include dsp lib; split timers; user message

master
Clyne 4 years ago
parent 4a0fb43d37
commit d2f50fb925

@ -0,0 +1,647 @@
/* ----------------------------------------------------------------------------
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
*
* $Date: 19. March 2015
* $Revision: V.1.4.5
*
* Project: CMSIS DSP Library
* Title: arm_conv_f32.c
*
* Description: Convolution of floating-point sequences.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @defgroup Conv Convolution
*
* Convolution is a mathematical operation that operates on two finite length vectors to generate a finite length output vector.
* Convolution is similar to correlation and is frequently used in filtering and data analysis.
* The CMSIS DSP library contains functions for convolving Q7, Q15, Q31, and floating-point data types.
* The library also provides fast versions of the Q15 and Q31 functions on Cortex-M4 and Cortex-M3.
*
* \par Algorithm
* Let <code>a[n]</code> and <code>b[n]</code> be sequences of length <code>srcALen</code> and <code>srcBLen</code> samples respectively.
* Then the convolution
*
* <pre>
* c[n] = a[n] * b[n]
* </pre>
*
* \par
* is defined as
* \image html ConvolutionEquation.gif
* \par
* Note that <code>c[n]</code> is of length <code>srcALen + srcBLen - 1</code> and is defined over the interval <code>n=0, 1, 2, ..., srcALen + srcBLen - 2</code>.
* <code>pSrcA</code> points to the first input vector of length <code>srcALen</code> and
* <code>pSrcB</code> points to the second input vector of length <code>srcBLen</code>.
* The output result is written to <code>pDst</code> and the calling function must allocate <code>srcALen+srcBLen-1</code> words for the result.
*
* \par
* Conceptually, when two signals <code>a[n]</code> and <code>b[n]</code> are convolved,
* the signal <code>b[n]</code> slides over <code>a[n]</code>.
* For each offset \c n, the overlapping portions of a[n] and b[n] are multiplied and summed together.
*
* \par
* Note that convolution is a commutative operation:
*
* <pre>
* a[n] * b[n] = b[n] * a[n].
* </pre>
*
* \par
* This means that switching the A and B arguments to the convolution functions has no effect.
*
* <b>Fixed-Point Behavior</b>
*
* \par
* Convolution requires summing up a large number of intermediate products.
* As such, the Q7, Q15, and Q31 functions run a risk of overflow and saturation.
* Refer to the function specific documentation below for further details of the particular algorithm used.
*
*
* <b>Fast Versions</b>
*
* \par
* Fast versions are supported for Q31 and Q15. Cycles for Fast versions are less compared to Q31 and Q15 of conv and the design requires
* the input signals should be scaled down to avoid intermediate overflows.
*
*
* <b>Opt Versions</b>
*
* \par
* Opt versions are supported for Q15 and Q7. Design uses internal scratch buffer for getting good optimisation.
* These versions are optimised in cycles and consumes more memory(Scratch memory) compared to Q15 and Q7 versions
*/
/**
* @addtogroup Conv
* @{
*/
/**
* @brief Convolution of floating-point sequences.
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
* @return none.
*/
void arm_conv_f32(
float32_t * pSrcA,
uint32_t srcALen,
float32_t * pSrcB,
uint32_t srcBLen,
float32_t * pDst)
{
#ifndef ARM_MATH_CM0_FAMILY
/* Run the below code for Cortex-M4 and Cortex-M3 */
float32_t *pIn1; /* inputA pointer */
float32_t *pIn2; /* inputB pointer */
float32_t *pOut = pDst; /* output pointer */
float32_t *px; /* Intermediate inputA pointer */
float32_t *py; /* Intermediate inputB pointer */
float32_t *pSrc1, *pSrc2; /* Intermediate pointers */
float32_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
float32_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */
uint32_t j, k, count, blkCnt, blockSize1, blockSize2, blockSize3; /* loop counters */
/* The algorithm implementation is based on the lengths of the inputs. */
/* srcB is always made to slide across srcA. */
/* So srcBLen is always considered as shorter or equal to srcALen */
if(srcALen >= srcBLen)
{
/* Initialization of inputA pointer */
pIn1 = pSrcA;
/* Initialization of inputB pointer */
pIn2 = pSrcB;
}
else
{
/* Initialization of inputA pointer */
pIn1 = pSrcB;
/* Initialization of inputB pointer */
pIn2 = pSrcA;
/* srcBLen is always considered as shorter or equal to srcALen */
j = srcBLen;
srcBLen = srcALen;
srcALen = j;
}
/* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
/* The function is internally
* divided into three stages according to the number of multiplications that has to be
* taken place between inputA samples and inputB samples. In the first stage of the
* algorithm, the multiplications increase by one for every iteration.
* In the second stage of the algorithm, srcBLen number of multiplications are done.
* In the third stage of the algorithm, the multiplications decrease by one
* for every iteration. */
/* The algorithm is implemented in three stages.
The loop counters of each stage is initiated here. */
blockSize1 = srcBLen - 1u;
blockSize2 = srcALen - (srcBLen - 1u);
blockSize3 = blockSize1;
/* --------------------------
* initializations of stage1
* -------------------------*/
/* sum = x[0] * y[0]
* sum = x[0] * y[1] + x[1] * y[0]
* ....
* sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
*/
/* In this stage the MAC operations are increased by 1 for every iteration.
The count variable holds the number of MAC operations performed */
count = 1u;
/* Working pointer of inputA */
px = pIn1;
/* Working pointer of inputB */
py = pIn2;
/* ------------------------
* Stage1 process
* ----------------------*/
/* The first stage starts here */
while(blockSize1 > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0.0f;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = count >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* x[0] * y[srcBLen - 1] */
sum += *px++ * *py--;
/* x[1] * y[srcBLen - 2] */
sum += *px++ * *py--;
/* x[2] * y[srcBLen - 3] */
sum += *px++ * *py--;
/* x[3] * y[srcBLen - 4] */
sum += *px++ * *py--;
/* Decrement the loop counter */
k--;
}
/* If the count is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = count % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulate */
sum += *px++ * *py--;
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = sum;
/* Update the inputA and inputB pointers for next MAC calculation */
py = pIn2 + count;
px = pIn1;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blockSize1--;
}
/* --------------------------
* Initializations of stage2
* ------------------------*/
/* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
* sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
* ....
* sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
*/
/* Working pointer of inputA */
px = pIn1;
/* Working pointer of inputB */
pSrc2 = pIn2 + (srcBLen - 1u);
py = pSrc2;
/* count is index by which the pointer pIn1 to be incremented */
count = 0u;
/* -------------------
* Stage2 process
* ------------------*/
/* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
* So, to loop unroll over blockSize2,
* srcBLen should be greater than or equal to 4 */
if(srcBLen >= 4u)
{
/* Loop unroll over blockSize2, by 4 */
blkCnt = blockSize2 >> 2u;
while(blkCnt > 0u)
{
/* Set all accumulators to zero */
acc0 = 0.0f;
acc1 = 0.0f;
acc2 = 0.0f;
acc3 = 0.0f;
/* read x[0], x[1], x[2] samples */
x0 = *(px++);
x1 = *(px++);
x2 = *(px++);
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = srcBLen >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
do
{
/* Read y[srcBLen - 1] sample */
c0 = *(py--);
/* Read x[3] sample */
x3 = *(px);
/* Perform the multiply-accumulate */
/* acc0 += x[0] * y[srcBLen - 1] */
acc0 += x0 * c0;
/* acc1 += x[1] * y[srcBLen - 1] */
acc1 += x1 * c0;
/* acc2 += x[2] * y[srcBLen - 1] */
acc2 += x2 * c0;
/* acc3 += x[3] * y[srcBLen - 1] */
acc3 += x3 * c0;
/* Read y[srcBLen - 2] sample */
c0 = *(py--);
/* Read x[4] sample */
x0 = *(px + 1u);
/* Perform the multiply-accumulate */
/* acc0 += x[1] * y[srcBLen - 2] */
acc0 += x1 * c0;
/* acc1 += x[2] * y[srcBLen - 2] */
acc1 += x2 * c0;
/* acc2 += x[3] * y[srcBLen - 2] */
acc2 += x3 * c0;
/* acc3 += x[4] * y[srcBLen - 2] */
acc3 += x0 * c0;
/* Read y[srcBLen - 3] sample */
c0 = *(py--);
/* Read x[5] sample */
x1 = *(px + 2u);
/* Perform the multiply-accumulates */
/* acc0 += x[2] * y[srcBLen - 3] */
acc0 += x2 * c0;
/* acc1 += x[3] * y[srcBLen - 2] */
acc1 += x3 * c0;
/* acc2 += x[4] * y[srcBLen - 2] */
acc2 += x0 * c0;
/* acc3 += x[5] * y[srcBLen - 2] */
acc3 += x1 * c0;
/* Read y[srcBLen - 4] sample */
c0 = *(py--);
/* Read x[6] sample */
x2 = *(px + 3u);
px += 4u;
/* Perform the multiply-accumulates */
/* acc0 += x[3] * y[srcBLen - 4] */
acc0 += x3 * c0;
/* acc1 += x[4] * y[srcBLen - 4] */
acc1 += x0 * c0;
/* acc2 += x[5] * y[srcBLen - 4] */
acc2 += x1 * c0;
/* acc3 += x[6] * y[srcBLen - 4] */
acc3 += x2 * c0;
} while(--k);
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = srcBLen % 0x4u;
while(k > 0u)
{
/* Read y[srcBLen - 5] sample */
c0 = *(py--);
/* Read x[7] sample */
x3 = *(px++);
/* Perform the multiply-accumulates */
/* acc0 += x[4] * y[srcBLen - 5] */
acc0 += x0 * c0;
/* acc1 += x[5] * y[srcBLen - 5] */
acc1 += x1 * c0;
/* acc2 += x[6] * y[srcBLen - 5] */
acc2 += x2 * c0;
/* acc3 += x[7] * y[srcBLen - 5] */
acc3 += x3 * c0;
/* Reuse the present samples for the next MAC */
x0 = x1;
x1 = x2;
x2 = x3;
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = acc0;
*pOut++ = acc1;
*pOut++ = acc2;
*pOut++ = acc3;
/* Increment the pointer pIn1 index, count by 4 */
count += 4u;
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize2 % 0x4u;
while(blkCnt > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0.0f;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = srcBLen >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* Perform the multiply-accumulates */
sum += *px++ * *py--;
sum += *px++ * *py--;
sum += *px++ * *py--;
sum += *px++ * *py--;
/* Decrement the loop counter */
k--;
}
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = srcBLen % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulate */
sum += *px++ * *py--;
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = sum;
/* Increment the MAC count */
count++;
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
/* If the srcBLen is not a multiple of 4,
* the blockSize2 loop cannot be unrolled by 4 */
blkCnt = blockSize2;
while(blkCnt > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0.0f;
/* srcBLen number of MACS should be performed */
k = srcBLen;
while(k > 0u)
{
/* Perform the multiply-accumulate */
sum += *px++ * *py--;
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = sum;
/* Increment the MAC count */
count++;
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
/* Decrement the loop counter */
blkCnt--;
}
}
/* --------------------------
* Initializations of stage3
* -------------------------*/
/* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
* sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
* ....
* sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
* sum += x[srcALen-1] * y[srcBLen-1]
*/
/* In this stage the MAC operations are decreased by 1 for every iteration.
The blockSize3 variable holds the number of MAC operations performed */
/* Working pointer of inputA */
pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u);
px = pSrc1;
/* Working pointer of inputB */
pSrc2 = pIn2 + (srcBLen - 1u);
py = pSrc2;
/* -------------------
* Stage3 process
* ------------------*/
while(blockSize3 > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0.0f;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = blockSize3 >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */
sum += *px++ * *py--;
/* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */
sum += *px++ * *py--;
/* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */
sum += *px++ * *py--;
/* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */
sum += *px++ * *py--;
/* Decrement the loop counter */
k--;
}
/* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = blockSize3 % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulates */
/* sum += x[srcALen-1] * y[srcBLen-1] */
sum += *px++ * *py--;
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = sum;
/* Update the inputA and inputB pointers for next MAC calculation */
px = ++pSrc1;
py = pSrc2;
/* Decrement the loop counter */
blockSize3--;
}
#else
/* Run the below code for Cortex-M0 */
float32_t *pIn1 = pSrcA; /* inputA pointer */
float32_t *pIn2 = pSrcB; /* inputB pointer */
float32_t sum; /* Accumulator */
uint32_t i, j; /* loop counters */
/* Loop to calculate convolution for output length number of times */
for (i = 0u; i < ((srcALen + srcBLen) - 1u); i++)
{
/* Initialize sum with zero to carry out MAC operations */
sum = 0.0f;
/* Loop to perform MAC operations according to convolution equation */
for (j = 0u; j <= i; j++)
{
/* Check the array limitations */
if((((i - j) < srcBLen) && (j < srcALen)))
{
/* z[i] += x[i-j] * y[j] */
sum += pIn1[j] * pIn2[i - j];
}
}
/* Store the output in the destination buffer */
pDst[i] = sum;
}
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
}
/**
* @} end of Conv group
*/

@ -0,0 +1,734 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
*
* $Date: 19. March 2015
* $Revision: V.1.4.5
*
* Project: CMSIS DSP Library
* Title: arm_conv_q15.c
*
* Description: Convolution of Q15 sequences.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup Conv
* @{
*/
/**
* @brief Convolution of Q15 sequences.
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
* @return none.
*
* @details
* <b>Scaling and Overflow Behavior:</b>
*
* \par
* The function is implemented using a 64-bit internal accumulator.
* Both inputs are in 1.15 format and multiplications yield a 2.30 result.
* The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
* This approach provides 33 guard bits and there is no risk of overflow.
* The 34.30 result is then truncated to 34.15 format by discarding the low 15 bits and then saturated to 1.15 format.
*
* \par
* Refer to <code>arm_conv_fast_q15()</code> for a faster but less precise version of this function for Cortex-M3 and Cortex-M4.
*
* \par
* Refer the function <code>arm_conv_opt_q15()</code> for a faster implementation of this function using scratch buffers.
*
*/
void arm_conv_q15(
q15_t * pSrcA,
uint32_t srcALen,
q15_t * pSrcB,
uint32_t srcBLen,
q15_t * pDst)
{
#if (defined(ARM_MATH_CM4) || defined(ARM_MATH_CM3)) && !defined(UNALIGNED_SUPPORT_DISABLE)
/* Run the below code for Cortex-M4 and Cortex-M3 */
q15_t *pIn1; /* inputA pointer */
q15_t *pIn2; /* inputB pointer */
q15_t *pOut = pDst; /* output pointer */
q63_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
q15_t *px; /* Intermediate inputA pointer */
q15_t *py; /* Intermediate inputB pointer */
q15_t *pSrc1, *pSrc2; /* Intermediate pointers */
q31_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */
uint32_t blockSize1, blockSize2, blockSize3, j, k, count, blkCnt; /* loop counter */
/* The algorithm implementation is based on the lengths of the inputs. */
/* srcB is always made to slide across srcA. */
/* So srcBLen is always considered as shorter or equal to srcALen */
if(srcALen >= srcBLen)
{
/* Initialization of inputA pointer */
pIn1 = pSrcA;
/* Initialization of inputB pointer */
pIn2 = pSrcB;
}
else
{
/* Initialization of inputA pointer */
pIn1 = pSrcB;
/* Initialization of inputB pointer */
pIn2 = pSrcA;
/* srcBLen is always considered as shorter or equal to srcALen */
j = srcBLen;
srcBLen = srcALen;
srcALen = j;
}
/* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
/* The function is internally
* divided into three stages according to the number of multiplications that has to be
* taken place between inputA samples and inputB samples. In the first stage of the
* algorithm, the multiplications increase by one for every iteration.
* In the second stage of the algorithm, srcBLen number of multiplications are done.
* In the third stage of the algorithm, the multiplications decrease by one
* for every iteration. */
/* The algorithm is implemented in three stages.
The loop counters of each stage is initiated here. */
blockSize1 = srcBLen - 1u;
blockSize2 = srcALen - (srcBLen - 1u);
/* --------------------------
* Initializations of stage1
* -------------------------*/
/* sum = x[0] * y[0]
* sum = x[0] * y[1] + x[1] * y[0]
* ....
* sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
*/
/* In this stage the MAC operations are increased by 1 for every iteration.
The count variable holds the number of MAC operations performed */
count = 1u;
/* Working pointer of inputA */
px = pIn1;
/* Working pointer of inputB */
py = pIn2;
/* ------------------------
* Stage1 process
* ----------------------*/
/* For loop unrolling by 4, this stage is divided into two. */
/* First part of this stage computes the MAC operations less than 4 */
/* Second part of this stage computes the MAC operations greater than or equal to 4 */
/* The first part of the stage starts here */
while((count < 4u) && (blockSize1 > 0u))
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Loop over number of MAC operations between
* inputA samples and inputB samples */
k = count;
while(k > 0u)
{
/* Perform the multiply-accumulates */
sum = __SMLALD(*px++, *py--, sum);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
/* Update the inputA and inputB pointers for next MAC calculation */
py = pIn2 + count;
px = pIn1;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blockSize1--;
}
/* The second part of the stage starts here */
/* The internal loop, over count, is unrolled by 4 */
/* To, read the last two inputB samples using SIMD:
* y[srcBLen] and y[srcBLen-1] coefficients, py is decremented by 1 */
py = py - 1;
while(blockSize1 > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = count >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* Perform the multiply-accumulates */
/* x[0], x[1] are multiplied with y[srcBLen - 1], y[srcBLen - 2] respectively */
sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
/* x[2], x[3] are multiplied with y[srcBLen - 3], y[srcBLen - 4] respectively */
sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
/* Decrement the loop counter */
k--;
}
/* For the next MAC operations, the pointer py is used without SIMD
* So, py is incremented by 1 */
py = py + 1u;
/* If the count is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = count % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulates */
sum = __SMLALD(*px++, *py--, sum);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
/* Update the inputA and inputB pointers for next MAC calculation */
py = pIn2 + (count - 1u);
px = pIn1;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blockSize1--;
}
/* --------------------------
* Initializations of stage2
* ------------------------*/
/* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
* sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
* ....
* sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
*/
/* Working pointer of inputA */
px = pIn1;
/* Working pointer of inputB */
pSrc2 = pIn2 + (srcBLen - 1u);
py = pSrc2;
/* count is the index by which the pointer pIn1 to be incremented */
count = 0u;
/* --------------------
* Stage2 process
* -------------------*/
/* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
* So, to loop unroll over blockSize2,
* srcBLen should be greater than or equal to 4 */
if(srcBLen >= 4u)
{
/* Loop unroll over blockSize2, by 4 */
blkCnt = blockSize2 >> 2u;
while(blkCnt > 0u)
{
py = py - 1u;
/* Set all accumulators to zero */
acc0 = 0;
acc1 = 0;
acc2 = 0;
acc3 = 0;
/* read x[0], x[1] samples */
x0 = *__SIMD32(px);
/* read x[1], x[2] samples */
x1 = _SIMD32_OFFSET(px+1);
px+= 2u;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = srcBLen >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
do
{
/* Read the last two inputB samples using SIMD:
* y[srcBLen - 1] and y[srcBLen - 2] */
c0 = *__SIMD32(py)--;
/* acc0 += x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2] */
acc0 = __SMLALDX(x0, c0, acc0);
/* acc1 += x[1] * y[srcBLen - 1] + x[2] * y[srcBLen - 2] */
acc1 = __SMLALDX(x1, c0, acc1);
/* Read x[2], x[3] */
x2 = *__SIMD32(px);
/* Read x[3], x[4] */
x3 = _SIMD32_OFFSET(px+1);
/* acc2 += x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2] */
acc2 = __SMLALDX(x2, c0, acc2);
/* acc3 += x[3] * y[srcBLen - 1] + x[4] * y[srcBLen - 2] */
acc3 = __SMLALDX(x3, c0, acc3);
/* Read y[srcBLen - 3] and y[srcBLen - 4] */
c0 = *__SIMD32(py)--;
/* acc0 += x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4] */
acc0 = __SMLALDX(x2, c0, acc0);
/* acc1 += x[3] * y[srcBLen - 3] + x[4] * y[srcBLen - 4] */
acc1 = __SMLALDX(x3, c0, acc1);
/* Read x[4], x[5] */
x0 = _SIMD32_OFFSET(px+2);
/* Read x[5], x[6] */
x1 = _SIMD32_OFFSET(px+3);
px += 4u;
/* acc2 += x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4] */
acc2 = __SMLALDX(x0, c0, acc2);
/* acc3 += x[5] * y[srcBLen - 3] + x[6] * y[srcBLen - 4] */
acc3 = __SMLALDX(x1, c0, acc3);
} while(--k);
/* For the next MAC operations, SIMD is not used
* So, the 16 bit pointer if inputB, py is updated */
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = srcBLen % 0x4u;
if(k == 1u)
{
/* Read y[srcBLen - 5] */
c0 = *(py+1);
#ifdef ARM_MATH_BIG_ENDIAN
c0 = c0 << 16u;
#else
c0 = c0 & 0x0000FFFF;
#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
/* Read x[7] */
x3 = *__SIMD32(px);
px++;
/* Perform the multiply-accumulates */
acc0 = __SMLALD(x0, c0, acc0);
acc1 = __SMLALD(x1, c0, acc1);
acc2 = __SMLALDX(x1, c0, acc2);
acc3 = __SMLALDX(x3, c0, acc3);
}
if(k == 2u)
{
/* Read y[srcBLen - 5], y[srcBLen - 6] */
c0 = _SIMD32_OFFSET(py);
/* Read x[7], x[8] */
x3 = *__SIMD32(px);
/* Read x[9] */
x2 = _SIMD32_OFFSET(px+1);
px += 2u;
/* Perform the multiply-accumulates */
acc0 = __SMLALDX(x0, c0, acc0);
acc1 = __SMLALDX(x1, c0, acc1);
acc2 = __SMLALDX(x3, c0, acc2);
acc3 = __SMLALDX(x2, c0, acc3);
}
if(k == 3u)
{
/* Read y[srcBLen - 5], y[srcBLen - 6] */
c0 = _SIMD32_OFFSET(py);
/* Read x[7], x[8] */
x3 = *__SIMD32(px);
/* Read x[9] */
x2 = _SIMD32_OFFSET(px+1);
/* Perform the multiply-accumulates */
acc0 = __SMLALDX(x0, c0, acc0);
acc1 = __SMLALDX(x1, c0, acc1);
acc2 = __SMLALDX(x3, c0, acc2);
acc3 = __SMLALDX(x2, c0, acc3);
c0 = *(py-1);
#ifdef ARM_MATH_BIG_ENDIAN
c0 = c0 << 16u;
#else
c0 = c0 & 0x0000FFFF;
#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
/* Read x[10] */
x3 = _SIMD32_OFFSET(px+2);
px += 3u;
/* Perform the multiply-accumulates */
acc0 = __SMLALDX(x1, c0, acc0);
acc1 = __SMLALD(x2, c0, acc1);
acc2 = __SMLALDX(x2, c0, acc2);
acc3 = __SMLALDX(x3, c0, acc3);
}
/* Store the results in the accumulators in the destination buffer. */
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pOut)++ =
__PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
*__SIMD32(pOut)++ =
__PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);
#else
*__SIMD32(pOut)++ =
__PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
*__SIMD32(pOut)++ =
__PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Increment the pointer pIn1 index, count by 4 */
count += 4u;
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize2 % 0x4u;
while(blkCnt > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = srcBLen >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* Perform the multiply-accumulates */
sum += (q63_t) ((q31_t) * px++ * *py--);
sum += (q63_t) ((q31_t) * px++ * *py--);
sum += (q63_t) ((q31_t) * px++ * *py--);
sum += (q63_t) ((q31_t) * px++ * *py--);
/* Decrement the loop counter */
k--;
}
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = srcBLen % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulates */
sum += (q63_t) ((q31_t) * px++ * *py--);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q15_t) (__SSAT(sum >> 15, 16));
/* Increment the pointer pIn1 index, count by 1 */
count++;
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
/* If the srcBLen is not a multiple of 4,
* the blockSize2 loop cannot be unrolled by 4 */
blkCnt = blockSize2;
while(blkCnt > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* srcBLen number of MACS should be performed */
k = srcBLen;
while(k > 0u)
{
/* Perform the multiply-accumulate */
sum += (q63_t) ((q31_t) * px++ * *py--);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q15_t) (__SSAT(sum >> 15, 16));
/* Increment the MAC count */
count++;
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
/* Decrement the loop counter */
blkCnt--;
}
}
/* --------------------------
* Initializations of stage3
* -------------------------*/
/* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
* sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
* ....
* sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
* sum += x[srcALen-1] * y[srcBLen-1]
*/
/* In this stage the MAC operations are decreased by 1 for every iteration.
The blockSize3 variable holds the number of MAC operations performed */
blockSize3 = srcBLen - 1u;
/* Working pointer of inputA */
pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u);
px = pSrc1;
/* Working pointer of inputB */
pSrc2 = pIn2 + (srcBLen - 1u);
pIn2 = pSrc2 - 1u;
py = pIn2;
/* -------------------
* Stage3 process
* ------------------*/
/* For loop unrolling by 4, this stage is divided into two. */
/* First part of this stage computes the MAC operations greater than 4 */
/* Second part of this stage computes the MAC operations less than or equal to 4 */
/* The first part of the stage starts here */
j = blockSize3 >> 2u;
while((j > 0u) && (blockSize3 > 0u))
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = blockSize3 >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* x[srcALen - srcBLen + 1], x[srcALen - srcBLen + 2] are multiplied
* with y[srcBLen - 1], y[srcBLen - 2] respectively */
sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
/* x[srcALen - srcBLen + 3], x[srcALen - srcBLen + 4] are multiplied
* with y[srcBLen - 3], y[srcBLen - 4] respectively */
sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
/* Decrement the loop counter */
k--;
}
/* For the next MAC operations, the pointer py is used without SIMD
* So, py is incremented by 1 */
py = py + 1u;
/* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = blockSize3 % 0x4u;
while(k > 0u)
{
/* sum += x[srcALen - srcBLen + 5] * y[srcBLen - 5] */
sum = __SMLALD(*px++, *py--, sum);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
/* Update the inputA and inputB pointers for next MAC calculation */
px = ++pSrc1;
py = pIn2;
/* Decrement the loop counter */
blockSize3--;
j--;
}
/* The second part of the stage starts here */
/* SIMD is not used for the next MAC operations,
* so pointer py is updated to read only one sample at a time */
py = py + 1u;
while(blockSize3 > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = blockSize3;
while(k > 0u)
{
/* Perform the multiply-accumulates */
/* sum += x[srcALen-1] * y[srcBLen-1] */
sum = __SMLALD(*px++, *py--, sum);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
/* Update the inputA and inputB pointers for next MAC calculation */
px = ++pSrc1;
py = pSrc2;
/* Decrement the loop counter */
blockSize3--;
}
#else
/* Run the below code for Cortex-M0 */
q15_t *pIn1 = pSrcA; /* input pointer */
q15_t *pIn2 = pSrcB; /* coefficient pointer */
q63_t sum; /* Accumulator */
uint32_t i, j; /* loop counter */
/* Loop to calculate output of convolution for output length number of times */
for (i = 0; i < (srcALen + srcBLen - 1); i++)
{
/* Initialize sum with zero to carry on MAC operations */
sum = 0;
/* Loop to perform MAC operations according to convolution equation */
for (j = 0; j <= i; j++)
{
/* Check the array limitations */
if(((i - j) < srcBLen) && (j < srcALen))
{
/* z[i] += x[i-j] * y[j] */
sum += (q31_t) pIn1[j] * (pIn2[i - j]);
}
}
/* Store the output in the destination buffer */
pDst[i] = (q15_t) __SSAT((sum >> 15u), 16u);
}
#endif /* #if (defined(ARM_MATH_CM4) || defined(ARM_MATH_CM3)) && !defined(UNALIGNED_SUPPORT_DISABLE)*/
}
/**
* @} end of Conv group
*/

@ -0,0 +1,565 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
*
* $Date: 19. March 2015
* $Revision: V.1.4.5
*
* Project: CMSIS DSP Library
* Title: arm_conv_q31.c
*
* Description: Convolution of Q31 sequences.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup Conv
* @{
*/
/**
* @brief Convolution of Q31 sequences.
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
* @return none.
*
* @details
* <b>Scaling and Overflow Behavior:</b>
*
* \par
* The function is implemented using an internal 64-bit accumulator.
* The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
* There is no saturation on intermediate additions.
* Thus, if the accumulator overflows it wraps around and distorts the result.
* The input signals should be scaled down to avoid intermediate overflows.
* Scale down the inputs by log2(min(srcALen, srcBLen)) (log2 is read as log to the base 2) times to avoid overflows,
* as maximum of min(srcALen, srcBLen) number of additions are carried internally.
* The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.
*
* \par
* See <code>arm_conv_fast_q31()</code> for a faster but less precise implementation of this function for Cortex-M3 and Cortex-M4.
*/
void arm_conv_q31(
q31_t * pSrcA,
uint32_t srcALen,
q31_t * pSrcB,
uint32_t srcBLen,
q31_t * pDst)
{
#ifndef ARM_MATH_CM0_FAMILY
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t *pIn1; /* inputA pointer */
q31_t *pIn2; /* inputB pointer */
q31_t *pOut = pDst; /* output pointer */
q31_t *px; /* Intermediate inputA pointer */
q31_t *py; /* Intermediate inputB pointer */
q31_t *pSrc1, *pSrc2; /* Intermediate pointers */
q63_t sum; /* Accumulator */
q63_t acc0, acc1, acc2; /* Accumulator */
q31_t x0, x1, x2, c0; /* Temporary variables to hold state and coefficient values */
uint32_t j, k, count, blkCnt, blockSize1, blockSize2, blockSize3; /* loop counter */
/* The algorithm implementation is based on the lengths of the inputs. */
/* srcB is always made to slide across srcA. */
/* So srcBLen is always considered as shorter or equal to srcALen */
if(srcALen >= srcBLen)
{
/* Initialization of inputA pointer */
pIn1 = pSrcA;
/* Initialization of inputB pointer */
pIn2 = pSrcB;
}
else
{
/* Initialization of inputA pointer */
pIn1 = (q31_t *) pSrcB;
/* Initialization of inputB pointer */
pIn2 = (q31_t *) pSrcA;
/* srcBLen is always considered as shorter or equal to srcALen */
j = srcBLen;
srcBLen = srcALen;
srcALen = j;
}
/* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
/* The function is internally
* divided into three stages according to the number of multiplications that has to be
* taken place between inputA samples and inputB samples. In the first stage of the
* algorithm, the multiplications increase by one for every iteration.
* In the second stage of the algorithm, srcBLen number of multiplications are done.
* In the third stage of the algorithm, the multiplications decrease by one
* for every iteration. */
/* The algorithm is implemented in three stages.
The loop counters of each stage is initiated here. */
blockSize1 = srcBLen - 1u;
blockSize2 = srcALen - (srcBLen - 1u);
blockSize3 = blockSize1;
/* --------------------------
* Initializations of stage1
* -------------------------*/
/* sum = x[0] * y[0]
* sum = x[0] * y[1] + x[1] * y[0]
* ....
* sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
*/
/* In this stage the MAC operations are increased by 1 for every iteration.
The count variable holds the number of MAC operations performed */
count = 1u;
/* Working pointer of inputA */
px = pIn1;
/* Working pointer of inputB */
py = pIn2;
/* ------------------------
* Stage1 process
* ----------------------*/
/* The first stage starts here */
while(blockSize1 > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = count >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* x[0] * y[srcBLen - 1] */
sum += (q63_t) * px++ * (*py--);
/* x[1] * y[srcBLen - 2] */
sum += (q63_t) * px++ * (*py--);
/* x[2] * y[srcBLen - 3] */
sum += (q63_t) * px++ * (*py--);
/* x[3] * y[srcBLen - 4] */
sum += (q63_t) * px++ * (*py--);
/* Decrement the loop counter */
k--;
}
/* If the count is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = count % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulate */
sum += (q63_t) * px++ * (*py--);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q31_t) (sum >> 31);
/* Update the inputA and inputB pointers for next MAC calculation */
py = pIn2 + count;
px = pIn1;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blockSize1--;
}
/* --------------------------
* Initializations of stage2
* ------------------------*/
/* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
* sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
* ....
* sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
*/
/* Working pointer of inputA */
px = pIn1;
/* Working pointer of inputB */
pSrc2 = pIn2 + (srcBLen - 1u);
py = pSrc2;
/* count is index by which the pointer pIn1 to be incremented */
count = 0u;
/* -------------------
* Stage2 process
* ------------------*/
/* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
* So, to loop unroll over blockSize2,
* srcBLen should be greater than or equal to 4 */
if(srcBLen >= 4u)
{
/* Loop unroll by 3 */
blkCnt = blockSize2 / 3;
while(blkCnt > 0u)
{
/* Set all accumulators to zero */
acc0 = 0;
acc1 = 0;
acc2 = 0;
/* read x[0], x[1], x[2] samples */
x0 = *(px++);
x1 = *(px++);
/* Apply loop unrolling and compute 3 MACs simultaneously. */
k = srcBLen / 3;
/* First part of the processing with loop unrolling. Compute 3 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 2 samples. */
do
{
/* Read y[srcBLen - 1] sample */
c0 = *(py);
/* Read x[3] sample */
x2 = *(px);
/* Perform the multiply-accumulates */
/* acc0 += x[0] * y[srcBLen - 1] */
acc0 += ((q63_t) x0 * c0);
/* acc1 += x[1] * y[srcBLen - 1] */
acc1 += ((q63_t) x1 * c0);
/* acc2 += x[2] * y[srcBLen - 1] */
acc2 += ((q63_t) x2 * c0);
/* Read y[srcBLen - 2] sample */
c0 = *(py - 1u);
/* Read x[4] sample */
x0 = *(px + 1u);
/* Perform the multiply-accumulate */
/* acc0 += x[1] * y[srcBLen - 2] */
acc0 += ((q63_t) x1 * c0);
/* acc1 += x[2] * y[srcBLen - 2] */
acc1 += ((q63_t) x2 * c0);
/* acc2 += x[3] * y[srcBLen - 2] */
acc2 += ((q63_t) x0 * c0);
/* Read y[srcBLen - 3] sample */
c0 = *(py - 2u);
/* Read x[5] sample */
x1 = *(px + 2u);
/* Perform the multiply-accumulates */
/* acc0 += x[2] * y[srcBLen - 3] */
acc0 += ((q63_t) x2 * c0);
/* acc1 += x[3] * y[srcBLen - 2] */
acc1 += ((q63_t) x0 * c0);
/* acc2 += x[4] * y[srcBLen - 2] */
acc2 += ((q63_t) x1 * c0);
/* update scratch pointers */
px += 3u;
py -= 3u;
} while(--k);
/* If the srcBLen is not a multiple of 3, compute any remaining MACs here.
** No loop unrolling is used. */
k = srcBLen - (3 * (srcBLen / 3));
while(k > 0u)
{
/* Read y[srcBLen - 5] sample */
c0 = *(py--);
/* Read x[7] sample */
x2 = *(px++);
/* Perform the multiply-accumulates */
/* acc0 += x[4] * y[srcBLen - 5] */
acc0 += ((q63_t) x0 * c0);
/* acc1 += x[5] * y[srcBLen - 5] */
acc1 += ((q63_t) x1 * c0);
/* acc2 += x[6] * y[srcBLen - 5] */
acc2 += ((q63_t) x2 * c0);
/* Reuse the present samples for the next MAC */
x0 = x1;
x1 = x2;
/* Decrement the loop counter */
k--;
}
/* Store the results in the accumulators in the destination buffer. */
*pOut++ = (q31_t) (acc0 >> 31);
*pOut++ = (q31_t) (acc1 >> 31);
*pOut++ = (q31_t) (acc2 >> 31);
/* Increment the pointer pIn1 index, count by 3 */
count += 3u;
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize2 is not a multiple of 3, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize2 - 3 * (blockSize2 / 3);
while(blkCnt > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = srcBLen >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* Perform the multiply-accumulates */
sum += (q63_t) * px++ * (*py--);
sum += (q63_t) * px++ * (*py--);
sum += (q63_t) * px++ * (*py--);
sum += (q63_t) * px++ * (*py--);
/* Decrement the loop counter */
k--;
}
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = srcBLen % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulate */
sum += (q63_t) * px++ * (*py--);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q31_t) (sum >> 31);
/* Increment the MAC count */
count++;
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
/* If the srcBLen is not a multiple of 4,
* the blockSize2 loop cannot be unrolled by 4 */
blkCnt = blockSize2;
while(blkCnt > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* srcBLen number of MACS should be performed */
k = srcBLen;
while(k > 0u)
{
/* Perform the multiply-accumulate */
sum += (q63_t) * px++ * (*py--);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q31_t) (sum >> 31);
/* Increment the MAC count */
count++;
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
/* Decrement the loop counter */
blkCnt--;
}
}
/* --------------------------
* Initializations of stage3
* -------------------------*/
/* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
* sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
* ....
* sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
* sum += x[srcALen-1] * y[srcBLen-1]
*/
/* In this stage the MAC operations are decreased by 1 for every iteration.
The blockSize3 variable holds the number of MAC operations performed */
/* Working pointer of inputA */
pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u);
px = pSrc1;
/* Working pointer of inputB */
pSrc2 = pIn2 + (srcBLen - 1u);
py = pSrc2;
/* -------------------
* Stage3 process
* ------------------*/
while(blockSize3 > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = blockSize3 >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */
sum += (q63_t) * px++ * (*py--);
/* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */
sum += (q63_t) * px++ * (*py--);
/* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */
sum += (q63_t) * px++ * (*py--);
/* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */
sum += (q63_t) * px++ * (*py--);
/* Decrement the loop counter */
k--;
}
/* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = blockSize3 % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulate */
sum += (q63_t) * px++ * (*py--);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q31_t) (sum >> 31);
/* Update the inputA and inputB pointers for next MAC calculation */
px = ++pSrc1;
py = pSrc2;
/* Decrement the loop counter */
blockSize3--;
}
#else
/* Run the below code for Cortex-M0 */
q31_t *pIn1 = pSrcA; /* input pointer */
q31_t *pIn2 = pSrcB; /* coefficient pointer */
q63_t sum; /* Accumulator */
uint32_t i, j; /* loop counter */
/* Loop to calculate output of convolution for output length number of times */
for (i = 0; i < (srcALen + srcBLen - 1); i++)
{
/* Initialize sum with zero to carry on MAC operations */
sum = 0;
/* Loop to perform MAC operations according to convolution equation */
for (j = 0; j <= i; j++)
{
/* Check the array limitations */
if(((i - j) < srcBLen) && (j < srcALen))
{
/* z[i] += x[i-j] * y[j] */
sum += ((q63_t) pIn1[j] * (pIn2[i - j]));
}
}
/* Store the output in the destination buffer */
pDst[i] = (q31_t) (sum >> 31u);
}
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
}
/**
* @} end of Conv group
*/

@ -0,0 +1,690 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
*
* $Date: 19. March 2015
* $Revision: V.1.4.5
*
* Project: CMSIS DSP Library
* Title: arm_conv_q7.c
*
* Description: Convolution of Q7 sequences.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup Conv
* @{
*/
/**
* @brief Convolution of Q7 sequences.
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
* @return none.
*
* @details
* <b>Scaling and Overflow Behavior:</b>
*
* \par
* The function is implemented using a 32-bit internal accumulator.
* Both the inputs are represented in 1.7 format and multiplications yield a 2.14 result.
* The 2.14 intermediate results are accumulated in a 32-bit accumulator in 18.14 format.
* This approach provides 17 guard bits and there is no risk of overflow as long as <code>max(srcALen, srcBLen)<131072</code>.
* The 18.14 result is then truncated to 18.7 format by discarding the low 7 bits and then saturated to 1.7 format.
*
* \par
* Refer the function <code>arm_conv_opt_q7()</code> for a faster implementation of this function.
*
*/
void arm_conv_q7(
q7_t * pSrcA,
uint32_t srcALen,
q7_t * pSrcB,
uint32_t srcBLen,
q7_t * pDst)
{
#ifndef ARM_MATH_CM0_FAMILY
/* Run the below code for Cortex-M4 and Cortex-M3 */
q7_t *pIn1; /* inputA pointer */
q7_t *pIn2; /* inputB pointer */
q7_t *pOut = pDst; /* output pointer */
q7_t *px; /* Intermediate inputA pointer */
q7_t *py; /* Intermediate inputB pointer */
q7_t *pSrc1, *pSrc2; /* Intermediate pointers */
q7_t x0, x1, x2, x3, c0, c1; /* Temporary variables to hold state and coefficient values */
q31_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
q31_t input1, input2; /* Temporary input variables */
q15_t in1, in2; /* Temporary input variables */
uint32_t j, k, count, blkCnt, blockSize1, blockSize2, blockSize3; /* loop counter */
/* The algorithm implementation is based on the lengths of the inputs. */
/* srcB is always made to slide across srcA. */
/* So srcBLen is always considered as shorter or equal to srcALen */
if(srcALen >= srcBLen)
{
/* Initialization of inputA pointer */
pIn1 = pSrcA;
/* Initialization of inputB pointer */
pIn2 = pSrcB;
}
else
{
/* Initialization of inputA pointer */
pIn1 = pSrcB;
/* Initialization of inputB pointer */
pIn2 = pSrcA;
/* srcBLen is always considered as shorter or equal to srcALen */
j = srcBLen;
srcBLen = srcALen;
srcALen = j;
}
/* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
/* The function is internally
* divided into three stages according to the number of multiplications that has to be
* taken place between inputA samples and inputB samples. In the first stage of the
* algorithm, the multiplications increase by one for every iteration.
* In the second stage of the algorithm, srcBLen number of multiplications are done.
* In the third stage of the algorithm, the multiplications decrease by one
* for every iteration. */
/* The algorithm is implemented in three stages.
The loop counters of each stage is initiated here. */
blockSize1 = srcBLen - 1u;
blockSize2 = (srcALen - srcBLen) + 1u;
blockSize3 = blockSize1;
/* --------------------------
* Initializations of stage1
* -------------------------*/
/* sum = x[0] * y[0]
* sum = x[0] * y[1] + x[1] * y[0]
* ....
* sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
*/
/* In this stage the MAC operations are increased by 1 for every iteration.
The count variable holds the number of MAC operations performed */
count = 1u;
/* Working pointer of inputA */
px = pIn1;
/* Working pointer of inputB */
py = pIn2;
/* ------------------------
* Stage1 process
* ----------------------*/
/* The first stage starts here */
while(blockSize1 > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = count >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* x[0] , x[1] */
in1 = (q15_t) * px++;
in2 = (q15_t) * px++;
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
/* y[srcBLen - 1] , y[srcBLen - 2] */
in1 = (q15_t) * py--;
in2 = (q15_t) * py--;
input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
/* x[0] * y[srcBLen - 1] */
/* x[1] * y[srcBLen - 2] */
sum = __SMLAD(input1, input2, sum);
/* x[2] , x[3] */
in1 = (q15_t) * px++;
in2 = (q15_t) * px++;
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
/* y[srcBLen - 3] , y[srcBLen - 4] */
in1 = (q15_t) * py--;
in2 = (q15_t) * py--;
input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
/* x[2] * y[srcBLen - 3] */
/* x[3] * y[srcBLen - 4] */
sum = __SMLAD(input1, input2, sum);
/* Decrement the loop counter */
k--;
}
/* If the count is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = count % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulates */
sum += ((q15_t) * px++ * *py--);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q7_t) (__SSAT(sum >> 7u, 8));
/* Update the inputA and inputB pointers for next MAC calculation */
py = pIn2 + count;
px = pIn1;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blockSize1--;
}
/* --------------------------
* Initializations of stage2
* ------------------------*/
/* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
* sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
* ....
* sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
*/
/* Working pointer of inputA */
px = pIn1;
/* Working pointer of inputB */
pSrc2 = pIn2 + (srcBLen - 1u);
py = pSrc2;
/* count is index by which the pointer pIn1 to be incremented */
count = 0u;
/* -------------------
* Stage2 process
* ------------------*/
/* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
* So, to loop unroll over blockSize2,
* srcBLen should be greater than or equal to 4 */
if(srcBLen >= 4u)
{
/* Loop unroll over blockSize2, by 4 */
blkCnt = blockSize2 >> 2u;
while(blkCnt > 0u)
{
/* Set all accumulators to zero */
acc0 = 0;
acc1 = 0;
acc2 = 0;
acc3 = 0;
/* read x[0], x[1], x[2] samples */
x0 = *(px++);
x1 = *(px++);
x2 = *(px++);
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = srcBLen >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
do
{
/* Read y[srcBLen - 1] sample */
c0 = *(py--);
/* Read y[srcBLen - 2] sample */
c1 = *(py--);
/* Read x[3] sample */
x3 = *(px++);
/* x[0] and x[1] are packed */
in1 = (q15_t) x0;
in2 = (q15_t) x1;
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
/* y[srcBLen - 1] and y[srcBLen - 2] are packed */
in1 = (q15_t) c0;
in2 = (q15_t) c1;
input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
/* acc0 += x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2] */
acc0 = __SMLAD(input1, input2, acc0);
/* x[1] and x[2] are packed */
in1 = (q15_t) x1;
in2 = (q15_t) x2;
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
/* acc1 += x[1] * y[srcBLen - 1] + x[2] * y[srcBLen - 2] */
acc1 = __SMLAD(input1, input2, acc1);
/* x[2] and x[3] are packed */
in1 = (q15_t) x2;
in2 = (q15_t) x3;
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
/* acc2 += x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2] */
acc2 = __SMLAD(input1, input2, acc2);
/* Read x[4] sample */
x0 = *(px++);
/* x[3] and x[4] are packed */
in1 = (q15_t) x3;
in2 = (q15_t) x0;
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
/* acc3 += x[3] * y[srcBLen - 1] + x[4] * y[srcBLen - 2] */
acc3 = __SMLAD(input1, input2, acc3);
/* Read y[srcBLen - 3] sample */
c0 = *(py--);
/* Read y[srcBLen - 4] sample */
c1 = *(py--);
/* Read x[5] sample */
x1 = *(px++);
/* x[2] and x[3] are packed */
in1 = (q15_t) x2;
in2 = (q15_t) x3;
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
/* y[srcBLen - 3] and y[srcBLen - 4] are packed */
in1 = (q15_t) c0;
in2 = (q15_t) c1;
input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
/* acc0 += x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4] */
acc0 = __SMLAD(input1, input2, acc0);
/* x[3] and x[4] are packed */
in1 = (q15_t) x3;
in2 = (q15_t) x0;
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
/* acc1 += x[3] * y[srcBLen - 3] + x[4] * y[srcBLen - 4] */
acc1 = __SMLAD(input1, input2, acc1);
/* x[4] and x[5] are packed */
in1 = (q15_t) x0;
in2 = (q15_t) x1;
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
/* acc2 += x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4] */
acc2 = __SMLAD(input1, input2, acc2);
/* Read x[6] sample */
x2 = *(px++);
/* x[5] and x[6] are packed */
in1 = (q15_t) x1;
in2 = (q15_t) x2;
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
/* acc3 += x[5] * y[srcBLen - 3] + x[6] * y[srcBLen - 4] */
acc3 = __SMLAD(input1, input2, acc3);
} while(--k);
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = srcBLen % 0x4u;
while(k > 0u)
{
/* Read y[srcBLen - 5] sample */
c0 = *(py--);
/* Read x[7] sample */
x3 = *(px++);
/* Perform the multiply-accumulates */
/* acc0 += x[4] * y[srcBLen - 5] */
acc0 += ((q15_t) x0 * c0);
/* acc1 += x[5] * y[srcBLen - 5] */
acc1 += ((q15_t) x1 * c0);
/* acc2 += x[6] * y[srcBLen - 5] */
acc2 += ((q15_t) x2 * c0);
/* acc3 += x[7] * y[srcBLen - 5] */
acc3 += ((q15_t) x3 * c0);
/* Reuse the present samples for the next MAC */
x0 = x1;
x1 = x2;
x2 = x3;
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q7_t) (__SSAT(acc0 >> 7u, 8));
*pOut++ = (q7_t) (__SSAT(acc1 >> 7u, 8));
*pOut++ = (q7_t) (__SSAT(acc2 >> 7u, 8));
*pOut++ = (q7_t) (__SSAT(acc3 >> 7u, 8));
/* Increment the pointer pIn1 index, count by 4 */
count += 4u;
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize2 % 0x4u;
while(blkCnt > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = srcBLen >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* Reading two inputs of SrcA buffer and packing */
in1 = (q15_t) * px++;
in2 = (q15_t) * px++;
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
/* Reading two inputs of SrcB buffer and packing */
in1 = (q15_t) * py--;
in2 = (q15_t) * py--;
input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
/* Perform the multiply-accumulates */
sum = __SMLAD(input1, input2, sum);
/* Reading two inputs of SrcA buffer and packing */
in1 = (q15_t) * px++;
in2 = (q15_t) * px++;
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
/* Reading two inputs of SrcB buffer and packing */
in1 = (q15_t) * py--;
in2 = (q15_t) * py--;
input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
/* Perform the multiply-accumulates */
sum = __SMLAD(input1, input2, sum);
/* Decrement the loop counter */
k--;
}
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = srcBLen % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulates */
sum += ((q15_t) * px++ * *py--);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q7_t) (__SSAT(sum >> 7u, 8));
/* Increment the pointer pIn1 index, count by 1 */
count++;
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
/* If the srcBLen is not a multiple of 4,
* the blockSize2 loop cannot be unrolled by 4 */
blkCnt = blockSize2;
while(blkCnt > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* srcBLen number of MACS should be performed */
k = srcBLen;
while(k > 0u)
{
/* Perform the multiply-accumulate */
sum += ((q15_t) * px++ * *py--);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q7_t) (__SSAT(sum >> 7u, 8));
/* Increment the MAC count */
count++;
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
/* Decrement the loop counter */
blkCnt--;
}
}
/* --------------------------
* Initializations of stage3
* -------------------------*/
/* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
* sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
* ....
* sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
* sum += x[srcALen-1] * y[srcBLen-1]
*/
/* In this stage the MAC operations are decreased by 1 for every iteration.
The blockSize3 variable holds the number of MAC operations performed */
/* Working pointer of inputA */
pSrc1 = pIn1 + (srcALen - (srcBLen - 1u));
px = pSrc1;
/* Working pointer of inputB */
pSrc2 = pIn2 + (srcBLen - 1u);
py = pSrc2;
/* -------------------
* Stage3 process
* ------------------*/
while(blockSize3 > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = blockSize3 >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* Reading two inputs, x[srcALen - srcBLen + 1] and x[srcALen - srcBLen + 2] of SrcA buffer and packing */
in1 = (q15_t) * px++;
in2 = (q15_t) * px++;
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
/* Reading two inputs, y[srcBLen - 1] and y[srcBLen - 2] of SrcB buffer and packing */
in1 = (q15_t) * py--;
in2 = (q15_t) * py--;
input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
/* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */
/* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */
sum = __SMLAD(input1, input2, sum);
/* Reading two inputs, x[srcALen - srcBLen + 3] and x[srcALen - srcBLen + 4] of SrcA buffer and packing */
in1 = (q15_t) * px++;
in2 = (q15_t) * px++;
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
/* Reading two inputs, y[srcBLen - 3] and y[srcBLen - 4] of SrcB buffer and packing */
in1 = (q15_t) * py--;
in2 = (q15_t) * py--;
input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
/* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */
/* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */
sum = __SMLAD(input1, input2, sum);
/* Decrement the loop counter */
k--;
}
/* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = blockSize3 % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulates */
sum += ((q15_t) * px++ * *py--);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q7_t) (__SSAT(sum >> 7u, 8));
/* Update the inputA and inputB pointers for next MAC calculation */
px = ++pSrc1;
py = pSrc2;
/* Decrement the loop counter */
blockSize3--;
}
#else
/* Run the below code for Cortex-M0 */
q7_t *pIn1 = pSrcA; /* input pointer */
q7_t *pIn2 = pSrcB; /* coefficient pointer */
q31_t sum; /* Accumulator */
uint32_t i, j; /* loop counter */
/* Loop to calculate output of convolution for output length number of times */
for (i = 0; i < (srcALen + srcBLen - 1); i++)
{
/* Initialize sum with zero to carry on MAC operations */
sum = 0;
/* Loop to perform MAC operations according to convolution equation */
for (j = 0; j <= i; j++)
{
/* Check the array limitations */
if(((i - j) < srcBLen) && (j < srcALen))
{
/* z[i] += x[i-j] * y[j] */
sum += (q15_t) pIn1[j] * (pIn2[i - j]);
}
}
/* Store the output in the destination buffer */
pDst[i] = (q7_t) __SSAT((sum >> 7u), 8u);
}
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
}
/**
* @} end of Conv group
*/

@ -0,0 +1,997 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
*
* $Date: 19. March 2015
* $Revision: V.1.4.5
*
* Project: CMSIS DSP Library
* Title: arm_fir_f32.c
*
* Description: Floating-point FIR filter processing function.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @defgroup FIR Finite Impulse Response (FIR) Filters
*
* This set of functions implements Finite Impulse Response (FIR) filters
* for Q7, Q15, Q31, and floating-point data types. Fast versions of Q15 and Q31 are also provided.
* The functions operate on blocks of input and output data and each call to the function processes
* <code>blockSize</code> samples through the filter. <code>pSrc</code> and
* <code>pDst</code> points to input and output arrays containing <code>blockSize</code> values.
*
* \par Algorithm:
* The FIR filter algorithm is based upon a sequence of multiply-accumulate (MAC) operations.
* Each filter coefficient <code>b[n]</code> is multiplied by a state variable which equals a previous input sample <code>x[n]</code>.
* <pre>
* y[n] = b[0] * x[n] + b[1] * x[n-1] + b[2] * x[n-2] + ...+ b[numTaps-1] * x[n-numTaps+1]
* </pre>
* \par
* \image html FIR.gif "Finite Impulse Response filter"
* \par
* <code>pCoeffs</code> points to a coefficient array of size <code>numTaps</code>.
* Coefficients are stored in time reversed order.
* \par
* <pre>
* {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
* </pre>
* \par
* <code>pState</code> points to a state array of size <code>numTaps + blockSize - 1</code>.
* Samples in the state buffer are stored in the following order.
* \par
* <pre>
* {x[n-numTaps+1], x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2]....x[0], x[1], ..., x[blockSize-1]}
* </pre>
* \par
* Note that the length of the state buffer exceeds the length of the coefficient array by <code>blockSize-1</code>.
* The increased state buffer length allows circular addressing, which is traditionally used in the FIR filters,
* to be avoided and yields a significant speed improvement.
* The state variables are updated after each block of data is processed; the coefficients are untouched.
* \par Instance Structure
* The coefficients and state variables for a filter are stored together in an instance data structure.
* A separate instance structure must be defined for each filter.
* Coefficient arrays may be shared among several instances while state variable arrays cannot be shared.
* There are separate instance structure declarations for each of the 4 supported data types.
*
* \par Initialization Functions
* There is also an associated initialization function for each data type.
* The initialization function performs the following operations:
* - Sets the values of the internal structure fields.
* - Zeros out the values in the state buffer.
* To do this manually without calling the init function, assign the follow subfields of the instance structure:
* numTaps, pCoeffs, pState. Also set all of the values in pState to zero.
*
* \par
* Use of the initialization function is optional.
* However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
* To place an instance structure into a const data section, the instance structure must be manually initialized.
* Set the values in the state buffer to zeros before static initialization.
* The code below statically initializes each of the 4 different data type filter instance structures
* <pre>
*arm_fir_instance_f32 S = {numTaps, pState, pCoeffs};
*arm_fir_instance_q31 S = {numTaps, pState, pCoeffs};
*arm_fir_instance_q15 S = {numTaps, pState, pCoeffs};
*arm_fir_instance_q7 S = {numTaps, pState, pCoeffs};
* </pre>
*
* where <code>numTaps</code> is the number of filter coefficients in the filter; <code>pState</code> is the address of the state buffer;
* <code>pCoeffs</code> is the address of the coefficient buffer.
*
* \par Fixed-Point Behavior
* Care must be taken when using the fixed-point versions of the FIR filter functions.
* In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
* Refer to the function specific documentation below for usage guidelines.
*/
/**
* @addtogroup FIR
* @{
*/
/**
*
* @param[in] *S points to an instance of the floating-point FIR filter structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of samples to process per call.
* @return none.
*
*/
#if defined(ARM_MATH_CM7)
void arm_fir_f32(
const arm_fir_instance_f32 * S,
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize)
{
float32_t *pState = S->pState; /* State pointer */
float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
float32_t *pStateCurnt; /* Points to the current sample of the state */
float32_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
float32_t acc0, acc1, acc2, acc3, acc4, acc5, acc6, acc7; /* Accumulators */
float32_t x0, x1, x2, x3, x4, x5, x6, x7, c0; /* Temporary variables to hold state and coefficient values */
uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
uint32_t i, tapCnt, blkCnt; /* Loop counters */
/* S->pState points to state array which contains previous frame (numTaps - 1) samples */
/* pStateCurnt points to the location where the new input data should be written */
pStateCurnt = &(S->pState[(numTaps - 1u)]);
/* Apply loop unrolling and compute 8 output values simultaneously.
* The variables acc0 ... acc7 hold output values that are being computed:
*
* acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
* acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
* acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
* acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
*/
blkCnt = blockSize >> 3;
/* First part of the processing with loop unrolling. Compute 8 outputs at a time.
** a second loop below computes the remaining 1 to 7 samples. */
while(blkCnt > 0u)
{
/* Copy four new input samples into the state buffer */
*pStateCurnt++ = *pSrc++;
*pStateCurnt++ = *pSrc++;
*pStateCurnt++ = *pSrc++;
*pStateCurnt++ = *pSrc++;
/* Set all accumulators to zero */
acc0 = 0.0f;
acc1 = 0.0f;
acc2 = 0.0f;
acc3 = 0.0f;
acc4 = 0.0f;
acc5 = 0.0f;
acc6 = 0.0f;
acc7 = 0.0f;
/* Initialize state pointer */
px = pState;
/* Initialize coeff pointer */
pb = (pCoeffs);
/* This is separated from the others to avoid
* a call to __aeabi_memmove which would be slower
*/
*pStateCurnt++ = *pSrc++;
*pStateCurnt++ = *pSrc++;
*pStateCurnt++ = *pSrc++;
*pStateCurnt++ = *pSrc++;
/* Read the first seven samples from the state buffer: x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2] */
x0 = *px++;
x1 = *px++;
x2 = *px++;
x3 = *px++;
x4 = *px++;
x5 = *px++;
x6 = *px++;
/* Loop unrolling. Process 8 taps at a time. */
tapCnt = numTaps >> 3u;
/* Loop over the number of taps. Unroll by a factor of 8.
** Repeat until we've computed numTaps-8 coefficients. */
while(tapCnt > 0u)
{
/* Read the b[numTaps-1] coefficient */
c0 = *(pb++);
/* Read x[n-numTaps-3] sample */
x7 = *(px++);
/* acc0 += b[numTaps-1] * x[n-numTaps] */
acc0 += x0 * c0;
/* acc1 += b[numTaps-1] * x[n-numTaps-1] */
acc1 += x1 * c0;
/* acc2 += b[numTaps-1] * x[n-numTaps-2] */
acc2 += x2 * c0;
/* acc3 += b[numTaps-1] * x[n-numTaps-3] */
acc3 += x3 * c0;
/* acc4 += b[numTaps-1] * x[n-numTaps-4] */
acc4 += x4 * c0;
/* acc1 += b[numTaps-1] * x[n-numTaps-5] */
acc5 += x5 * c0;
/* acc2 += b[numTaps-1] * x[n-numTaps-6] */
acc6 += x6 * c0;
/* acc3 += b[numTaps-1] * x[n-numTaps-7] */
acc7 += x7 * c0;
/* Read the b[numTaps-2] coefficient */
c0 = *(pb++);
/* Read x[n-numTaps-4] sample */
x0 = *(px++);
/* Perform the multiply-accumulate */
acc0 += x1 * c0;
acc1 += x2 * c0;
acc2 += x3 * c0;
acc3 += x4 * c0;
acc4 += x5 * c0;
acc5 += x6 * c0;
acc6 += x7 * c0;
acc7 += x0 * c0;
/* Read the b[numTaps-3] coefficient */
c0 = *(pb++);
/* Read x[n-numTaps-5] sample */
x1 = *(px++);
/* Perform the multiply-accumulates */
acc0 += x2 * c0;
acc1 += x3 * c0;
acc2 += x4 * c0;
acc3 += x5 * c0;
acc4 += x6 * c0;
acc5 += x7 * c0;
acc6 += x0 * c0;
acc7 += x1 * c0;
/* Read the b[numTaps-4] coefficient */
c0 = *(pb++);
/* Read x[n-numTaps-6] sample */
x2 = *(px++);
/* Perform the multiply-accumulates */
acc0 += x3 * c0;
acc1 += x4 * c0;
acc2 += x5 * c0;
acc3 += x6 * c0;
acc4 += x7 * c0;
acc5 += x0 * c0;
acc6 += x1 * c0;
acc7 += x2 * c0;
/* Read the b[numTaps-4] coefficient */
c0 = *(pb++);
/* Read x[n-numTaps-6] sample */
x3 = *(px++);
/* Perform the multiply-accumulates */
acc0 += x4 * c0;
acc1 += x5 * c0;
acc2 += x6 * c0;
acc3 += x7 * c0;
acc4 += x0 * c0;
acc5 += x1 * c0;
acc6 += x2 * c0;
acc7 += x3 * c0;
/* Read the b[numTaps-4] coefficient */
c0 = *(pb++);
/* Read x[n-numTaps-6] sample */
x4 = *(px++);
/* Perform the multiply-accumulates */
acc0 += x5 * c0;
acc1 += x6 * c0;
acc2 += x7 * c0;
acc3 += x0 * c0;
acc4 += x1 * c0;
acc5 += x2 * c0;
acc6 += x3 * c0;
acc7 += x4 * c0;
/* Read the b[numTaps-4] coefficient */
c0 = *(pb++);
/* Read x[n-numTaps-6] sample */
x5 = *(px++);
/* Perform the multiply-accumulates */
acc0 += x6 * c0;
acc1 += x7 * c0;
acc2 += x0 * c0;
acc3 += x1 * c0;
acc4 += x2 * c0;
acc5 += x3 * c0;
acc6 += x4 * c0;
acc7 += x5 * c0;
/* Read the b[numTaps-4] coefficient */
c0 = *(pb++);
/* Read x[n-numTaps-6] sample */
x6 = *(px++);
/* Perform the multiply-accumulates */
acc0 += x7 * c0;
acc1 += x0 * c0;
acc2 += x1 * c0;
acc3 += x2 * c0;
acc4 += x3 * c0;
acc5 += x4 * c0;
acc6 += x5 * c0;
acc7 += x6 * c0;
tapCnt--;
}
/* If the filter length is not a multiple of 8, compute the remaining filter taps */
tapCnt = numTaps % 0x8u;
while(tapCnt > 0u)
{
/* Read coefficients */
c0 = *(pb++);
/* Fetch 1 state variable */
x7 = *(px++);
/* Perform the multiply-accumulates */
acc0 += x0 * c0;
acc1 += x1 * c0;
acc2 += x2 * c0;
acc3 += x3 * c0;
acc4 += x4 * c0;
acc5 += x5 * c0;
acc6 += x6 * c0;
acc7 += x7 * c0;
/* Reuse the present sample states for next sample */
x0 = x1;
x1 = x2;
x2 = x3;
x3 = x4;
x4 = x5;
x5 = x6;
x6 = x7;
/* Decrement the loop counter */
tapCnt--;
}
/* Advance the state pointer by 8 to process the next group of 8 samples */
pState = pState + 8;
/* The results in the 8 accumulators, store in the destination buffer. */
*pDst++ = acc0;
*pDst++ = acc1;
*pDst++ = acc2;
*pDst++ = acc3;
*pDst++ = acc4;
*pDst++ = acc5;
*pDst++ = acc6;
*pDst++ = acc7;
blkCnt--;
}
/* If the blockSize is not a multiple of 8, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x8u;
while(blkCnt > 0u)
{
/* Copy one sample at a time into state buffer */
*pStateCurnt++ = *pSrc++;
/* Set the accumulator to zero */
acc0 = 0.0f;
/* Initialize state pointer */
px = pState;
/* Initialize Coefficient pointer */
pb = (pCoeffs);
i = numTaps;
/* Perform the multiply-accumulates */
do
{
acc0 += *px++ * *pb++;
i--;
} while(i > 0u);
/* The result is store in the destination buffer. */
*pDst++ = acc0;
/* Advance state pointer by 1 for the next sample */
pState = pState + 1;
blkCnt--;
}
/* Processing is complete.
** Now copy the last numTaps - 1 samples to the start of the state buffer.
** This prepares the state buffer for the next function call. */
/* Points to the start of the state buffer */
pStateCurnt = S->pState;
tapCnt = (numTaps - 1u) >> 2u;
/* copy data */
while(tapCnt > 0u)
{
*pStateCurnt++ = *pState++;
*pStateCurnt++ = *pState++;
*pStateCurnt++ = *pState++;
*pStateCurnt++ = *pState++;
/* Decrement the loop counter */
tapCnt--;
}
/* Calculate remaining number of copies */
tapCnt = (numTaps - 1u) % 0x4u;
/* Copy the remaining q31_t data */
while(tapCnt > 0u)
{
*pStateCurnt++ = *pState++;
/* Decrement the loop counter */
tapCnt--;
}
}
#elif defined(ARM_MATH_CM0_FAMILY)
void arm_fir_f32(
const arm_fir_instance_f32 * S,
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize)
{
float32_t *pState = S->pState; /* State pointer */
float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
float32_t *pStateCurnt; /* Points to the current sample of the state */
float32_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
uint32_t i, tapCnt, blkCnt; /* Loop counters */
/* Run the below code for Cortex-M0 */
float32_t acc;
/* S->pState points to state array which contains previous frame (numTaps - 1) samples */
/* pStateCurnt points to the location where the new input data should be written */
pStateCurnt = &(S->pState[(numTaps - 1u)]);
/* Initialize blkCnt with blockSize */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* Copy one sample at a time into state buffer */
*pStateCurnt++ = *pSrc++;
/* Set the accumulator to zero */
acc = 0.0f;
/* Initialize state pointer */
px = pState;
/* Initialize Coefficient pointer */
pb = pCoeffs;
i = numTaps;
/* Perform the multiply-accumulates */
do
{
/* acc = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
acc += *px++ * *pb++;
i--;
} while(i > 0u);
/* The result is store in the destination buffer. */
*pDst++ = acc;
/* Advance state pointer by 1 for the next sample */
pState = pState + 1;
blkCnt--;
}
/* Processing is complete.
** Now copy the last numTaps - 1 samples to the starting of the state buffer.
** This prepares the state buffer for the next function call. */
/* Points to the start of the state buffer */
pStateCurnt = S->pState;
/* Copy numTaps number of values */
tapCnt = numTaps - 1u;
/* Copy data */
while(tapCnt > 0u)
{
*pStateCurnt++ = *pState++;
/* Decrement the loop counter */
tapCnt--;
}
}
#else
/* Run the below code for Cortex-M4 and Cortex-M3 */
void arm_fir_f32(
const arm_fir_instance_f32 * S,
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize)
{
float32_t *pState = S->pState; /* State pointer */
float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
float32_t *pStateCurnt; /* Points to the current sample of the state */
float32_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
float32_t acc0, acc1, acc2, acc3, acc4, acc5, acc6, acc7; /* Accumulators */
float32_t x0, x1, x2, x3, x4, x5, x6, x7, c0; /* Temporary variables to hold state and coefficient values */
uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
uint32_t i, tapCnt, blkCnt; /* Loop counters */
float32_t p0,p1,p2,p3,p4,p5,p6,p7; /* Temporary product values */
/* S->pState points to state array which contains previous frame (numTaps - 1) samples */
/* pStateCurnt points to the location where the new input data should be written */
pStateCurnt = &(S->pState[(numTaps - 1u)]);
/* Apply loop unrolling and compute 8 output values simultaneously.
* The variables acc0 ... acc7 hold output values that are being computed:
*
* acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
* acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
* acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
* acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
*/
blkCnt = blockSize >> 3;
/* First part of the processing with loop unrolling. Compute 8 outputs at a time.
** a second loop below computes the remaining 1 to 7 samples. */
while(blkCnt > 0u)
{
/* Copy four new input samples into the state buffer */
*pStateCurnt++ = *pSrc++;
*pStateCurnt++ = *pSrc++;
*pStateCurnt++ = *pSrc++;
*pStateCurnt++ = *pSrc++;
/* Set all accumulators to zero */
acc0 = 0.0f;
acc1 = 0.0f;
acc2 = 0.0f;
acc3 = 0.0f;
acc4 = 0.0f;
acc5 = 0.0f;
acc6 = 0.0f;
acc7 = 0.0f;
/* Initialize state pointer */
px = pState;
/* Initialize coeff pointer */
pb = (pCoeffs);
/* This is separated from the others to avoid
* a call to __aeabi_memmove which would be slower
*/
*pStateCurnt++ = *pSrc++;
*pStateCurnt++ = *pSrc++;
*pStateCurnt++ = *pSrc++;
*pStateCurnt++ = *pSrc++;
/* Read the first seven samples from the state buffer: x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2] */
x0 = *px++;
x1 = *px++;
x2 = *px++;
x3 = *px++;
x4 = *px++;
x5 = *px++;
x6 = *px++;
/* Loop unrolling. Process 8 taps at a time. */
tapCnt = numTaps >> 3u;
/* Loop over the number of taps. Unroll by a factor of 8.
** Repeat until we've computed numTaps-8 coefficients. */
while(tapCnt > 0u)
{
/* Read the b[numTaps-1] coefficient */
c0 = *(pb++);
/* Read x[n-numTaps-3] sample */
x7 = *(px++);
/* acc0 += b[numTaps-1] * x[n-numTaps] */
p0 = x0 * c0;
/* acc1 += b[numTaps-1] * x[n-numTaps-1] */
p1 = x1 * c0;
/* acc2 += b[numTaps-1] * x[n-numTaps-2] */
p2 = x2 * c0;
/* acc3 += b[numTaps-1] * x[n-numTaps-3] */
p3 = x3 * c0;
/* acc4 += b[numTaps-1] * x[n-numTaps-4] */
p4 = x4 * c0;
/* acc1 += b[numTaps-1] * x[n-numTaps-5] */
p5 = x5 * c0;
/* acc2 += b[numTaps-1] * x[n-numTaps-6] */
p6 = x6 * c0;
/* acc3 += b[numTaps-1] * x[n-numTaps-7] */
p7 = x7 * c0;
/* Read the b[numTaps-2] coefficient */
c0 = *(pb++);
/* Read x[n-numTaps-4] sample */
x0 = *(px++);
acc0 += p0;
acc1 += p1;
acc2 += p2;
acc3 += p3;
acc4 += p4;
acc5 += p5;
acc6 += p6;
acc7 += p7;
/* Perform the multiply-accumulate */
p0 = x1 * c0;
p1 = x2 * c0;
p2 = x3 * c0;
p3 = x4 * c0;
p4 = x5 * c0;
p5 = x6 * c0;
p6 = x7 * c0;
p7 = x0 * c0;
/* Read the b[numTaps-3] coefficient */
c0 = *(pb++);
/* Read x[n-numTaps-5] sample */
x1 = *(px++);
acc0 += p0;
acc1 += p1;
acc2 += p2;
acc3 += p3;
acc4 += p4;
acc5 += p5;
acc6 += p6;
acc7 += p7;
/* Perform the multiply-accumulates */
p0 = x2 * c0;
p1 = x3 * c0;
p2 = x4 * c0;
p3 = x5 * c0;
p4 = x6 * c0;
p5 = x7 * c0;
p6 = x0 * c0;
p7 = x1 * c0;
/* Read the b[numTaps-4] coefficient */
c0 = *(pb++);
/* Read x[n-numTaps-6] sample */
x2 = *(px++);
acc0 += p0;
acc1 += p1;
acc2 += p2;
acc3 += p3;
acc4 += p4;
acc5 += p5;
acc6 += p6;
acc7 += p7;
/* Perform the multiply-accumulates */
p0 = x3 * c0;
p1 = x4 * c0;
p2 = x5 * c0;
p3 = x6 * c0;
p4 = x7 * c0;
p5 = x0 * c0;
p6 = x1 * c0;
p7 = x2 * c0;
/* Read the b[numTaps-4] coefficient */
c0 = *(pb++);
/* Read x[n-numTaps-6] sample */
x3 = *(px++);
acc0 += p0;
acc1 += p1;
acc2 += p2;
acc3 += p3;
acc4 += p4;
acc5 += p5;
acc6 += p6;
acc7 += p7;
/* Perform the multiply-accumulates */
p0 = x4 * c0;
p1 = x5 * c0;
p2 = x6 * c0;
p3 = x7 * c0;
p4 = x0 * c0;
p5 = x1 * c0;
p6 = x2 * c0;
p7 = x3 * c0;
/* Read the b[numTaps-4] coefficient */
c0 = *(pb++);
/* Read x[n-numTaps-6] sample */
x4 = *(px++);
acc0 += p0;
acc1 += p1;
acc2 += p2;
acc3 += p3;
acc4 += p4;
acc5 += p5;
acc6 += p6;
acc7 += p7;
/* Perform the multiply-accumulates */
p0 = x5 * c0;
p1 = x6 * c0;
p2 = x7 * c0;
p3 = x0 * c0;
p4 = x1 * c0;
p5 = x2 * c0;
p6 = x3 * c0;
p7 = x4 * c0;
/* Read the b[numTaps-4] coefficient */
c0 = *(pb++);
/* Read x[n-numTaps-6] sample */
x5 = *(px++);
acc0 += p0;
acc1 += p1;
acc2 += p2;
acc3 += p3;
acc4 += p4;
acc5 += p5;
acc6 += p6;
acc7 += p7;
/* Perform the multiply-accumulates */
p0 = x6 * c0;
p1 = x7 * c0;
p2 = x0 * c0;
p3 = x1 * c0;
p4 = x2 * c0;
p5 = x3 * c0;
p6 = x4 * c0;
p7 = x5 * c0;
/* Read the b[numTaps-4] coefficient */
c0 = *(pb++);
/* Read x[n-numTaps-6] sample */
x6 = *(px++);
acc0 += p0;
acc1 += p1;
acc2 += p2;
acc3 += p3;
acc4 += p4;
acc5 += p5;
acc6 += p6;
acc7 += p7;
/* Perform the multiply-accumulates */
p0 = x7 * c0;
p1 = x0 * c0;
p2 = x1 * c0;
p3 = x2 * c0;
p4 = x3 * c0;
p5 = x4 * c0;
p6 = x5 * c0;
p7 = x6 * c0;
tapCnt--;
acc0 += p0;
acc1 += p1;
acc2 += p2;
acc3 += p3;
acc4 += p4;
acc5 += p5;
acc6 += p6;
acc7 += p7;
}
/* If the filter length is not a multiple of 8, compute the remaining filter taps */
tapCnt = numTaps % 0x8u;
while(tapCnt > 0u)
{
/* Read coefficients */
c0 = *(pb++);
/* Fetch 1 state variable */
x7 = *(px++);
/* Perform the multiply-accumulates */
p0 = x0 * c0;
p1 = x1 * c0;
p2 = x2 * c0;
p3 = x3 * c0;
p4 = x4 * c0;
p5 = x5 * c0;
p6 = x6 * c0;
p7 = x7 * c0;
/* Reuse the present sample states for next sample */
x0 = x1;
x1 = x2;
x2 = x3;
x3 = x4;
x4 = x5;
x5 = x6;
x6 = x7;
acc0 += p0;
acc1 += p1;
acc2 += p2;
acc3 += p3;
acc4 += p4;
acc5 += p5;
acc6 += p6;
acc7 += p7;
/* Decrement the loop counter */
tapCnt--;
}
/* Advance the state pointer by 8 to process the next group of 8 samples */
pState = pState + 8;
/* The results in the 8 accumulators, store in the destination buffer. */
*pDst++ = acc0;
*pDst++ = acc1;
*pDst++ = acc2;
*pDst++ = acc3;
*pDst++ = acc4;
*pDst++ = acc5;
*pDst++ = acc6;
*pDst++ = acc7;
blkCnt--;
}
/* If the blockSize is not a multiple of 8, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x8u;
while(blkCnt > 0u)
{
/* Copy one sample at a time into state buffer */
*pStateCurnt++ = *pSrc++;
/* Set the accumulator to zero */
acc0 = 0.0f;
/* Initialize state pointer */
px = pState;
/* Initialize Coefficient pointer */
pb = (pCoeffs);
i = numTaps;
/* Perform the multiply-accumulates */
do
{
acc0 += *px++ * *pb++;
i--;
} while(i > 0u);
/* The result is store in the destination buffer. */
*pDst++ = acc0;
/* Advance state pointer by 1 for the next sample */
pState = pState + 1;
blkCnt--;
}
/* Processing is complete.
** Now copy the last numTaps - 1 samples to the start of the state buffer.
** This prepares the state buffer for the next function call. */
/* Points to the start of the state buffer */
pStateCurnt = S->pState;
tapCnt = (numTaps - 1u) >> 2u;
/* copy data */
while(tapCnt > 0u)
{
*pStateCurnt++ = *pState++;
*pStateCurnt++ = *pState++;
*pStateCurnt++ = *pState++;
*pStateCurnt++ = *pState++;
/* Decrement the loop counter */
tapCnt--;
}
/* Calculate remaining number of copies */
tapCnt = (numTaps - 1u) % 0x4u;
/* Copy the remaining q31_t data */
while(tapCnt > 0u)
{
*pStateCurnt++ = *pState++;
/* Decrement the loop counter */
tapCnt--;
}
}
#endif
/**
* @} end of FIR group
*/

@ -0,0 +1,96 @@
/*-----------------------------------------------------------------------------
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
*
* $Date: 19. March 2015
* $Revision: V.1.4.5
*
* Project: CMSIS DSP Library
* Title: arm_fir_init_f32.c
*
* Description: Floating-point FIR filter initialization function.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* ---------------------------------------------------------------------------*/
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup FIR
* @{
*/
/**
* @details
*
* @param[in,out] *S points to an instance of the floating-point FIR filter structure.
* @param[in] numTaps Number of filter coefficients in the filter.
* @param[in] *pCoeffs points to the filter coefficients buffer.
* @param[in] *pState points to the state buffer.
* @param[in] blockSize number of samples that are processed per call.
* @return none.
*
* <b>Description:</b>
* \par
* <code>pCoeffs</code> points to the array of filter coefficients stored in time reversed order:
* <pre>
* {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
* </pre>
* \par
* <code>pState</code> points to the array of state variables.
* <code>pState</code> is of length <code>numTaps+blockSize-1</code> samples, where <code>blockSize</code> is the number of input samples processed by each call to <code>arm_fir_f32()</code>.
*/
void arm_fir_init_f32(
arm_fir_instance_f32 * S,
uint16_t numTaps,
float32_t * pCoeffs,
float32_t * pState,
uint32_t blockSize)
{
/* Assign filter taps */
S->numTaps = numTaps;
/* Assign coefficient pointer */
S->pCoeffs = pCoeffs;
/* Clear state buffer and the size of state buffer is (blockSize + numTaps - 1) */
memset(pState, 0, (numTaps + (blockSize - 1u)) * sizeof(float32_t));
/* Assign state pointer */
S->pState = pState;
}
/**
* @} end of FIR group
*/

@ -0,0 +1,154 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
*
* $Date: 19. March 2015
* $Revision: V.1.4.5
*
* Project: CMSIS DSP Library
* Title: arm_fir_init_q15.c
*
* Description: Q15 FIR filter initialization function.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* ------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup FIR
* @{
*/
/**
* @param[in,out] *S points to an instance of the Q15 FIR filter structure.
* @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
* @param[in] *pCoeffs points to the filter coefficients buffer.
* @param[in] *pState points to the state buffer.
* @param[in] blockSize is number of samples processed per call.
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if
* <code>numTaps</code> is not greater than or equal to 4 and even.
*
* <b>Description:</b>
* \par
* <code>pCoeffs</code> points to the array of filter coefficients stored in time reversed order:
* <pre>
* {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
* </pre>
* Note that <code>numTaps</code> must be even and greater than or equal to 4.
* To implement an odd length filter simply increase <code>numTaps</code> by 1 and set the last coefficient to zero.
* For example, to implement a filter with <code>numTaps=3</code> and coefficients
* <pre>
* {0.3, -0.8, 0.3}
* </pre>
* set <code>numTaps=4</code> and use the coefficients:
* <pre>
* {0.3, -0.8, 0.3, 0}.
* </pre>
* Similarly, to implement a two point filter
* <pre>
* {0.3, -0.3}
* </pre>
* set <code>numTaps=4</code> and use the coefficients:
* <pre>
* {0.3, -0.3, 0, 0}.
* </pre>
* \par
* <code>pState</code> points to the array of state variables.
* <code>pState</code> is of length <code>numTaps+blockSize</code>, when running on Cortex-M4 and Cortex-M3 and is of length <code>numTaps+blockSize-1</code>, when running on Cortex-M0 where <code>blockSize</code> is the number of input samples processed by each call to <code>arm_fir_q15()</code>.
*/
arm_status arm_fir_init_q15(
arm_fir_instance_q15 * S,
uint16_t numTaps,
q15_t * pCoeffs,
q15_t * pState,
uint32_t blockSize)
{
arm_status status;
#ifndef ARM_MATH_CM0_FAMILY
/* Run the below code for Cortex-M4 and Cortex-M3 */
/* The Number of filter coefficients in the filter must be even and at least 4 */
if(numTaps & 0x1u)
{
status = ARM_MATH_ARGUMENT_ERROR;
}
else
{
/* Assign filter taps */
S->numTaps = numTaps;
/* Assign coefficient pointer */
S->pCoeffs = pCoeffs;
/* Clear the state buffer. The size is always (blockSize + numTaps ) */
memset(pState, 0, (numTaps + (blockSize)) * sizeof(q15_t));
/* Assign state pointer */
S->pState = pState;
status = ARM_MATH_SUCCESS;
}
return (status);
#else
/* Run the below code for Cortex-M0 */
/* Assign filter taps */
S->numTaps = numTaps;
/* Assign coefficient pointer */
S->pCoeffs = pCoeffs;
/* Clear the state buffer. The size is always (blockSize + numTaps - 1) */
memset(pState, 0, (numTaps + (blockSize - 1u)) * sizeof(q15_t));
/* Assign state pointer */
S->pState = pState;
status = ARM_MATH_SUCCESS;
return (status);
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
}
/**
* @} end of FIR group
*/

@ -0,0 +1,96 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
*
* $Date: 19. March 2015
* $Revision: V.1.4.5
*
* Project: CMSIS DSP Library
* Title: arm_fir_init_q31.c
*
* Description: Q31 FIR filter initialization function.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup FIR
* @{
*/
/**
* @details
*
* @param[in,out] *S points to an instance of the Q31 FIR filter structure.
* @param[in] numTaps Number of filter coefficients in the filter.
* @param[in] *pCoeffs points to the filter coefficients buffer.
* @param[in] *pState points to the state buffer.
* @param[in] blockSize number of samples that are processed per call.
* @return none.
*
* <b>Description:</b>
* \par
* <code>pCoeffs</code> points to the array of filter coefficients stored in time reversed order:
* <pre>
* {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
* </pre>
* \par
* <code>pState</code> points to the array of state variables.
* <code>pState</code> is of length <code>numTaps+blockSize-1</code> samples, where <code>blockSize</code> is the number of input samples processed by each call to <code>arm_fir_q31()</code>.
*/
void arm_fir_init_q31(
arm_fir_instance_q31 * S,
uint16_t numTaps,
q31_t * pCoeffs,
q31_t * pState,
uint32_t blockSize)
{
/* Assign filter taps */
S->numTaps = numTaps;
/* Assign coefficient pointer */
S->pCoeffs = pCoeffs;
/* Clear state buffer and state array size is (blockSize + numTaps - 1) */
memset(pState, 0, (blockSize + ((uint32_t) numTaps - 1u)) * sizeof(q31_t));
/* Assign state pointer */
S->pState = pState;
}
/**
* @} end of FIR group
*/

@ -0,0 +1,94 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
*
* $Date: 19. March 2015
* $Revision: V.1.4.5
*
* Project: CMSIS DSP Library
* Title: arm_fir_init_q7.c
*
* Description: Q7 FIR filter initialization function.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* ------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup FIR
* @{
*/
/**
* @param[in,out] *S points to an instance of the Q7 FIR filter structure.
* @param[in] numTaps Number of filter coefficients in the filter.
* @param[in] *pCoeffs points to the filter coefficients buffer.
* @param[in] *pState points to the state buffer.
* @param[in] blockSize number of samples that are processed per call.
* @return none
*
* <b>Description:</b>
* \par
* <code>pCoeffs</code> points to the array of filter coefficients stored in time reversed order:
* <pre>
* {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
* </pre>
* \par
* <code>pState</code> points to the array of state variables.
* <code>pState</code> is of length <code>numTaps+blockSize-1</code> samples, where <code>blockSize</code> is the number of input samples processed by each call to <code>arm_fir_q7()</code>.
*/
void arm_fir_init_q7(
arm_fir_instance_q7 * S,
uint16_t numTaps,
q7_t * pCoeffs,
q7_t * pState,
uint32_t blockSize)
{
/* Assign filter taps */
S->numTaps = numTaps;
/* Assign coefficient pointer */
S->pCoeffs = pCoeffs;
/* Clear the state buffer. The size is always (blockSize + numTaps - 1) */
memset(pState, 0, (numTaps + (blockSize - 1u)) * sizeof(q7_t));
/* Assign state pointer */
S->pState = pState;
}
/**
* @} end of FIR group
*/

@ -0,0 +1,691 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
*
* $Date: 19. March 2015
* $Revision: V.1.4.5
*
* Project: CMSIS DSP Library
* Title: arm_fir_q15.c
*
* Description: Q15 FIR filter processing function.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup FIR
* @{
*/
/**
* @brief Processing function for the Q15 FIR filter.
* @param[in] *S points to an instance of the Q15 FIR structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of samples to process per call.
* @return none.
*
*
* \par Restrictions
* If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
* In this case input, output, state buffers should be aligned by 32-bit
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function is implemented using a 64-bit internal accumulator.
* Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
* The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
* There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
* After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
* Lastly, the accumulator is saturated to yield a result in 1.15 format.
*
* \par
* Refer to the function <code>arm_fir_fast_q15()</code> for a faster but less precise implementation of this function.
*/
#ifndef ARM_MATH_CM0_FAMILY
/* Run the below code for Cortex-M4 and Cortex-M3 */
#ifndef UNALIGNED_SUPPORT_DISABLE
void arm_fir_q15(
const arm_fir_instance_q15 * S,
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize)
{
q15_t *pState = S->pState; /* State pointer */
q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
q15_t *pStateCurnt; /* Points to the current sample of the state */
q15_t *px1; /* Temporary q15 pointer for state buffer */
q15_t *pb; /* Temporary pointer for coefficient buffer */
q31_t x0, x1, x2, x3, c0; /* Temporary variables to hold SIMD state and coefficient values */
q63_t acc0, acc1, acc2, acc3; /* Accumulators */
uint32_t numTaps = S->numTaps; /* Number of taps in the filter */
uint32_t tapCnt, blkCnt; /* Loop counters */
/* S->pState points to state array which contains previous frame (numTaps - 1) samples */
/* pStateCurnt points to the location where the new input data should be written */
pStateCurnt = &(S->pState[(numTaps - 1u)]);
/* Apply loop unrolling and compute 4 output values simultaneously.
* The variables acc0 ... acc3 hold output values that are being computed:
*
* acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
* acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
* acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
* acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
*/
blkCnt = blockSize >> 2;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* Copy four new input samples into the state buffer.
** Use 32-bit SIMD to move the 16-bit data. Only requires two copies. */
*__SIMD32(pStateCurnt)++ = *__SIMD32(pSrc)++;
*__SIMD32(pStateCurnt)++ = *__SIMD32(pSrc)++;
/* Set all accumulators to zero */
acc0 = 0;
acc1 = 0;
acc2 = 0;
acc3 = 0;
/* Initialize state pointer of type q15 */
px1 = pState;
/* Initialize coeff pointer of type q31 */
pb = pCoeffs;
/* Read the first two samples from the state buffer: x[n-N], x[n-N-1] */
x0 = _SIMD32_OFFSET(px1);
/* Read the third and forth samples from the state buffer: x[n-N-1], x[n-N-2] */
x1 = _SIMD32_OFFSET(px1 + 1u);
px1 += 2u;
/* Loop over the number of taps. Unroll by a factor of 4.
** Repeat until we've computed numTaps-4 coefficients. */
tapCnt = numTaps >> 2;
while(tapCnt > 0u)
{
/* Read the first two coefficients using SIMD: b[N] and b[N-1] coefficients */
c0 = *__SIMD32(pb)++;
/* acc0 += b[N] * x[n-N] + b[N-1] * x[n-N-1] */
acc0 = __SMLALD(x0, c0, acc0);
/* acc1 += b[N] * x[n-N-1] + b[N-1] * x[n-N-2] */
acc1 = __SMLALD(x1, c0, acc1);
/* Read state x[n-N-2], x[n-N-3] */
x2 = _SIMD32_OFFSET(px1);
/* Read state x[n-N-3], x[n-N-4] */
x3 = _SIMD32_OFFSET(px1 + 1u);
/* acc2 += b[N] * x[n-N-2] + b[N-1] * x[n-N-3] */
acc2 = __SMLALD(x2, c0, acc2);
/* acc3 += b[N] * x[n-N-3] + b[N-1] * x[n-N-4] */
acc3 = __SMLALD(x3, c0, acc3);
/* Read coefficients b[N-2], b[N-3] */
c0 = *__SIMD32(pb)++;
/* acc0 += b[N-2] * x[n-N-2] + b[N-3] * x[n-N-3] */
acc0 = __SMLALD(x2, c0, acc0);
/* acc1 += b[N-2] * x[n-N-3] + b[N-3] * x[n-N-4] */
acc1 = __SMLALD(x3, c0, acc1);
/* Read state x[n-N-4], x[n-N-5] */
x0 = _SIMD32_OFFSET(px1 + 2u);
/* Read state x[n-N-5], x[n-N-6] */
x1 = _SIMD32_OFFSET(px1 + 3u);
/* acc2 += b[N-2] * x[n-N-4] + b[N-3] * x[n-N-5] */
acc2 = __SMLALD(x0, c0, acc2);
/* acc3 += b[N-2] * x[n-N-5] + b[N-3] * x[n-N-6] */
acc3 = __SMLALD(x1, c0, acc3);
px1 += 4u;
tapCnt--;
}
/* If the filter length is not a multiple of 4, compute the remaining filter taps.
** This is always be 2 taps since the filter length is even. */
if((numTaps & 0x3u) != 0u)
{
/* Read 2 coefficients */
c0 = *__SIMD32(pb)++;
/* Fetch 4 state variables */
x2 = _SIMD32_OFFSET(px1);
x3 = _SIMD32_OFFSET(px1 + 1u);
/* Perform the multiply-accumulates */
acc0 = __SMLALD(x0, c0, acc0);
px1 += 2u;
acc1 = __SMLALD(x1, c0, acc1);
acc2 = __SMLALD(x2, c0, acc2);
acc3 = __SMLALD(x3, c0, acc3);
}
/* The results in the 4 accumulators are in 2.30 format. Convert to 1.15 with saturation.
** Then store the 4 outputs in the destination buffer. */
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pDst)++ =
__PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
*__SIMD32(pDst)++ =
__PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);
#else
*__SIMD32(pDst)++ =
__PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
*__SIMD32(pDst)++ =
__PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Advance the state pointer by 4 to process the next group of 4 samples */
pState = pState + 4;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* Copy two samples into state buffer */
*pStateCurnt++ = *pSrc++;
/* Set the accumulator to zero */
acc0 = 0;
/* Initialize state pointer of type q15 */
px1 = pState;
/* Initialize coeff pointer of type q31 */
pb = pCoeffs;
tapCnt = numTaps >> 1;
do
{
c0 = *__SIMD32(pb)++;
x0 = *__SIMD32(px1)++;
acc0 = __SMLALD(x0, c0, acc0);
tapCnt--;
}
while(tapCnt > 0u);
/* The result is in 2.30 format. Convert to 1.15 with saturation.
** Then store the output in the destination buffer. */
*pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16));
/* Advance state pointer by 1 for the next sample */
pState = pState + 1;
/* Decrement the loop counter */
blkCnt--;
}
/* Processing is complete.
** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
** This prepares the state buffer for the next function call. */
/* Points to the start of the state buffer */
pStateCurnt = S->pState;
/* Calculation of count for copying integer writes */
tapCnt = (numTaps - 1u) >> 2;
while(tapCnt > 0u)
{
/* Copy state values to start of state buffer */
*__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
*__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
tapCnt--;
}
/* Calculation of count for remaining q15_t data */
tapCnt = (numTaps - 1u) % 0x4u;
/* copy remaining data */
while(tapCnt > 0u)
{
*pStateCurnt++ = *pState++;
/* Decrement the loop counter */
tapCnt--;
}
}
#else /* UNALIGNED_SUPPORT_DISABLE */
void arm_fir_q15(
const arm_fir_instance_q15 * S,
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize)
{
q15_t *pState = S->pState; /* State pointer */
q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
q15_t *pStateCurnt; /* Points to the current sample of the state */
q63_t acc0, acc1, acc2, acc3; /* Accumulators */
q15_t *pb; /* Temporary pointer for coefficient buffer */
q15_t *px; /* Temporary q31 pointer for SIMD state buffer accesses */
q31_t x0, x1, x2, c0; /* Temporary variables to hold SIMD state and coefficient values */
uint32_t numTaps = S->numTaps; /* Number of taps in the filter */
uint32_t tapCnt, blkCnt; /* Loop counters */
/* S->pState points to state array which contains previous frame (numTaps - 1) samples */
/* pStateCurnt points to the location where the new input data should be written */
pStateCurnt = &(S->pState[(numTaps - 1u)]);
/* Apply loop unrolling and compute 4 output values simultaneously.
* The variables acc0 ... acc3 hold output values that are being computed:
*
* acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
* acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
* acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
* acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
*/
blkCnt = blockSize >> 2;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* Copy four new input samples into the state buffer.
** Use 32-bit SIMD to move the 16-bit data. Only requires two copies. */
*pStateCurnt++ = *pSrc++;
*pStateCurnt++ = *pSrc++;
*pStateCurnt++ = *pSrc++;
*pStateCurnt++ = *pSrc++;
/* Set all accumulators to zero */
acc0 = 0;
acc1 = 0;
acc2 = 0;
acc3 = 0;
/* Typecast q15_t pointer to q31_t pointer for state reading in q31_t */
px = pState;
/* Typecast q15_t pointer to q31_t pointer for coefficient reading in q31_t */
pb = pCoeffs;
/* Read the first two samples from the state buffer: x[n-N], x[n-N-1] */
x0 = *__SIMD32(px)++;
/* Read the third and forth samples from the state buffer: x[n-N-2], x[n-N-3] */
x2 = *__SIMD32(px)++;
/* Loop over the number of taps. Unroll by a factor of 4.
** Repeat until we've computed numTaps-(numTaps%4) coefficients. */
tapCnt = numTaps >> 2;
while(tapCnt > 0)
{
/* Read the first two coefficients using SIMD: b[N] and b[N-1] coefficients */
c0 = *__SIMD32(pb)++;
/* acc0 += b[N] * x[n-N] + b[N-1] * x[n-N-1] */
acc0 = __SMLALD(x0, c0, acc0);
/* acc2 += b[N] * x[n-N-2] + b[N-1] * x[n-N-3] */
acc2 = __SMLALD(x2, c0, acc2);
/* pack x[n-N-1] and x[n-N-2] */
#ifndef ARM_MATH_BIG_ENDIAN
x1 = __PKHBT(x2, x0, 0);
#else
x1 = __PKHBT(x0, x2, 0);
#endif
/* Read state x[n-N-4], x[n-N-5] */
x0 = _SIMD32_OFFSET(px);
/* acc1 += b[N] * x[n-N-1] + b[N-1] * x[n-N-2] */
acc1 = __SMLALDX(x1, c0, acc1);
/* pack x[n-N-3] and x[n-N-4] */
#ifndef ARM_MATH_BIG_ENDIAN
x1 = __PKHBT(x0, x2, 0);
#else
x1 = __PKHBT(x2, x0, 0);
#endif
/* acc3 += b[N] * x[n-N-3] + b[N-1] * x[n-N-4] */
acc3 = __SMLALDX(x1, c0, acc3);
/* Read coefficients b[N-2], b[N-3] */
c0 = *__SIMD32(pb)++;
/* acc0 += b[N-2] * x[n-N-2] + b[N-3] * x[n-N-3] */
acc0 = __SMLALD(x2, c0, acc0);
/* Read state x[n-N-6], x[n-N-7] with offset */
x2 = _SIMD32_OFFSET(px + 2u);
/* acc2 += b[N-2] * x[n-N-4] + b[N-3] * x[n-N-5] */
acc2 = __SMLALD(x0, c0, acc2);
/* acc1 += b[N-2] * x[n-N-3] + b[N-3] * x[n-N-4] */
acc1 = __SMLALDX(x1, c0, acc1);
/* pack x[n-N-5] and x[n-N-6] */
#ifndef ARM_MATH_BIG_ENDIAN
x1 = __PKHBT(x2, x0, 0);
#else
x1 = __PKHBT(x0, x2, 0);
#endif
/* acc3 += b[N-2] * x[n-N-5] + b[N-3] * x[n-N-6] */
acc3 = __SMLALDX(x1, c0, acc3);
/* Update state pointer for next state reading */
px += 4u;
/* Decrement tap count */
tapCnt--;
}
/* If the filter length is not a multiple of 4, compute the remaining filter taps.
** This is always be 2 taps since the filter length is even. */
if((numTaps & 0x3u) != 0u)
{
/* Read last two coefficients */
c0 = *__SIMD32(pb)++;
/* Perform the multiply-accumulates */
acc0 = __SMLALD(x0, c0, acc0);
acc2 = __SMLALD(x2, c0, acc2);
/* pack state variables */
#ifndef ARM_MATH_BIG_ENDIAN
x1 = __PKHBT(x2, x0, 0);
#else
x1 = __PKHBT(x0, x2, 0);
#endif
/* Read last state variables */
x0 = *__SIMD32(px);
/* Perform the multiply-accumulates */
acc1 = __SMLALDX(x1, c0, acc1);
/* pack state variables */
#ifndef ARM_MATH_BIG_ENDIAN
x1 = __PKHBT(x0, x2, 0);
#else
x1 = __PKHBT(x2, x0, 0);
#endif
/* Perform the multiply-accumulates */
acc3 = __SMLALDX(x1, c0, acc3);
}
/* The results in the 4 accumulators are in 2.30 format. Convert to 1.15 with saturation.
** Then store the 4 outputs in the destination buffer. */
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pDst)++ =
__PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
*__SIMD32(pDst)++ =
__PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);
#else
*__SIMD32(pDst)++ =
__PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
*__SIMD32(pDst)++ =
__PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Advance the state pointer by 4 to process the next group of 4 samples */
pState = pState + 4;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* Copy two samples into state buffer */
*pStateCurnt++ = *pSrc++;
/* Set the accumulator to zero */
acc0 = 0;
/* Use SIMD to hold states and coefficients */
px = pState;
pb = pCoeffs;
tapCnt = numTaps >> 1u;
do
{
acc0 += (q31_t) * px++ * *pb++;
acc0 += (q31_t) * px++ * *pb++;
tapCnt--;
}
while(tapCnt > 0u);
/* The result is in 2.30 format. Convert to 1.15 with saturation.
** Then store the output in the destination buffer. */
*pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16));
/* Advance state pointer by 1 for the next sample */
pState = pState + 1u;
/* Decrement the loop counter */
blkCnt--;
}
/* Processing is complete.
** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
** This prepares the state buffer for the next function call. */
/* Points to the start of the state buffer */
pStateCurnt = S->pState;
/* Calculation of count for copying integer writes */
tapCnt = (numTaps - 1u) >> 2;
while(tapCnt > 0u)
{
*pStateCurnt++ = *pState++;
*pStateCurnt++ = *pState++;
*pStateCurnt++ = *pState++;
*pStateCurnt++ = *pState++;
tapCnt--;
}
/* Calculation of count for remaining q15_t data */
tapCnt = (numTaps - 1u) % 0x4u;
/* copy remaining data */
while(tapCnt > 0u)
{
*pStateCurnt++ = *pState++;
/* Decrement the loop counter */
tapCnt--;
}
}
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
#else /* ARM_MATH_CM0_FAMILY */
/* Run the below code for Cortex-M0 */
void arm_fir_q15(
const arm_fir_instance_q15 * S,
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize)
{
q15_t *pState = S->pState; /* State pointer */
q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
q15_t *pStateCurnt; /* Points to the current sample of the state */
q15_t *px; /* Temporary pointer for state buffer */
q15_t *pb; /* Temporary pointer for coefficient buffer */
q63_t acc; /* Accumulator */
uint32_t numTaps = S->numTaps; /* Number of nTaps in the filter */
uint32_t tapCnt, blkCnt; /* Loop counters */
/* S->pState buffer contains previous frame (numTaps - 1) samples */
/* pStateCurnt points to the location where the new input data should be written */
pStateCurnt = &(S->pState[(numTaps - 1u)]);
/* Initialize blkCnt with blockSize */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* Copy one sample at a time into state buffer */
*pStateCurnt++ = *pSrc++;
/* Set the accumulator to zero */
acc = 0;
/* Initialize state pointer */
px = pState;
/* Initialize Coefficient pointer */
pb = pCoeffs;
tapCnt = numTaps;
/* Perform the multiply-accumulates */
do
{
/* acc = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
acc += (q31_t) * px++ * *pb++;
tapCnt--;
} while(tapCnt > 0u);
/* The result is in 2.30 format. Convert to 1.15
** Then store the output in the destination buffer. */
*pDst++ = (q15_t) __SSAT((acc >> 15u), 16);
/* Advance state pointer by 1 for the next sample */
pState = pState + 1;
/* Decrement the samples loop counter */
blkCnt--;
}
/* Processing is complete.
** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
** This prepares the state buffer for the next function call. */
/* Points to the start of the state buffer */
pStateCurnt = S->pState;
/* Copy numTaps number of values */
tapCnt = (numTaps - 1u);
/* copy data */
while(tapCnt > 0u)
{
*pStateCurnt++ = *pState++;
/* Decrement the loop counter */
tapCnt--;
}
}
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
/**
* @} end of FIR group
*/

@ -0,0 +1,365 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
*
* $Date: 19. March 2015
* $Revision: V.1.4.5
*
* Project: CMSIS DSP Library
* Title: arm_fir_q31.c
*
* Description: Q31 FIR filter processing function.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup FIR
* @{
*/
/**
* @param[in] *S points to an instance of the Q31 FIR filter structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of samples to process per call.
* @return none.
*
* @details
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function is implemented using an internal 64-bit accumulator.
* The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
* Thus, if the accumulator result overflows it wraps around rather than clip.
* In order to avoid overflows completely the input signal must be scaled down by log2(numTaps) bits.
* After all multiply-accumulates are performed, the 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.
*
* \par
* Refer to the function <code>arm_fir_fast_q31()</code> for a faster but less precise implementation of this filter for Cortex-M3 and Cortex-M4.
*/
void arm_fir_q31(
const arm_fir_instance_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize)
{
q31_t *pState = S->pState; /* State pointer */
q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
q31_t *pStateCurnt; /* Points to the current sample of the state */
#ifndef ARM_MATH_CM0_FAMILY
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t x0, x1, x2; /* Temporary variables to hold state */
q31_t c0; /* Temporary variable to hold coefficient value */
q31_t *px; /* Temporary pointer for state */
q31_t *pb; /* Temporary pointer for coefficient buffer */
q63_t acc0, acc1, acc2; /* Accumulators */
uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
uint32_t i, tapCnt, blkCnt, tapCntN3; /* Loop counters */
/* S->pState points to state array which contains previous frame (numTaps - 1) samples */
/* pStateCurnt points to the location where the new input data should be written */
pStateCurnt = &(S->pState[(numTaps - 1u)]);
/* Apply loop unrolling and compute 4 output values simultaneously.
* The variables acc0 ... acc3 hold output values that are being computed:
*
* acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
* acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
* acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
* acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
*/
blkCnt = blockSize / 3;
blockSize = blockSize - (3 * blkCnt);
tapCnt = numTaps / 3;
tapCntN3 = numTaps - (3 * tapCnt);
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* Copy three new input samples into the state buffer */
*pStateCurnt++ = *pSrc++;
*pStateCurnt++ = *pSrc++;
*pStateCurnt++ = *pSrc++;
/* Set all accumulators to zero */
acc0 = 0;
acc1 = 0;
acc2 = 0;
/* Initialize state pointer */
px = pState;
/* Initialize coefficient pointer */
pb = pCoeffs;
/* Read the first two samples from the state buffer:
* x[n-numTaps], x[n-numTaps-1] */
x0 = *(px++);
x1 = *(px++);
/* Loop unrolling. Process 3 taps at a time. */
i = tapCnt;
while(i > 0u)
{
/* Read the b[numTaps] coefficient */
c0 = *pb;
/* Read x[n-numTaps-2] sample */
x2 = *(px++);
/* Perform the multiply-accumulates */
acc0 += ((q63_t) x0 * c0);
acc1 += ((q63_t) x1 * c0);
acc2 += ((q63_t) x2 * c0);
/* Read the coefficient and state */
c0 = *(pb + 1u);
x0 = *(px++);
/* Perform the multiply-accumulates */
acc0 += ((q63_t) x1 * c0);
acc1 += ((q63_t) x2 * c0);
acc2 += ((q63_t) x0 * c0);
/* Read the coefficient and state */
c0 = *(pb + 2u);
x1 = *(px++);
/* update coefficient pointer */
pb += 3u;
/* Perform the multiply-accumulates */
acc0 += ((q63_t) x2 * c0);
acc1 += ((q63_t) x0 * c0);
acc2 += ((q63_t) x1 * c0);
/* Decrement the loop counter */
i--;
}
/* If the filter length is not a multiple of 3, compute the remaining filter taps */
i = tapCntN3;
while(i > 0u)
{
/* Read coefficients */
c0 = *(pb++);
/* Fetch 1 state variable */
x2 = *(px++);
/* Perform the multiply-accumulates */
acc0 += ((q63_t) x0 * c0);
acc1 += ((q63_t) x1 * c0);
acc2 += ((q63_t) x2 * c0);
/* Reuse the present sample states for next sample */
x0 = x1;
x1 = x2;
/* Decrement the loop counter */
i--;
}
/* Advance the state pointer by 3 to process the next group of 3 samples */
pState = pState + 3;
/* The results in the 3 accumulators are in 2.30 format. Convert to 1.31
** Then store the 3 outputs in the destination buffer. */
*pDst++ = (q31_t) (acc0 >> 31u);
*pDst++ = (q31_t) (acc1 >> 31u);
*pDst++ = (q31_t) (acc2 >> 31u);
/* Decrement the samples loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 3, compute any remaining output samples here.
** No loop unrolling is used. */
while(blockSize > 0u)
{
/* Copy one sample at a time into state buffer */
*pStateCurnt++ = *pSrc++;
/* Set the accumulator to zero */
acc0 = 0;
/* Initialize state pointer */
px = pState;
/* Initialize Coefficient pointer */
pb = (pCoeffs);
i = numTaps;
/* Perform the multiply-accumulates */
do
{
acc0 += (q63_t) * (px++) * (*(pb++));
i--;
} while(i > 0u);
/* The result is in 2.62 format. Convert to 1.31
** Then store the output in the destination buffer. */
*pDst++ = (q31_t) (acc0 >> 31u);
/* Advance state pointer by 1 for the next sample */
pState = pState + 1;
/* Decrement the samples loop counter */
blockSize--;
}
/* Processing is complete.
** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
** This prepares the state buffer for the next function call. */
/* Points to the start of the state buffer */
pStateCurnt = S->pState;
tapCnt = (numTaps - 1u) >> 2u;
/* copy data */
while(tapCnt > 0u)
{
*pStateCurnt++ = *pState++;
*pStateCurnt++ = *pState++;
*pStateCurnt++ = *pState++;
*pStateCurnt++ = *pState++;
/* Decrement the loop counter */
tapCnt--;
}
/* Calculate remaining number of copies */
tapCnt = (numTaps - 1u) % 0x4u;
/* Copy the remaining q31_t data */
while(tapCnt > 0u)
{
*pStateCurnt++ = *pState++;
/* Decrement the loop counter */
tapCnt--;
}
#else
/* Run the below code for Cortex-M0 */
q31_t *px; /* Temporary pointer for state */
q31_t *pb; /* Temporary pointer for coefficient buffer */
q63_t acc; /* Accumulator */
uint32_t numTaps = S->numTaps; /* Length of the filter */
uint32_t i, tapCnt, blkCnt; /* Loop counters */
/* S->pState buffer contains previous frame (numTaps - 1) samples */
/* pStateCurnt points to the location where the new input data should be written */
pStateCurnt = &(S->pState[(numTaps - 1u)]);
/* Initialize blkCnt with blockSize */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* Copy one sample at a time into state buffer */
*pStateCurnt++ = *pSrc++;
/* Set the accumulator to zero */
acc = 0;
/* Initialize state pointer */
px = pState;
/* Initialize Coefficient pointer */
pb = pCoeffs;
i = numTaps;
/* Perform the multiply-accumulates */
do
{
/* acc = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
acc += (q63_t) * px++ * *pb++;
i--;
} while(i > 0u);
/* The result is in 2.62 format. Convert to 1.31
** Then store the output in the destination buffer. */
*pDst++ = (q31_t) (acc >> 31u);
/* Advance state pointer by 1 for the next sample */
pState = pState + 1;
/* Decrement the samples loop counter */
blkCnt--;
}
/* Processing is complete.
** Now copy the last numTaps - 1 samples to the starting of the state buffer.
** This prepares the state buffer for the next function call. */
/* Points to the start of the state buffer */
pStateCurnt = S->pState;
/* Copy numTaps number of values */
tapCnt = numTaps - 1u;
/* Copy the data */
while(tapCnt > 0u)
{
*pStateCurnt++ = *pState++;
/* Decrement the loop counter */
tapCnt--;
}
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
}
/**
* @} end of FIR group
*/

@ -0,0 +1,397 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
*
* $Date: 19. March 2015
* $Revision: V.1.4.5
*
* Project: CMSIS DSP Library
* Title: arm_fir_q7.c
*
* Description: Q7 FIR filter processing function.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup FIR
* @{
*/
/**
* @param[in] *S points to an instance of the Q7 FIR filter structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of samples to process per call.
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function is implemented using a 32-bit internal accumulator.
* Both coefficients and state variables are represented in 1.7 format and multiplications yield a 2.14 result.
* The 2.14 intermediate results are accumulated in a 32-bit accumulator in 18.14 format.
* There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
* The accumulator is converted to 18.7 format by discarding the low 7 bits.
* Finally, the result is truncated to 1.7 format.
*/
void arm_fir_q7(
const arm_fir_instance_q7 * S,
q7_t * pSrc,
q7_t * pDst,
uint32_t blockSize)
{
#ifndef ARM_MATH_CM0_FAMILY
/* Run the below code for Cortex-M4 and Cortex-M3 */
q7_t *pState = S->pState; /* State pointer */
q7_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
q7_t *pStateCurnt; /* Points to the current sample of the state */
q7_t x0, x1, x2, x3; /* Temporary variables to hold state */
q7_t c0; /* Temporary variable to hold coefficient value */
q7_t *px; /* Temporary pointer for state */
q7_t *pb; /* Temporary pointer for coefficient buffer */
q31_t acc0, acc1, acc2, acc3; /* Accumulators */
uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
uint32_t i, tapCnt, blkCnt; /* Loop counters */
/* S->pState points to state array which contains previous frame (numTaps - 1) samples */
/* pStateCurnt points to the location where the new input data should be written */
pStateCurnt = &(S->pState[(numTaps - 1u)]);
/* Apply loop unrolling and compute 4 output values simultaneously.
* The variables acc0 ... acc3 hold output values that are being computed:
*
* acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
* acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
* acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
* acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
*/
blkCnt = blockSize >> 2;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* Copy four new input samples into the state buffer */
*pStateCurnt++ = *pSrc++;
*pStateCurnt++ = *pSrc++;
*pStateCurnt++ = *pSrc++;
*pStateCurnt++ = *pSrc++;
/* Set all accumulators to zero */
acc0 = 0;
acc1 = 0;
acc2 = 0;
acc3 = 0;
/* Initialize state pointer */
px = pState;
/* Initialize coefficient pointer */
pb = pCoeffs;
/* Read the first three samples from the state buffer:
* x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2] */
x0 = *(px++);
x1 = *(px++);
x2 = *(px++);
/* Loop unrolling. Process 4 taps at a time. */
tapCnt = numTaps >> 2;
i = tapCnt;
while(i > 0u)
{
/* Read the b[numTaps] coefficient */
c0 = *pb;
/* Read x[n-numTaps-3] sample */
x3 = *px;
/* acc0 += b[numTaps] * x[n-numTaps] */
acc0 += ((q15_t) x0 * c0);
/* acc1 += b[numTaps] * x[n-numTaps-1] */
acc1 += ((q15_t) x1 * c0);
/* acc2 += b[numTaps] * x[n-numTaps-2] */
acc2 += ((q15_t) x2 * c0);
/* acc3 += b[numTaps] * x[n-numTaps-3] */
acc3 += ((q15_t) x3 * c0);
/* Read the b[numTaps-1] coefficient */
c0 = *(pb + 1u);
/* Read x[n-numTaps-4] sample */
x0 = *(px + 1u);
/* Perform the multiply-accumulates */
acc0 += ((q15_t) x1 * c0);
acc1 += ((q15_t) x2 * c0);
acc2 += ((q15_t) x3 * c0);
acc3 += ((q15_t) x0 * c0);
/* Read the b[numTaps-2] coefficient */
c0 = *(pb + 2u);
/* Read x[n-numTaps-5] sample */
x1 = *(px + 2u);
/* Perform the multiply-accumulates */
acc0 += ((q15_t) x2 * c0);
acc1 += ((q15_t) x3 * c0);
acc2 += ((q15_t) x0 * c0);
acc3 += ((q15_t) x1 * c0);
/* Read the b[numTaps-3] coefficients */
c0 = *(pb + 3u);
/* Read x[n-numTaps-6] sample */
x2 = *(px + 3u);
/* Perform the multiply-accumulates */
acc0 += ((q15_t) x3 * c0);
acc1 += ((q15_t) x0 * c0);
acc2 += ((q15_t) x1 * c0);
acc3 += ((q15_t) x2 * c0);
/* update coefficient pointer */
pb += 4u;
px += 4u;
/* Decrement the loop counter */
i--;
}
/* If the filter length is not a multiple of 4, compute the remaining filter taps */
i = numTaps - (tapCnt * 4u);
while(i > 0u)
{
/* Read coefficients */
c0 = *(pb++);
/* Fetch 1 state variable */
x3 = *(px++);
/* Perform the multiply-accumulates */
acc0 += ((q15_t) x0 * c0);
acc1 += ((q15_t) x1 * c0);
acc2 += ((q15_t) x2 * c0);
acc3 += ((q15_t) x3 * c0);
/* Reuse the present sample states for next sample */
x0 = x1;
x1 = x2;
x2 = x3;
/* Decrement the loop counter */
i--;
}
/* Advance the state pointer by 4 to process the next group of 4 samples */
pState = pState + 4;
/* The results in the 4 accumulators are in 2.62 format. Convert to 1.31
** Then store the 4 outputs in the destination buffer. */
acc0 = __SSAT((acc0 >> 7u), 8);
*pDst++ = acc0;
acc1 = __SSAT((acc1 >> 7u), 8);
*pDst++ = acc1;
acc2 = __SSAT((acc2 >> 7u), 8);
*pDst++ = acc2;
acc3 = __SSAT((acc3 >> 7u), 8);
*pDst++ = acc3;
/* Decrement the samples loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 4u;
while(blkCnt > 0u)
{
/* Copy one sample at a time into state buffer */
*pStateCurnt++ = *pSrc++;
/* Set the accumulator to zero */
acc0 = 0;
/* Initialize state pointer */
px = pState;
/* Initialize Coefficient pointer */
pb = (pCoeffs);
i = numTaps;
/* Perform the multiply-accumulates */
do
{
acc0 += (q15_t) * (px++) * (*(pb++));
i--;
} while(i > 0u);
/* The result is in 2.14 format. Convert to 1.7
** Then store the output in the destination buffer. */
*pDst++ = __SSAT((acc0 >> 7u), 8);
/* Advance state pointer by 1 for the next sample */
pState = pState + 1;
/* Decrement the samples loop counter */
blkCnt--;
}
/* Processing is complete.
** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
** This prepares the state buffer for the next function call. */
/* Points to the start of the state buffer */
pStateCurnt = S->pState;
tapCnt = (numTaps - 1u) >> 2u;
/* copy data */
while(tapCnt > 0u)
{
*pStateCurnt++ = *pState++;
*pStateCurnt++ = *pState++;
*pStateCurnt++ = *pState++;
*pStateCurnt++ = *pState++;
/* Decrement the loop counter */
tapCnt--;
}
/* Calculate remaining number of copies */
tapCnt = (numTaps - 1u) % 0x4u;
/* Copy the remaining q31_t data */
while(tapCnt > 0u)
{
*pStateCurnt++ = *pState++;
/* Decrement the loop counter */
tapCnt--;
}
#else
/* Run the below code for Cortex-M0 */
uint32_t numTaps = S->numTaps; /* Number of taps in the filter */
uint32_t i, blkCnt; /* Loop counters */
q7_t *pState = S->pState; /* State pointer */
q7_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
q7_t *px, *pb; /* Temporary pointers to state and coeff */
q31_t acc = 0; /* Accumlator */
q7_t *pStateCurnt; /* Points to the current sample of the state */
/* S->pState points to state array which contains previous frame (numTaps - 1) samples */
/* pStateCurnt points to the location where the new input data should be written */
pStateCurnt = S->pState + (numTaps - 1u);
/* Initialize blkCnt with blockSize */
blkCnt = blockSize;
/* Perform filtering upto BlockSize - BlockSize%4 */
while(blkCnt > 0u)
{
/* Copy one sample at a time into state buffer */
*pStateCurnt++ = *pSrc++;
/* Set accumulator to zero */
acc = 0;
/* Initialize state pointer of type q7 */
px = pState;
/* Initialize coeff pointer of type q7 */
pb = pCoeffs;
i = numTaps;
while(i > 0u)
{
/* acc = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
acc += (q15_t) * px++ * *pb++;
i--;
}
/* Store the 1.7 format filter output in destination buffer */
*pDst++ = (q7_t) __SSAT((acc >> 7), 8);
/* Advance the state pointer by 1 to process the next sample */
pState = pState + 1;
/* Decrement the loop counter */
blkCnt--;
}
/* Processing is complete.
** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
** This prepares the state buffer for the next function call. */
/* Points to the start of the state buffer */
pStateCurnt = S->pState;
/* Copy numTaps number of values */
i = (numTaps - 1u);
/* Copy q7_t data */
while(i > 0u)
{
*pStateCurnt++ = *pState++;
i--;
}
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
}
/**
* @} end of FIR group
*/

@ -29,14 +29,17 @@
#include <array> #include <array>
#include <vector> #include <vector>
#ifndef WIN32 #ifndef STMDSP_WIN32
#include <sys/mman.h> #include <sys/mman.h>
#include <unistd.h>
#endif #endif
#include "wxmain_devdata.h" #include "wxmain_devdata.h"
enum Id { enum Id {
MeasureTimer = 1, TimerPerformance = 1,
TimerRecord,
TimerWavClip,
MFileNew, MFileNew,
MFileOpen, MFileOpen,
@ -87,14 +90,16 @@ MainFrame::MainFrame() :
wxEmptyString, wxEmptyString,
wxDefaultPosition, wxSize(620, 250), wxDefaultPosition, wxSize(620, 250),
wxTE_READONLY | wxTE_MULTILINE | wxHSCROLL | wxTE_RICH2); wxTE_READONLY | wxTE_MULTILINE | wxHSCROLL | wxTE_RICH2);
m_measure_timer = new wxTimer(this, Id::MeasureTimer); m_timer_performance = new wxTimer(this, Id::TimerPerformance);
m_timer_record = new wxTimer(this, Id::TimerRecord);
m_timer_wavclip = new wxTimer(this, Id::TimerWavClip);
m_menu_bar = new wxMenuBar; m_menu_bar = new wxMenuBar;
m_rate_select = new wxComboBox(panelToolbar, wxID_ANY, m_rate_select = new wxComboBox(panelToolbar, wxID_ANY,
wxEmptyString, wxEmptyString,
wxDefaultPosition, wxDefaultSize, wxDefaultPosition, wxDefaultSize,
srateValues.size(), srateValues.data(), srateValues.size(), srateValues.data(),
wxCB_READONLY); wxCB_READONLY);
#ifndef WIN32 #ifndef STMDSP_WIN32
m_device_samples = reinterpret_cast<stmdsp::adcsample_t *>(::mmap( m_device_samples = reinterpret_cast<stmdsp::adcsample_t *>(::mmap(
nullptr, stmdsp::SAMPLES_MAX * sizeof(stmdsp::adcsample_t), nullptr, stmdsp::SAMPLES_MAX * sizeof(stmdsp::adcsample_t),
PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0)); PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0));
@ -143,7 +148,9 @@ MainFrame::MainFrame() :
// Binds: // Binds:
// General // General
Bind(wxEVT_TIMER, &MainFrame::onMeasureTimer, this, Id::MeasureTimer); Bind(wxEVT_TIMER, &MainFrame::onTimerPerformance, this, Id::TimerPerformance);
Bind(wxEVT_TIMER, &MainFrame::onTimerRecord, this, Id::TimerRecord);
Bind(wxEVT_TIMER, &MainFrame::onTimerWavClip, this, Id::TimerWavClip);
Bind(wxEVT_CLOSE_WINDOW, &MainFrame::onCloseEvent, this, wxID_ANY); Bind(wxEVT_CLOSE_WINDOW, &MainFrame::onCloseEvent, this, wxID_ANY);
m_compile_output-> m_compile_output->
Bind(wxEVT_PAINT, &MainFrame::onPaint, this, Id::CompileOutput); Bind(wxEVT_PAINT, &MainFrame::onPaint, this, Id::CompileOutput);
@ -192,7 +199,9 @@ void MainFrame::onCloseEvent(wxCloseEvent& event)
//delete m_menu_bar->Remove(1); //delete m_menu_bar->Remove(1);
//delete m_menu_bar->Remove(0); //delete m_menu_bar->Remove(0);
//delete m_menu_bar; //delete m_menu_bar;
delete m_measure_timer; delete m_timer_performance;
delete m_timer_record;
delete m_timer_wavclip;
delete m_device; delete m_device;
Unbind(wxEVT_COMBOBOX, &MainFrame::onToolbarSampleRate, this, wxID_ANY, wxID_ANY); Unbind(wxEVT_COMBOBOX, &MainFrame::onToolbarSampleRate, this, wxID_ANY, wxID_ANY);
@ -201,11 +210,15 @@ void MainFrame::onCloseEvent(wxCloseEvent& event)
event.Skip(); event.Skip();
} }
// Measure timer tick handler void MainFrame::onTimerPerformance(wxTimerEvent&)
// Only called while connected and running. {
void MainFrame::onMeasureTimer(wxTimerEvent&) // Show execution time
m_status_bar->SetStatusText(wxString::Format(wxT("Execution time: %u cycles"),
m_device->continuous_start_get_measurement()));
}
void MainFrame::onTimerRecord(wxTimerEvent&)
{ {
if (m_conv_result_log || m_run_draw_samples->IsChecked()) {
auto samples = m_device->continuous_read(); auto samples = m_device->continuous_read();
if (samples.size() > 0) { if (samples.size() > 0) {
std::copy(samples.cbegin(), samples.cend(), m_device_samples); std::copy(samples.cbegin(), samples.cend(), m_device_samples);
@ -217,6 +230,7 @@ void MainFrame::onMeasureTimer(wxTimerEvent&)
} }
m_conv_result_log->Write("\n", 1); m_conv_result_log->Write("\n", 1);
} }
if (m_run_draw_samples->IsChecked()) { if (m_run_draw_samples->IsChecked()) {
samples = m_device->continuous_read_input(); samples = m_device->continuous_read_input();
std::copy(samples.cbegin(), samples.cend(), m_device_samples_input); std::copy(samples.cbegin(), samples.cend(), m_device_samples_input);
@ -225,7 +239,8 @@ void MainFrame::onMeasureTimer(wxTimerEvent&)
} }
} }
if (m_wav_clip) { void MainFrame::onTimerWavClip(wxTimerEvent&)
{
// Stream out next WAV chunk // Stream out next WAV chunk
auto size = m_device->get_buffer_size(); auto size = m_device->get_buffer_size();
auto chunk = new stmdsp::adcsample_t[size]; auto chunk = new stmdsp::adcsample_t[size];
@ -236,13 +251,6 @@ void MainFrame::onMeasureTimer(wxTimerEvent&)
delete[] chunk; delete[] chunk;
} }
if (m_run_measure->IsChecked()) {
// Show execution time
m_status_bar->SetStatusText(wxString::Format(wxT("Execution time: %u cycles"),
m_device->continuous_start_get_measurement()));
}
}
void MainFrame::onPaint(wxPaintEvent&) void MainFrame::onPaint(wxPaintEvent&)
{ {
if (!m_is_running || !m_run_draw_samples->IsChecked()) if (!m_is_running || !m_run_draw_samples->IsChecked())
@ -353,6 +361,8 @@ wxString MainFrame::compileEditorCode()
wxString make_text (platform == stmdsp::platform::L4 ? makefile_text_l4 wxString make_text (platform == stmdsp::platform::L4 ? makefile_text_l4
: makefile_text_h7); : makefile_text_h7);
make_text.Replace("$0", m_temp_file_name); make_text.Replace("$0", m_temp_file_name);
char cwd[PATH_MAX];
make_text.Replace("$1", getcwd(cwd, sizeof(cwd)));
makefile.Write(make_text); makefile.Write(make_text);
makefile.Close(); makefile.Close();

@ -59,7 +59,9 @@ public:
void onCodeDisassemble(wxCommandEvent&); void onCodeDisassemble(wxCommandEvent&);
void onPaint(wxPaintEvent&); void onPaint(wxPaintEvent&);
void onMeasureTimer(wxTimerEvent&); void onTimerPerformance(wxTimerEvent&);
void onTimerRecord(wxTimerEvent&);
void onTimerWavClip(wxTimerEvent&);
private: private:
// Set to true if connected and running // Set to true if connected and running
@ -71,7 +73,9 @@ private:
wxControl *m_signal_area = nullptr; wxControl *m_signal_area = nullptr;
wxMenuItem *m_run_measure = nullptr; wxMenuItem *m_run_measure = nullptr;
wxMenuItem *m_run_draw_samples = nullptr; wxMenuItem *m_run_draw_samples = nullptr;
wxTimer *m_measure_timer = nullptr; wxTimer *m_timer_performance = nullptr;
wxTimer *m_timer_record = nullptr;
wxTimer *m_timer_wavclip = nullptr;
wxStatusBar *m_status_bar = nullptr; wxStatusBar *m_status_bar = nullptr;
wxMenuBar *m_menu_bar = nullptr; wxMenuBar *m_menu_bar = nullptr;
wxComboBox *m_rate_select = nullptr; wxComboBox *m_rate_select = nullptr;

@ -26,6 +26,7 @@ const std::array<unsigned int, 6> srateNums {
#endif #endif
// $0 = temp file name // $0 = temp file name
// TODO try -ffunction-sections -fdata-sections -Wl,--gc-sections
const char *makefile_text_h7 = const char *makefile_text_h7 =
#ifdef STMDSP_WIN32 #ifdef STMDSP_WIN32
"echo off" NEWLINE "echo off" NEWLINE
@ -48,7 +49,7 @@ const char *makefile_text_l4 =
#endif #endif
"arm-none-eabi-g++ -x c++ -Os -std=c++20 -fno-exceptions -fno-rtti " "arm-none-eabi-g++ -x c++ -Os -std=c++20 -fno-exceptions -fno-rtti "
"-mcpu=cortex-m4 -mthumb -mfloat-abi=hard -mfpu=fpv4-sp-d16 -mtune=cortex-m4 " "-mcpu=cortex-m4 -mthumb -mfloat-abi=hard -mfpu=fpv4-sp-d16 -mtune=cortex-m4 "
"-nostartfiles " "-nostartfiles -I$1/cmsis"
"-Wl,-Ttext-segment=0x10000000 -Wl,-zmax-page-size=512 -Wl,-eprocess_data_entry " "-Wl,-Ttext-segment=0x10000000 -Wl,-zmax-page-size=512 -Wl,-eprocess_data_entry "
"$0 -o $0.o" NEWLINE "$0 -o $0.o" NEWLINE
COPY " $0.o $0.orig.o" NEWLINE COPY " $0.o $0.orig.o" NEWLINE

@ -46,15 +46,19 @@ void MainFrame::onRunStart(wxCommandEvent& ce)
if (!m_is_running) { if (!m_is_running) {
if (m_run_measure->IsChecked()) { if (m_run_measure->IsChecked()) {
m_device->continuous_start_measure(); m_device->continuous_start_measure();
m_measure_timer->StartOnce(1000); m_timer_performance->StartOnce(1000);
} else { } else {
if (m_device->is_siggening() && m_wav_clip) { if (m_device->is_siggening() && m_wav_clip) {
m_measure_timer->Start(m_device->get_buffer_size() * 500 / // TODO Confirm need for factor of 500
m_timer_wavclip->Start(m_device->get_buffer_size() * 500 /
srateNums[m_rate_select->GetSelection()]); srateNums[m_rate_select->GetSelection()]);
} else if (m_conv_result_log) { } else if (m_conv_result_log) {
m_measure_timer->Start(15); m_timer_record->Start(m_device->get_buffer_size() /
srateNums[m_rate_select->GetSelection()] *
800 / 1000);
} else if (m_run_draw_samples->IsChecked()) { } else if (m_run_draw_samples->IsChecked()) {
m_measure_timer->Start(300); m_timer_record->Start(m_device->get_buffer_size() /
srateNums[m_rate_select->GetSelection()]);
} }
m_device->continuous_start(); m_device->continuous_start();
@ -66,7 +70,9 @@ void MainFrame::onRunStart(wxCommandEvent& ce)
m_is_running = true; m_is_running = true;
} else { } else {
m_device->continuous_stop(); m_device->continuous_stop();
m_measure_timer->Stop(); m_timer_performance->Stop();
m_timer_record->Stop();
m_timer_wavclip->Stop();
m_rate_select->Enable(true); m_rate_select->Enable(true);
menuItem->SetItemLabel("&Start"); menuItem->SetItemLabel("&Start");

@ -99,6 +99,9 @@ static unsigned char elf_file_store[MAX_ELF_FILE_SIZE];
__attribute__((section(".convdata"))) __attribute__((section(".convdata")))
static ELF::Entry elf_entry = nullptr; static ELF::Entry elf_entry = nullptr;
static char userMessageBuffer[128];
static unsigned char userMessageSize = 0;
__attribute__((section(".convcode"))) __attribute__((section(".convcode")))
static void conversion_unprivileged_main(); static void conversion_unprivileged_main();
@ -187,6 +190,7 @@ THD_FUNCTION(communicationThread, arg)
// 'S' - Stop conversion. // 'S' - Stop conversion.
// 's' - Get latest block of conversion results. // 's' - Get latest block of conversion results.
// 't' - Get latest block of conversion input. // 't' - Get latest block of conversion input.
// 'u' - Get user message.
// 'W' - Start signal generator (siggen). // 'W' - Start signal generator (siggen).
// 'w' - Stop siggen. // 'w' - Stop siggen.
@ -361,6 +365,10 @@ THD_FUNCTION(communicationThread, arg)
} }
break; break;
case 'u':
USBSerial::write(reinterpret_cast<uint8_t *>(userMessageBuffer), userMessageSize);
break;
case 'W': case 'W':
DAC::start(1, samplesSigGen.data(), samplesSigGen.size()); DAC::start(1, samplesSigGen.data(), samplesSigGen.size());
break; break;
@ -648,6 +656,17 @@ void port_syscall(struct port_extctx *ctxp, uint32_t n)
case 3: case 3:
ctxp->r0 = ADC::readAlt(0); ctxp->r0 = ADC::readAlt(0);
break; break;
case 4:
{
const char *str = reinterpret_cast<const char *>(ctxp->r0);
auto src = str;
auto dst = userMessageBuffer;
while (*src)
*dst++ = *src++;
*dst = '\0';
userMessageSize = src - str;
}
break;
default: default:
while (1); while (1);
break; break;

Loading…
Cancel
Save