summaryrefslogtreecommitdiffstats
path: root/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cholesky_f16.c
blob: 9c8acef67e4eb925bc6d2ce5bfaed28725a158ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
/* ----------------------------------------------------------------------
 * Project:      CMSIS DSP Library
 * Title:        arm_mat_cholesky_f16.c
 * Description:  Floating-point Cholesky decomposition
 *
 * $Date:        23 April 2021
 * $Revision:    V1.9.0
 *
 * Target Processor: Cortex-M and Cortex-A cores
 * -------------------------------------------------------------------- */
/*
 * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "dsp/matrix_functions_f16.h"

#if defined(ARM_FLOAT16_SUPPORTED)

/**
  @ingroup groupMatrix
 */

/**
  @addtogroup MatrixChol
  @{
 */

/**
   * @brief Floating-point Cholesky decomposition of positive-definite matrix.
   * @param[in]  pSrc   points to the instance of the input floating-point matrix structure.
   * @param[out] pDst   points to the instance of the output floating-point matrix structure.
   * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
   * @return        execution status
                   - \ref ARM_MATH_SUCCESS       : Operation successful
                   - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
                   - \ref ARM_MATH_DECOMPOSITION_FAILURE      : Input matrix cannot be decomposed
   * @par
   * If the matrix is ill conditioned or only semi-definite, then it is better using the LDL^t decomposition.
   * The decomposition of A is returning a lower triangular matrix U such that A = U U^t
   */

#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)

#include "arm_helium_utils.h"

arm_status arm_mat_cholesky_f16(
  const arm_matrix_instance_f16 * pSrc,
        arm_matrix_instance_f16 * pDst)
{

  arm_status status;                             /* status of matrix inverse */


#ifdef ARM_MATH_MATRIX_CHECK

  /* Check for matrix mismatch condition */
  if ((pSrc->numRows != pSrc->numCols) ||
      (pDst->numRows != pDst->numCols) ||
      (pSrc->numRows != pDst->numRows)   )
  {
    /* Set status as ARM_MATH_SIZE_MISMATCH */
    status = ARM_MATH_SIZE_MISMATCH;
  }
  else

#endif /* #ifdef ARM_MATH_MATRIX_CHECK */

  {
    int i,j,k;
    int n = pSrc->numRows;
    _Float16 invSqrtVj;
    float16_t *pA,*pG;
    int kCnt;

    mve_pred16_t p0;

    f16x8_t acc, acc0, acc1, acc2, acc3;
    f16x8_t vecGi;
    f16x8_t vecGj,vecGj0,vecGj1,vecGj2,vecGj3;


    pA = pSrc->pData;
    pG = pDst->pData;
    
    for(i=0 ;i < n ; i++)
    {
       for(j=i ; j+3 < n ; j+=4)
       {
          acc0 = vdupq_n_f16(0.0f16);
          acc0[0]=pA[(j + 0) * n + i];

          acc1 = vdupq_n_f16(0.0f16);
          acc1[0]=pA[(j + 1) * n + i];

          acc2 = vdupq_n_f16(0.0f16);
          acc2[0]=pA[(j + 2) * n + i];

          acc3 = vdupq_n_f16(0.0f16);
          acc3[0]=pA[(j + 3) * n + i];

          kCnt = i;
          for(k=0; k < i ; k+=8)
          {
             p0 = vctp16q(kCnt);

             vecGi=vldrhq_z_f16(&pG[i * n + k],p0);
             
             vecGj0=vldrhq_z_f16(&pG[(j + 0) * n + k],p0);
             vecGj1=vldrhq_z_f16(&pG[(j + 1) * n + k],p0);
             vecGj2=vldrhq_z_f16(&pG[(j + 2) * n + k],p0);
             vecGj3=vldrhq_z_f16(&pG[(j + 3) * n + k],p0);

             acc0 = vfmsq_m(acc0, vecGi, vecGj0, p0);
             acc1 = vfmsq_m(acc1, vecGi, vecGj1, p0);
             acc2 = vfmsq_m(acc2, vecGi, vecGj2, p0);
             acc3 = vfmsq_m(acc3, vecGi, vecGj3, p0);

             kCnt -= 8;
          }
          pG[(j + 0) * n + i] = vecAddAcrossF16Mve(acc0);
          pG[(j + 1) * n + i] = vecAddAcrossF16Mve(acc1);
          pG[(j + 2) * n + i] = vecAddAcrossF16Mve(acc2);
          pG[(j + 3) * n + i] = vecAddAcrossF16Mve(acc3);
       }

       for(; j < n ; j++)
       {

          kCnt = i;
          acc = vdupq_n_f16(0.0f16);
          acc[0] = pA[j * n + i];

          for(k=0; k < i ; k+=8)
          {
             p0 = vctp16q(kCnt);

             vecGi=vldrhq_z_f16(&pG[i * n + k],p0);
             vecGj=vldrhq_z_f16(&pG[j * n + k],p0);

             acc = vfmsq_m(acc, vecGi, vecGj,p0);

             kCnt -= 8;
          }
          pG[j * n + i] = vecAddAcrossF16Mve(acc);
       }

       if ((_Float16)pG[i * n + i] <= 0.0f16)
       {
         return(ARM_MATH_DECOMPOSITION_FAILURE);
       }

       invSqrtVj = 1.0f16/(_Float16)sqrtf((float32_t)pG[i * n + i]);
       for(j=i; j < n ; j++)
       {
         pG[j * n + i] = (_Float16)pG[j * n + i] * (_Float16)invSqrtVj ;
       }
    }

    status = ARM_MATH_SUCCESS;

  }

  
  /* Return to application */
  return (status);
}

#else
arm_status arm_mat_cholesky_f16(
  const arm_matrix_instance_f16 * pSrc,
        arm_matrix_instance_f16 * pDst)
{

  arm_status status;                             /* status of matrix inverse */


#ifdef ARM_MATH_MATRIX_CHECK

  /* Check for matrix mismatch condition */
  if ((pSrc->numRows != pSrc->numCols) ||
      (pDst->numRows != pDst->numCols) ||
      (pSrc->numRows != pDst->numRows)   )
  {
    /* Set status as ARM_MATH_SIZE_MISMATCH */
    status = ARM_MATH_SIZE_MISMATCH;
  }
  else

#endif /* #ifdef ARM_MATH_MATRIX_CHECK */

  {
    int i,j,k;
    int n = pSrc->numRows;
    float16_t invSqrtVj;
    float16_t *pA,*pG;

    pA = pSrc->pData;
    pG = pDst->pData;
    

    for(i=0 ; i < n ; i++)
    {
       for(j=i ; j < n ; j++)
       {
          pG[j * n + i] = pA[j * n + i];

          for(k=0; k < i ; k++)
          {
             pG[j * n + i] = (_Float16)pG[j * n + i] - (_Float16)pG[i * n + k] * (_Float16)pG[j * n + k];
          }
       }

       if ((_Float16)pG[i * n + i] <= 0.0f16)
       {
         return(ARM_MATH_DECOMPOSITION_FAILURE);
       }

       /* The division is done in float32 for accuracy reason and
       because doing it in f16 would not have any impact on the performances.
       */
       invSqrtVj = 1.0f/sqrtf((float32_t)pG[i * n + i]);
       for(j=i ; j < n ; j++)
       {
         pG[j * n + i] = (_Float16)pG[j * n + i] * (_Float16)invSqrtVj ;
       }
    }

    status = ARM_MATH_SUCCESS;

  }

  
  /* Return to application */
  return (status);
}

#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */

/**
  @} end of MatrixChol group
 */
#endif /* #if defined(ARM_FLOAT16_SUPPORTED) */