8
.int MAGIC
.int FLAGS
.int LENGTH
.int CHECKSUM
/* info request */
.align 8
.hword 1, 0
.int 12
.int 4
/* end tag */
.align 8
.hword 0, 0
.int 8
/*
The multiboot standard does not define the value of the stack pointer register
(esp) and it is up to the kernel to provide a stack. This allocates room for a
small stack by creating a symbol at the bottom of it, then allocating 16384
bytes for it, and finally creating a symbol at the top. The stack grows
downwards on x86. The stack is in its own section so it can be marked nobits,
which means the kernel file is smaller because it does not contain an
uninitialized stack. The stack on x86 must be 16-byte aligned according to the
System V ABI standard and de-facto extensions. The compiler will assume the
stack is properly aligned and failure to align the stack will result in
undefined behavior.
*/
.section .bss
.align 16
stack_bottom:
.skip 16384 # 16 KiB
stack_top:
/*
The linker script specifies _start as the entry point to the kernel and the
bootloader will jump to this position once the kernel has been loaded. It
doesn't make sense to return from this function as the bootloader is gone.
*/
.section .text
.global _start
.type _start, @function
_start:
/*
The bootloader has loaded us into 32-bit protected mode on a x86
machine. Interrupts are disabled. Paging is disabled. The processor
state is as defined in the multiboot standard. The kernel has full
control of the CPU. The kernel can only make use of hardware features
and any code it provides as part of itself. There's no printf
function, unless the kernel provides its own <stdio.h> header and a
printf implementation. There are no security restrictions, no
safeguards, no debugging mechanisms, only what the kernel provides
itself. It has absolute and complete power over the
machine.
*/
mov %eax, multiboot_magic
mov %ebx, multiboot_ptr
/*
To set up a stack, we set the esp register to point to the top of the
stack (as it grows downwards on x86 systems). This is necessarily done
in assembly as languages such as C cannot function without a stack.
*/
mov $stack_top, %esp
/*
This is a good place to initialize crucial processor state before the
high-level kernel is entered. It's best to minimize the early
environment where crucial features are offline. Note that the
processor is not fully initialized yet: Features such as floating
point instructions and instruction set extensions are not initialized
yet. The GDT should be loaded here. Paging should be enabled here.
C++ features such as global constructors and exceptions will require
runtime support to work as well.
*/
mov $__init_array_start, %eax
.again:
cmp $__init_array_end, %eax
je .next
push %eax
call *(%eax)
pop %eax
add $0x4, %eax
jmp .again
.next:
/*
Enter the high-level kernel. The ABI requires the stack is 16-byte
aligned at the time of the call instruction (which afterwards pushes
the return pointer of size 4 bytes). The stack was originally 16-byte
aligned above and we've pushed a multiple of 16 bytes to the
stack since (pushed 0 bytes so far), so the alignment has thus been
preserved and the call is well defined.
*/
call kernel_main
/*
If the system has nothing more to do, put the computer into an
infinite loop. To do that:
1) Disable interrupts with cli (clear interrupt enable in eflags).
They are already disabled by the bootloader, so this is not needed.
Mind that you might later enable interrupts and return from
kernel_main (which is sort of nonsensical to do).
2) Wait for the next interrupt to arrive with hlt (halt instruction).
Since they are disabled, this will lock up the computer.
3) Jump to the hlt instruction if it ever wakes up due to a
non-maskable interrupt occurring or due to system management mode.
*/
cli
1: hlt
jmp 1b
/*
Set the size of the _start symbol to the current location '.' minus its start.
This is useful when debugging or when you implement call tracing.
*/
.size _start, . - _start

@ -10,7 +10,6 @@
static VGATerminal vga; static VGATerminal vga;
TextOutput& term = vga; TextOutput& term = vga;
extern "C"
void kernel_main(void) void kernel_main(void)
{ {
term.write("Clyne's kernel, v2024\n\n"); term.write("Clyne's kernel, v2024\n\n");

Loading…
Cancel
Save