convert boot.s to c++
parent
0f5bbed9a9
commit
56f5c483ee
@ -0,0 +1,72 @@
|
||||
#include <array>
|
||||
#include <cstdint>
|
||||
|
||||
extern void kernel_main();
|
||||
|
||||
struct multiboot2
|
||||
{
|
||||
static constexpr std::uint32_t MAGIC = 0xE85250D6;
|
||||
static constexpr std::uint32_t FLAGS = 0;
|
||||
static constexpr std::uint32_t LENGTH = 16;
|
||||
static constexpr std::uint32_t CHECKSUM = -(MAGIC + FLAGS + LENGTH);
|
||||
|
||||
alignas(8)
|
||||
std::uint32_t magic = MAGIC;
|
||||
std::uint32_t flags = FLAGS;
|
||||
std::uint32_t length = LENGTH;
|
||||
std::uint32_t checksum = CHECKSUM;
|
||||
} __attribute__((packed));
|
||||
|
||||
struct multiboot2_tag
|
||||
{
|
||||
alignas(8)
|
||||
std::uint16_t id;
|
||||
std::uint16_t flags;
|
||||
std::uint32_t length;
|
||||
std::uint32_t data[];
|
||||
} __attribute__((packed));
|
||||
|
||||
__attribute__((section(".multiboot2")))
|
||||
multiboot2 multibootHeader;
|
||||
|
||||
__attribute__((section(".multiboot2")))
|
||||
multiboot2_tag multibootTagInfoRequest = {
|
||||
1, 0, sizeof(multiboot2_tag) + sizeof(std::uint32_t),
|
||||
{4}
|
||||
};
|
||||
|
||||
__attribute__((section(".multiboot2")))
|
||||
multiboot2_tag multibootTagEnd = {
|
||||
0, 0, sizeof(multiboot2_tag), {}
|
||||
};
|
||||
|
||||
alignas(16)
|
||||
std::array<std::uint8_t, 16384> stack;
|
||||
|
||||
extern "C"
|
||||
__attribute__((naked))
|
||||
void _start()
|
||||
{
|
||||
asm volatile(R"(
|
||||
mov %%eax, multiboot_magic
|
||||
mov %%ebx, multiboot_ptr
|
||||
mov %0, %%esp
|
||||
)" :: "i" (stack.data() + stack.size()));
|
||||
|
||||
extern std::uint32_t __init_array_start;
|
||||
extern std::uint32_t __init_array_end;
|
||||
|
||||
auto it = &__init_array_start;
|
||||
while (it < &__init_array_end) {
|
||||
auto fn = reinterpret_cast<void (*)()>(*it);
|
||||
fn();
|
||||
++it;
|
||||
}
|
||||
|
||||
kernel_main();
|
||||
|
||||
asm volatile("cli");
|
||||
for (;;)
|
||||
asm volatile("hlt");
|
||||
}
|
||||
|
@ -1,127 +0,0 @@
|
||||
/* Declare constants for the multiboot header. */
|
||||
.set MAGIC, 0xE85250D6
|
||||
.set FLAGS, 0x0
|
||||
.set LENGTH, 16
|
||||
.set CHECKSUM, -(MAGIC + FLAGS + LENGTH)
|
||||
|
||||
.section .multiboot2
|
||||
.align 8
|
||||
.int MAGIC
|
||||
.int FLAGS
|
||||
.int LENGTH
|
||||
.int CHECKSUM
|
||||
|
||||
/* info request */
|
||||
.align 8
|
||||
.hword 1, 0
|
||||
.int 12
|
||||
.int 4
|
||||
|
||||
/* end tag */
|
||||
.align 8
|
||||
.hword 0, 0
|
||||
.int 8
|
||||
|
||||
/*
|
||||
The multiboot standard does not define the value of the stack pointer register
|
||||
(esp) and it is up to the kernel to provide a stack. This allocates room for a
|
||||
small stack by creating a symbol at the bottom of it, then allocating 16384
|
||||
bytes for it, and finally creating a symbol at the top. The stack grows
|
||||
downwards on x86. The stack is in its own section so it can be marked nobits,
|
||||
which means the kernel file is smaller because it does not contain an
|
||||
uninitialized stack. The stack on x86 must be 16-byte aligned according to the
|
||||
System V ABI standard and de-facto extensions. The compiler will assume the
|
||||
stack is properly aligned and failure to align the stack will result in
|
||||
undefined behavior.
|
||||
*/
|
||||
.section .bss
|
||||
.align 16
|
||||
stack_bottom:
|
||||
.skip 16384 # 16 KiB
|
||||
stack_top:
|
||||
|
||||
/*
|
||||
The linker script specifies _start as the entry point to the kernel and the
|
||||
bootloader will jump to this position once the kernel has been loaded. It
|
||||
doesn't make sense to return from this function as the bootloader is gone.
|
||||
*/
|
||||
.section .text
|
||||
.global _start
|
||||
.type _start, @function
|
||||
_start:
|
||||
/*
|
||||
The bootloader has loaded us into 32-bit protected mode on a x86
|
||||
machine. Interrupts are disabled. Paging is disabled. The processor
|
||||
state is as defined in the multiboot standard. The kernel has full
|
||||
control of the CPU. The kernel can only make use of hardware features
|
||||
and any code it provides as part of itself. There's no printf
|
||||
function, unless the kernel provides its own <stdio.h> header and a
|
||||
printf implementation. There are no security restrictions, no
|
||||
safeguards, no debugging mechanisms, only what the kernel provides
|
||||
itself. It has absolute and complete power over the
|
||||
machine.
|
||||
*/
|
||||
mov %eax, multiboot_magic
|
||||
mov %ebx, multiboot_ptr
|
||||
|
||||
/*
|
||||
To set up a stack, we set the esp register to point to the top of the
|
||||
stack (as it grows downwards on x86 systems). This is necessarily done
|
||||
in assembly as languages such as C cannot function without a stack.
|
||||
*/
|
||||
mov $stack_top, %esp
|
||||
|
||||
/*
|
||||
This is a good place to initialize crucial processor state before the
|
||||
high-level kernel is entered. It's best to minimize the early
|
||||
environment where crucial features are offline. Note that the
|
||||
processor is not fully initialized yet: Features such as floating
|
||||
point instructions and instruction set extensions are not initialized
|
||||
yet. The GDT should be loaded here. Paging should be enabled here.
|
||||
C++ features such as global constructors and exceptions will require
|
||||
runtime support to work as well.
|
||||
*/
|
||||
mov $__init_array_start, %eax
|
||||
.again:
|
||||
cmp $__init_array_end, %eax
|
||||
je .next
|
||||
push %eax
|
||||
call *(%eax)
|
||||
pop %eax
|
||||
add $0x4, %eax
|
||||
jmp .again
|
||||
|
||||
.next:
|
||||
|
||||
/*
|
||||
Enter the high-level kernel. The ABI requires the stack is 16-byte
|
||||
aligned at the time of the call instruction (which afterwards pushes
|
||||
the return pointer of size 4 bytes). The stack was originally 16-byte
|
||||
aligned above and we've pushed a multiple of 16 bytes to the
|
||||
stack since (pushed 0 bytes so far), so the alignment has thus been
|
||||
preserved and the call is well defined.
|
||||
*/
|
||||
call kernel_main
|
||||
|
||||
/*
|
||||
If the system has nothing more to do, put the computer into an
|
||||
infinite loop. To do that:
|
||||
1) Disable interrupts with cli (clear interrupt enable in eflags).
|
||||
They are already disabled by the bootloader, so this is not needed.
|
||||
Mind that you might later enable interrupts and return from
|
||||
kernel_main (which is sort of nonsensical to do).
|
||||
2) Wait for the next interrupt to arrive with hlt (halt instruction).
|
||||
Since they are disabled, this will lock up the computer.
|
||||
3) Jump to the hlt instruction if it ever wakes up due to a
|
||||
non-maskable interrupt occurring or due to system management mode.
|
||||
*/
|
||||
cli
|
||||
1: hlt
|
||||
jmp 1b
|
||||
|
||||
/*
|
||||
Set the size of the _start symbol to the current location '.' minus its start.
|
||||
This is useful when debugging or when you implement call tracing.
|
||||
*/
|
||||
.size _start, . - _start
|
||||
|
Loading…
Reference in New Issue