8kSps rate; elf in SRAM2

pull/3/head
Clyne 4 years ago
parent 4611bbac23
commit 3fa9bbe425

@ -5,7 +5,7 @@
# Compiler options here.
ifeq ($(USE_OPT),)
USE_OPT = -Og -ggdb -fomit-frame-pointer -falign-functions=16
USE_OPT = -Og -ggdb -fomit-frame-pointer -falign-functions=16 -mtune=cortex-m4
endif
# C specific options here (added to USE_OPT).

@ -176,16 +176,24 @@ void MainFrame::prepareEditor()
wxT("void char short int long auto float double unsigned signed "
"volatile static const constexpr constinit consteval "
"virtual final noexcept public private protected"));
m_text_editor->SetText("void process_data(adcsample_t *samples, unsigned int size)\n{\n\t\n}\n");
m_text_editor->SetText(
R"cpp(adcsample_t *process_data(adcsample_t *samples, unsigned int size)
{
return samples;
}
)cpp");
}
static const char *makefile_text = R"make(
all:
@arm-none-eabi-g++ -x c++ -mcpu=cortex-m4 -mthumb -mfloat-abi=hard -mfpu=fpv4-sp-d16 -Os --specs=nosys.specs -nostartfiles -fPIE $0 -o $0.o -Wl,-Ttext-segment=0 -Wl,-eprocess_data_entry -Wl,-zmax-page-size=512
@arm-none-eabi-g++ -x c++ -Os -fno-exceptions -fno-rtti \
-mcpu=cortex-m4 -mthumb -mfloat-abi=hard -mfpu=fpv4-sp-d16 -mtune=cortex-m4 \
-nostartfiles \
-Wl,-Ttext-segment=0x10000000 -Wl,-zmax-page-size=512 -Wl,-eprocess_data_entry \
$0 -o $0.o
@cp $0.o $0.orig.o
@arm-none-eabi-strip -s -S --strip-unneeded $0.o
@arm-none-eabi-objcopy --remove-section .ARM.exidx \
--remove-section .ARM.attributes \
@arm-none-eabi-objcopy --remove-section .ARM.attributes \
--remove-section .comment \
--remove-section .noinit \
$0.o
@ -196,14 +204,15 @@ static const char *file_header = R"cpp(
using adcsample_t = uint16_t;
void process_data(adcsample_t *samples, unsigned int size);
adcsample_t *process_data(adcsample_t *samples, unsigned int size);
extern "C" void process_data_entry() {
auto func = (void (*)())process_data;
func();
extern "C" void process_data_entry()
{
((void (*)())process_data)();
}
// End stmdspgui header code
)cpp";
wxString MainFrame::compileEditorCode()

@ -0,0 +1 @@
sudo openocd -f /usr/local/share/openocd/scripts/interface/stlink.cfg -f /usr/local/share/openocd/scripts/target/stm32l4x.cfg

@ -29,7 +29,7 @@ static ADCConversionGroup adc_group_config = {
.cfgr2 = 0,
.tr1 = ADC_TR(0, 4095),
.smpr = {
ADC_SMPR1_SMP_AN5(ADC_SMPR_SMP_24P5), 0
ADC_SMPR1_SMP_AN5(ADC_SMPR_SMP_2P5), 0
},
.sqr = {
ADC_SQR1_SQ1_N(ADC_CHANNEL_IN5),
@ -38,7 +38,7 @@ static ADCConversionGroup adc_group_config = {
};
constexpr static const GPTConfig gpt_config = {
.frequency = 4000000,
.frequency = 600000,
.callback = nullptr,
.cr2 = TIM_CR2_MMS_1, /* TRGO */
.dier = 0
@ -65,7 +65,7 @@ namespace adc
adc_is_read_finished = false;
adc_group_config.circular = false;
adcStartConversion(adcd, &adc_group_config, buffer, count);
gptStartContinuous(gptd, 8);
gptStartContinuous(gptd, 5);
while (!adc_is_read_finished);
return buffer;
}
@ -77,7 +77,7 @@ namespace adc
adc_operation_func = operation_func;
adc_group_config.circular = true;
adcStartConversion(adcd, &adc_group_config, buffer, count);
gptStartContinuous(gptd, 8);
gptStartContinuous(gptd, 5);
}
void read_stop()

@ -28,7 +28,7 @@ constexpr static const DACConversionGroup dac_group_config = {
};
constexpr static const GPTConfig gpt_config = {
.frequency = 4000000,
.frequency = 600000,
.callback = nullptr,
.cr2 = TIM_CR2_MMS_1, /* TRGO */
.dier = 0
@ -48,7 +48,7 @@ namespace dac
void write_start(dacsample_t *buffer, size_t count)
{
dacStartConversion(dacd, &dac_group_config, buffer, count);
gptStartContinuous(gptd, 8);
gptStartContinuous(gptd, 5);
}
void write_stop()

@ -4,6 +4,8 @@
#include <algorithm>
#include <cstring>
//constexpr unsigned int ELF_LOAD_ADDR = 0x10000000;
static const unsigned char elf_header[] = { '\177', 'E', 'L', 'F' };
template<typename T>
@ -12,67 +14,58 @@ constexpr static auto ptr_from_offset(void *base, uint32_t offset)
return reinterpret_cast<T>(reinterpret_cast<uint8_t *>(base) + offset);
}
static Elf32_Shdr *find_section(Elf32_Ehdr *ehdr, const char *name);
//static Elf32_Shdr *find_section(Elf32_Ehdr *ehdr, const char *name);
namespace elf {
entry_t load(void *elf_data, void *elf_load_offset)
entry_t load(void *elf_data)
{
// Check the ELF's header signature
auto ehdr = reinterpret_cast<Elf32_Ehdr *>(elf_data);
if (!std::equal(ehdr->e_ident, ehdr->e_ident + 4, elf_header))
return nullptr;
// Iterate through program header LOAD sections
bool loaded = false;
auto phdr = ptr_from_offset<Elf32_Phdr *>(elf_data, ehdr->e_phoff);
for (Elf32_Half i = 0; i < ehdr->e_phnum; i++) {
if (phdr->p_type == PT_LOAD) {
std::memcpy(ptr_from_offset<void *>(elf_load_offset, phdr->p_vaddr),
if (phdr->p_filesz == 0) {
std::memset(reinterpret_cast<void *>(phdr->p_vaddr),
0,
phdr->p_memsz);
} else {
std::memcpy(reinterpret_cast<void *>(phdr->p_vaddr),
ptr_from_offset<void *>(elf_data, phdr->p_offset),
phdr->p_filesz);
//break;
}
phdr = ptr_from_offset<Elf32_Phdr *>(phdr, ehdr->e_phentsize);
if (!loaded)
loaded = true;
}
// Zero .bss section
if (auto bss_section = find_section(ehdr, ".bss"); bss_section) {
auto bss = ptr_from_offset<uint32_t *>(elf_load_offset, bss_section->sh_addr);
std::fill(bss, bss + bss_section->sh_size / sizeof(uint32_t), 0);
}
// Fix global offset table (GOT) entries
if (auto got_section = find_section(ehdr, ".got"); got_section) {
auto got = ptr_from_offset<void **>(elf_load_offset, got_section->sh_addr);
for (size_t i = 0; i < got_section->sh_size / sizeof(void *); i++)
got[i] = ptr_from_offset<void *>(got[i], reinterpret_cast<uint32_t>(elf_load_offset));
phdr = ptr_from_offset<Elf32_Phdr *>(phdr, ehdr->e_phentsize);
}
//// Run any initial constructors
//if (auto init_section = find_section(ehdr, ".init_array"); init_section) {
// auto init_array = reinterpret_cast<void (**)()>(elf_load_offset + init_section->sh_addr);
// std::for_each(init_array, init_array + init_section->sh_size / sizeof(void (*)()),
// [elf_load_offset](auto func) { (func + elf_load_offset)(); });
//}
return ptr_from_offset<entry_t>(elf_load_offset, ehdr->e_entry);
return loaded ? reinterpret_cast<entry_t>(ehdr->e_entry) : nullptr;
}
} // namespace elf
Elf32_Shdr *find_section(Elf32_Ehdr *ehdr, const char *name)
{
auto shdr = ptr_from_offset<Elf32_Shdr *>(ehdr, ehdr->e_shoff);
auto shdr_str = ptr_from_offset<Elf32_Shdr *>(ehdr,
ehdr->e_shoff + ehdr->e_shstrndx * ehdr->e_shentsize);
for (Elf32_Half i = 0; i < ehdr->e_shnum; i++) {
char *section = ptr_from_offset<char *>(ehdr, shdr_str->sh_offset) + shdr->sh_name;
if (!strcmp(section, name))
return shdr;
shdr = ptr_from_offset<Elf32_Shdr *>(shdr, ehdr->e_shentsize);
}
return 0;
}
//Elf32_Shdr *find_section(Elf32_Ehdr *ehdr, const char *name)
//{
// auto shdr = ptr_from_offset<Elf32_Shdr *>(ehdr, ehdr->e_shoff);
// auto shdr_str = ptr_from_offset<Elf32_Shdr *>(ehdr,
// ehdr->e_shoff + ehdr->e_shstrndx * ehdr->e_shentsize);
//
// for (Elf32_Half i = 0; i < ehdr->e_shnum; i++) {
// char *section = ptr_from_offset<char *>(ehdr, shdr_str->sh_offset) + shdr->sh_name;
// if (!strcmp(section, name))
// return shdr;
//
// shdr = ptr_from_offset<Elf32_Shdr *>(shdr, ehdr->e_shentsize);
// }
//
// return 0;
//}

@ -6,9 +6,9 @@
namespace elf
{
using entry_t = void (*)(uint16_t *, size_t);
using entry_t = uint16_t *(*)(uint16_t *, size_t);
entry_t load(void *elf_data, void *elf_load_offset);
entry_t load(void *elf_data);
}
#endif // ELF_LOAD_HPP_

@ -19,6 +19,8 @@
#include <array>
constexpr unsigned int MAX_SAMPLE_BUFFER_SIZE = 2048;
enum class RunStatus : char
{
Idle = '1',
@ -42,14 +44,13 @@ static_assert(sizeof(dacsample_t) == sizeof(uint16_t));
#if CACHE_LINE_SIZE > 0
CC_ALIGN(CACHE_LINE_SIZE)
#endif
static std::array<adcsample_t, CACHE_SIZE_ALIGN(adcsample_t, 2048)> adc_samples;
static std::array<adcsample_t, CACHE_SIZE_ALIGN(adcsample_t, MAX_SAMPLE_BUFFER_SIZE)> adc_samples;
#if CACHE_LINE_SIZE > 0
CC_ALIGN(CACHE_LINE_SIZE)
#endif
static std::array<dacsample_t, CACHE_SIZE_ALIGN(dacsample_t, 2048)> dac_samples;
static std::array<dacsample_t, CACHE_SIZE_ALIGN(dacsample_t, MAX_SAMPLE_BUFFER_SIZE)> dac_samples;
static uint8_t elf_file_store[2048];
static uint8_t elf_exec_store[4096];
static uint8_t elf_file_store[8192];
static elf::entry_t elf_entry = nullptr;
static void signal_operate(adcsample_t *buffer, size_t count);
@ -57,81 +58,125 @@ static void main_loop();
int main()
{
// Initialize the RTOS
halInit();
chSysInit();
// Enable FPU
SCB->CPACR |= 0xF << 20;
palSetPadMode(GPIOA, 5, PAL_MODE_OUTPUT_PUSHPULL); // LED
// Prepare LED
palSetPadMode(GPIOA, 5, PAL_MODE_OUTPUT_PUSHPULL);
palClearPad(GPIOA, 5);
adc::init();
dac::init();
usbserial::init();
// Start the conversion manager thread
chThdCreateStatic(conversionThreadWA, sizeof(conversionThreadWA),
NORMALPRIO,
conversionThread, nullptr);
main_loop();
}
void main_loop()
{
static unsigned int dac_sample_count = 2048;
while (true) {
static unsigned int dac_sample_count = MAX_SAMPLE_BUFFER_SIZE;
while (1) {
if (usbserial::is_active()) {
// Expect to receive a byte command 'packet'.
// Attempt to receive a command packet
if (char cmd[3]; usbserial::read(&cmd, 1) > 0) {
// Packet received, first byte represents the desired command/action
switch (cmd[0]) {
case 'r': // Read in analog signal
if (usbserial::read(&cmd[1], 2) < 2)
// 'r' - Conduct a single sample of the ADC, and send the results back over USB.
case 'r':
// Get the next two bytes of the packet to determine the desired sample size
if (run_status != RunStatus::Idle || usbserial::read(&cmd[1], 2) < 2)
break;
if (auto count = std::min(static_cast<unsigned int>(cmd[1] | (cmd[2] << 8)), adc_samples.size()); count > 0) {
adc::read(&adc_samples[0], count);
usbserial::write(adc_samples.data(), count * sizeof(adcsample_t));
if (unsigned int desiredSize = cmd[1] | (cmd[2] << 8); desiredSize <= adc_samples.size()) {
adc::read(&adc_samples[0], desiredSize);
usbserial::write(adc_samples.data(), desiredSize * sizeof(adcsample_t));
}
break;
// 'R' - Begin continuous sampling/conversion of the ADC. Samples will go through
// the conversion code, and will be sent out over the DAC.
case 'R':
//if (run_status != RunStatus::Idle)
// break;
run_status = RunStatus::Converting;
dac_samples.fill(0);
adc::read_start(signal_operate, &adc_samples[0], adc_samples.size());
dac::write_start(&dac_samples[0], dac_samples.size());
break;
// 's' - Sends the current contents of the DAC buffer back over USB.
case 's':
usbserial::write(dac_samples.data(), dac_samples.size() * sizeof(adcsample_t));
usbserial::write(dac_samples.data(), 1/*dac_samples.size()*/ * sizeof(dacsample_t));
break;
// 'S' - Stops the continuous sampling/conversion.
case 'S':
//if (run_status != RunStatus::Converting)
// break;
dac::write_stop();
adc::read_stop();
run_status = RunStatus::Idle;
break;
// 'e' - Reads in and loads the compiled conversion code binary from USB.
case 'e':
// Get the binary's size
if (usbserial::read(&cmd[1], 2) < 2)
break;
if (unsigned int count = cmd[1] | (cmd[2] << 8); count < sizeof(elf_file_store)) {
usbserial::read(elf_file_store, count);
elf_entry = elf::load(elf_file_store, elf_exec_store);
// Only load the binary if it can fit in the memory reserved for it.
if (unsigned int binarySize = cmd[1] | (cmd[2] << 8); binarySize < sizeof(elf_file_store)) {
usbserial::read(elf_file_store, binarySize);
elf_entry = elf::load(elf_file_store);
}
break;
// 'W' - Sets the number of samples for DAC writing with command 'w'.
// If the provided count is zero, DAC writing is stopped.
case 'W':
if (usbserial::read(&cmd[1], 2) < 2)
break;
if (auto count = std::min(static_cast<unsigned int>(cmd[1] | (cmd[2] << 8)), dac_samples.size()); count > 0)
dac_sample_count = count;
if (unsigned int sampleCount = cmd[1] | (cmd[2] << 8); sampleCount <= dac_samples.size()) {
if (sampleCount > 0)
dac_sample_count = sampleCount;
else
dac::write_stop();
}
break;
// 'w' - Starts the DAC, looping over the given data (data size set by command 'W').
case 'w':
if (usbserial::read(&dac_samples[0], 2 * dac_sample_count) != 2 * dac_sample_count)
if (usbserial::read(&dac_samples[0], dac_sample_count * sizeof(dacsample_t) !=
dac_sample_count * sizeof(dacsample_t)))
{
break;
} else {
dac::write_start(&dac_samples[0], dac_sample_count);
}
break;
case 'i': // Identify ourself as an stmdsp device
// 'i' - Sends an identifying string to confirm that this is the stmdsp device.
case 'i':
usbserial::write("stmdsp", 6);
break;
case 'I': // Info (i.e. run status)
usbserial::write(&run_status, 1);
// 'I' - Sends the current run status.
case 'I':
usbserial::write(&run_status, sizeof(run_status));
break;
default:
break;
}
@ -157,22 +202,26 @@ THD_FUNCTION(conversionThread, arg)
while (1) {
msg_t message;
if (chMBFetchTimeout(&conversionMB, &message, TIME_INFINITE) == MSG_OK) {
auto samples = &adc_samples[0];
adcsample_t *samples = nullptr;
auto halfsize = adc_samples.size() / 2;
if (message == MSG_CONVFIRST) {
if (elf_entry)
elf_entry(samples, halfsize);
samples = elf_entry(&adc_samples[0], halfsize);
if (!samples)
samples = &adc_samples[0];
std::copy(samples, samples + halfsize, &dac_samples[0]);
} else if (message == MSG_CONVSECOND) {
if (elf_entry)
elf_entry(samples + halfsize, halfsize);
std::copy(samples + halfsize, samples + halfsize * 2, &dac_samples[1024]);
samples = elf_entry(&adc_samples[adc_samples.size() / 2], halfsize);
if (!samples)
samples = &adc_samples[adc_samples.size() / 2];
std::copy(samples, samples + halfsize, &dac_samples[dac_samples.size() / 2]);
}
}
}
}
void signal_operate(adcsample_t *buffer, size_t count)
void signal_operate(adcsample_t *buffer, [[maybe_unused]] size_t count)
{
if (chMBGetUsedCountI(&conversionMB) > 1)
conversion_abort();
@ -185,22 +234,32 @@ extern "C" {
__attribute__((naked))
void HardFault_Handler()
{
asm("push {lr}");
//asm("push {lr}");
uint32_t *stack;
asm("mrs %0, psp" : "=r" (stack));
uint32_t lr;
asm("\
tst lr, #4; \
ite eq; \
mrseq %0, msp; \
mrsne %0, psp; \
mov %1, lr; \
" : "=r" (stack), "=r" (lr));
//stack++;
stack[7] |= (1 << 24); // Keep Thumb mode enabled
conversion_abort();
// TODO test lr and decide how to recover
//if (run_status == RunStatus::Converting) {
// stack[6] = stack[5]; // Escape from elf_entry code
stack[6] = stack[5]; // Escape from elf_entry code
//} else /*if (run_status == RunStatus::Recovered)*/ {
stack[6] = (uint32_t)main_loop & ~1; // Return to safety
// stack[6] = (uint32_t)main_loop & ~1; // Return to safety
//}
asm("pop {lr}; bx lr");
//asm("pop {lr}; bx lr");
asm("bx lr");
}
} // extern "C"

Loading…
Cancel
Save