diff options
author | Clyne Sullivan <clyne@bitgloo.com> | 2025-01-29 21:34:25 -0500 |
---|---|---|
committer | Clyne Sullivan <clyne@bitgloo.com> | 2025-01-29 21:34:25 -0500 |
commit | 5b81bc8ccbd342b8566d88fc9f17a73aec03b5b6 (patch) | |
tree | cc57486912cfa74c6440d8b97c28f451ec787d78 /Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cholesky_f16.c |
initial commit
Diffstat (limited to 'Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cholesky_f16.c')
-rw-r--r-- | Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cholesky_f16.c | 256 |
1 files changed, 256 insertions, 0 deletions
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cholesky_f16.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cholesky_f16.c new file mode 100644 index 0000000..9c8acef --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cholesky_f16.c @@ -0,0 +1,256 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_mat_cholesky_f16.c + * Description: Floating-point Cholesky decomposition + * + * $Date: 23 April 2021 + * $Revision: V1.9.0 + * + * Target Processor: Cortex-M and Cortex-A cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "dsp/matrix_functions_f16.h" + +#if defined(ARM_FLOAT16_SUPPORTED) + +/** + @ingroup groupMatrix + */ + +/** + @addtogroup MatrixChol + @{ + */ + +/** + * @brief Floating-point Cholesky decomposition of positive-definite matrix. + * @param[in] pSrc points to the instance of the input floating-point matrix structure. + * @param[out] pDst points to the instance of the output floating-point matrix structure. + * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. + * @return execution status + - \ref ARM_MATH_SUCCESS : Operation successful + - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed + - \ref ARM_MATH_DECOMPOSITION_FAILURE : Input matrix cannot be decomposed + * @par + * If the matrix is ill conditioned or only semi-definite, then it is better using the LDL^t decomposition. + * The decomposition of A is returning a lower triangular matrix U such that A = U U^t + */ + +#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE) + +#include "arm_helium_utils.h" + +arm_status arm_mat_cholesky_f16( + const arm_matrix_instance_f16 * pSrc, + arm_matrix_instance_f16 * pDst) +{ + + arm_status status; /* status of matrix inverse */ + + +#ifdef ARM_MATH_MATRIX_CHECK + + /* Check for matrix mismatch condition */ + if ((pSrc->numRows != pSrc->numCols) || + (pDst->numRows != pDst->numCols) || + (pSrc->numRows != pDst->numRows) ) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else + +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + + { + int i,j,k; + int n = pSrc->numRows; + _Float16 invSqrtVj; + float16_t *pA,*pG; + int kCnt; + + mve_pred16_t p0; + + f16x8_t acc, acc0, acc1, acc2, acc3; + f16x8_t vecGi; + f16x8_t vecGj,vecGj0,vecGj1,vecGj2,vecGj3; + + + pA = pSrc->pData; + pG = pDst->pData; + + for(i=0 ;i < n ; i++) + { + for(j=i ; j+3 < n ; j+=4) + { + acc0 = vdupq_n_f16(0.0f16); + acc0[0]=pA[(j + 0) * n + i]; + + acc1 = vdupq_n_f16(0.0f16); + acc1[0]=pA[(j + 1) * n + i]; + + acc2 = vdupq_n_f16(0.0f16); + acc2[0]=pA[(j + 2) * n + i]; + + acc3 = vdupq_n_f16(0.0f16); + acc3[0]=pA[(j + 3) * n + i]; + + kCnt = i; + for(k=0; k < i ; k+=8) + { + p0 = vctp16q(kCnt); + + vecGi=vldrhq_z_f16(&pG[i * n + k],p0); + + vecGj0=vldrhq_z_f16(&pG[(j + 0) * n + k],p0); + vecGj1=vldrhq_z_f16(&pG[(j + 1) * n + k],p0); + vecGj2=vldrhq_z_f16(&pG[(j + 2) * n + k],p0); + vecGj3=vldrhq_z_f16(&pG[(j + 3) * n + k],p0); + + acc0 = vfmsq_m(acc0, vecGi, vecGj0, p0); + acc1 = vfmsq_m(acc1, vecGi, vecGj1, p0); + acc2 = vfmsq_m(acc2, vecGi, vecGj2, p0); + acc3 = vfmsq_m(acc3, vecGi, vecGj3, p0); + + kCnt -= 8; + } + pG[(j + 0) * n + i] = vecAddAcrossF16Mve(acc0); + pG[(j + 1) * n + i] = vecAddAcrossF16Mve(acc1); + pG[(j + 2) * n + i] = vecAddAcrossF16Mve(acc2); + pG[(j + 3) * n + i] = vecAddAcrossF16Mve(acc3); + } + + for(; j < n ; j++) + { + + kCnt = i; + acc = vdupq_n_f16(0.0f16); + acc[0] = pA[j * n + i]; + + for(k=0; k < i ; k+=8) + { + p0 = vctp16q(kCnt); + + vecGi=vldrhq_z_f16(&pG[i * n + k],p0); + vecGj=vldrhq_z_f16(&pG[j * n + k],p0); + + acc = vfmsq_m(acc, vecGi, vecGj,p0); + + kCnt -= 8; + } + pG[j * n + i] = vecAddAcrossF16Mve(acc); + } + + if ((_Float16)pG[i * n + i] <= 0.0f16) + { + return(ARM_MATH_DECOMPOSITION_FAILURE); + } + + invSqrtVj = 1.0f16/(_Float16)sqrtf((float32_t)pG[i * n + i]); + for(j=i; j < n ; j++) + { + pG[j * n + i] = (_Float16)pG[j * n + i] * (_Float16)invSqrtVj ; + } + } + + status = ARM_MATH_SUCCESS; + + } + + + /* Return to application */ + return (status); +} + +#else +arm_status arm_mat_cholesky_f16( + const arm_matrix_instance_f16 * pSrc, + arm_matrix_instance_f16 * pDst) +{ + + arm_status status; /* status of matrix inverse */ + + +#ifdef ARM_MATH_MATRIX_CHECK + + /* Check for matrix mismatch condition */ + if ((pSrc->numRows != pSrc->numCols) || + (pDst->numRows != pDst->numCols) || + (pSrc->numRows != pDst->numRows) ) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else + +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + + { + int i,j,k; + int n = pSrc->numRows; + float16_t invSqrtVj; + float16_t *pA,*pG; + + pA = pSrc->pData; + pG = pDst->pData; + + + for(i=0 ; i < n ; i++) + { + for(j=i ; j < n ; j++) + { + pG[j * n + i] = pA[j * n + i]; + + for(k=0; k < i ; k++) + { + pG[j * n + i] = (_Float16)pG[j * n + i] - (_Float16)pG[i * n + k] * (_Float16)pG[j * n + k]; + } + } + + if ((_Float16)pG[i * n + i] <= 0.0f16) + { + return(ARM_MATH_DECOMPOSITION_FAILURE); + } + + /* The division is done in float32 for accuracy reason and + because doing it in f16 would not have any impact on the performances. + */ + invSqrtVj = 1.0f/sqrtf((float32_t)pG[i * n + i]); + for(j=i ; j < n ; j++) + { + pG[j * n + i] = (_Float16)pG[j * n + i] * (_Float16)invSqrtVj ; + } + } + + status = ARM_MATH_SUCCESS; + + } + + + /* Return to application */ + return (status); +} + +#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */ + +/** + @} end of MatrixChol group + */ +#endif /* #if defined(ARM_FLOAT16_SUPPORTED) */ |