summaryrefslogtreecommitdiffstats
path: root/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_f16.c
diff options
context:
space:
mode:
Diffstat (limited to 'Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_f16.c')
-rw-r--r--Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_f16.c763
1 files changed, 763 insertions, 0 deletions
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_f16.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_f16.c
new file mode 100644
index 0000000..3d3e820
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_f16.c
@@ -0,0 +1,763 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_mat_mult_f16.c
+ * Description: Floating-point matrix multiplication
+ *
+ * $Date: 23 April 2021
+ * $Revision: V1.9.0
+ *
+ * Target Processor: Cortex-M and Cortex-A cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "dsp/matrix_functions_f16.h"
+
+#if defined(ARM_FLOAT16_SUPPORTED)
+
+
+/**
+ * @ingroup groupMatrix
+ */
+
+
+/**
+ * @addtogroup MatrixMult
+ * @{
+ */
+
+/**
+ * @brief Floating-point matrix multiplication.
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+
+#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
+
+__STATIC_FORCEINLINE arm_status arm_mat_mult_f16_2x2_mve(
+ const arm_matrix_instance_f16 *pSrcA,
+ const arm_matrix_instance_f16 *pSrcB,
+ arm_matrix_instance_f16 *pDst)
+{
+ static const uint16_t offsetA[8] = { 0, 0, 2, 2, 0, 0, 2, 2 };
+ /* offsetB allows to read and duplicate 1 row of B */
+ static const uint16_t offsetB[8] = { 0, 1, 0, 1, 0, 1, 0, 1 };
+ uint16x8_t vecOffsA, vecOffsB;
+ f16x8_t vecInA, vecInB, vecDst;
+ float16_t *pOut = pDst->pData; /* output data matrix pointer */
+
+ /*
+ * load initial offsets
+ */
+ vecOffsA = vldrhq_u16((uint16_t const *) offsetA);
+ vecOffsB = vldrhq_u16((uint16_t const *) offsetB);
+ /*
+ * load {a00 a00 a10 a10 x x x x }
+ */
+ vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
+ /*
+ * load {b00 b01 b00 b01 x x x x }
+ */
+ vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB);
+ /*
+ * { a00 b00 a00 b01
+ * a10 b00 a10 b01
+ * x x
+ * x x }
+ */
+ vecDst = vmulq(vecInA, vecInB);
+ /*
+ * move to 2nd column of matrix A
+ */
+ vecOffsA = vaddq_n_u16(vecOffsA, (uint16_t) 1);
+ /*
+ * load {a01 a01 a11 a11 x x x x}
+ */
+ vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
+ /*
+ * move to next B row
+ */
+ vecOffsB = vaddq_n_u16(vecOffsB, (uint16_t) 2);
+ /*
+ * load {b10, b11, b10, b11, x x x x }
+ */
+ vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB);
+ /*
+ * { a00 b00 + a01 b10 a00 b01 + a01 b11
+ * a10 b00 + a11 b10 a10 b01 + a11 b11
+ * x x
+ * x x }
+ */
+ vecDst = vfmaq(vecDst, vecInA, vecInB);
+
+ mve_pred16_t p0 = vctp16q(2*2);
+ /*
+ * Store the result in the destination buffer
+ * (lower half of the vector)
+ */
+ vstrhq_p(pOut, vecDst, p0);
+
+ return (ARM_MATH_SUCCESS);
+}
+
+
+
+
+__STATIC_FORCEINLINE arm_status arm_mat_mult_f16_3x3_mve(
+ const arm_matrix_instance_f16 *pSrcA,
+ const arm_matrix_instance_f16 *pSrcB,
+ arm_matrix_instance_f16 *pDst)
+{
+ static const uint16_t offsetA[8] = { 0, 0, 0, 3, 3, 3, 6, 6 };
+ /* offsetB allows to read and duplicate 1 row of B */
+ static const uint16_t offsetB[8] = { 0, 1, 2, 0, 1, 2, 0, 1 };
+ uint16x8_t vecOffsA, vecOffsB;
+ f16x8_t vecInA, vecInB, vecDst;
+ float16_t *pOut = pDst->pData; /* output data matrix pointer */
+
+ /*
+ * load initial offsets
+ */
+ vecOffsA = vldrhq_u16((uint16_t const *) offsetA);
+ vecOffsB = vldrhq_u16((uint16_t const *) offsetB);
+
+ /*
+ * load {a00 a00 a00 a10 a10 a10 a20 a20}
+ */
+ vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
+ /*
+ * load {b00 b01 b02 b00 b01 b02 b00 b01}
+ */
+ vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB);
+ /*
+ * { a00 b00 a00 b01 a00 b02
+ * a10 b00 a10 b01 a10 b02
+ * a20 b00 a20 b01}
+ */
+ vecDst = vmulq(vecInA, vecInB);
+
+ /*
+ * move to 2nd column of matrix A
+ */
+ vecOffsA = vaddq_n_u16(vecOffsA, (uint16_t) 1);
+ /*
+ * load {a01 a01 a01 a11 a11 a11 a21 a21}
+ */
+ vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
+ /*
+ * move to next B row
+ */
+ vecOffsB = vaddq_n_u16(vecOffsB, (uint16_t) 3);
+ /*
+ * load {b10, b11, b12, b10, b11, b12, b10, b11}
+ */
+ vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB);
+ /*
+ * { a00 b00 + a01 b10 a00 b01 + a01 b11 a00 b02 + a01 b12
+ * a10 b00 + a11 b10 a10 b01 + a11 b11 a10 b02 + a11 b12
+ * a20 b00 + a21 b10 a20 b01 + a21 b11 }
+ */
+ vecDst = vfmaq(vecDst, vecInA, vecInB);
+ /*
+ * move to 3rd column of matrix A
+ */
+ vecOffsA = vaddq_n_u16(vecOffsA, (uint16_t) 1);
+ /*
+ * load {a02 a02 a02 a12 a12 a12 a22 a22}
+ */
+ vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
+ /*
+ * move to next B row
+ */
+ vecOffsB = vaddq_n_u16(vecOffsB, (uint16_t) 3);
+ /*
+ * load {b20, b21, b22, b20, b21, b22, b20, b21}
+ */
+ vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB);
+ /*
+ * {a00 b00 + a01 b10 + a02 b20 a00 b01 + a01 b11 + a02 b21 a00 b02 + a01 b12 + a02 b22},
+ * a10 b00 + a11 b10 + a12 b20 a10 b01 + a11 b11 + a12 b21 a10 b02 + a11 b12 + a12 b22},
+ * a20 b00 + a21 b10 + a22 b20 a20 b01 + a21 b11 + a22 b21 }
+ */
+ vecDst = vfmaq(vecDst, vecInA, vecInB);
+
+ /*
+ * Store the result in the destination buffer
+ */
+ vst1q(pOut, vecDst); pOut += 8;
+
+ /* last element computed in scalar mode
+ * a20 b02 + a21 b12 + a22 b22
+ */
+ _Float16 * pA = (_Float16 *)pSrcA->pData;
+ _Float16 * pB = (_Float16 *)pSrcB->pData;
+ *pOut = pA[2*3] * pB[2] + pA[2*3+1] * pB[3+2] + pA[2*3+2] * pB[2*3+2];
+
+ return (ARM_MATH_SUCCESS);
+}
+
+
+
+
+
+__STATIC_FORCEINLINE arm_status arm_mat_mult_f16_4x4_mve(
+ const arm_matrix_instance_f16 *pSrcA,
+ const arm_matrix_instance_f16 *pSrcB,
+ arm_matrix_instance_f16 *pDst)
+{
+ /* offsetA allows to read and duplicate 2 successive column elements of A */
+ static const uint16_t offsetA[8] = { 0, 0, 0, 0, 4, 4, 4, 4 };
+ /* offsetB allows to read and duplicate 1 row of B */
+ static const uint16_t offsetB[8] = { 0, 1, 2, 3, 0, 1, 2, 3 };
+ uint16x8_t vecOffsA, vecOffsB;
+ f16x8_t vecInA, vecInB, vecDst0, vecDst1;
+ float16_t *pOut = pDst->pData; /* output data matrix pointer */
+
+ /*
+ * load initial offsets
+ */
+ vecOffsA = vldrhq_u16((uint16_t const *) offsetA);
+ vecOffsB = vldrhq_u16((uint16_t const *) offsetB);
+
+ /*
+ * load {a00 a00 a00 a00 a10 a10 a10 a10}
+ */
+ vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
+ /*
+ * load {b00 b01 b02 b03 b00 b01 b02 b03}
+ */
+ vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB);
+ /*
+ * { a00 b00 a00 b01 a00 b02 a00 b03
+ * a10 b00 a10 b01 a10 b02 a10 b03 }
+ */
+ vecDst0 = vmulq(vecInA, vecInB);
+ /*
+ * jump 2 x A rows (2nd half of matrix)
+ */
+ vecOffsA = vaddq_n_u16(vecOffsA, (uint16_t) 8);
+ /*
+ * load {a20 a20 a20 a20 a30 a30 a30 a30}
+ */
+ vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
+ /*
+ * { a20 b00 a20 b01 a20 b02 a20 b03
+ * a30 b00 a30 b01 a30 b02 + a31 b12 }
+ */
+ vecDst1 = vmulq(vecInA, vecInB);
+ /*
+ * rewind back to top half of the A matrix (2nd column)
+ */
+ vecOffsA = vsubq(vecOffsA, (uint16_t) 7);
+ /*
+ * load {a01 a01 a01 a01 a11 a11 a11 a11}
+ */
+ vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
+ /*
+ * move to next B row
+ */
+ vecOffsB = vaddq_n_u16(vecOffsB, (uint16_t) 4);
+ /*
+ * load {b10, b11, b12, b13, b10, b11, b12, b13}
+ */
+ vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB);
+ /*
+ * { a00 b00 + a01 b10 a00 b01 + a01 b11 a00 b02 + a01 b12 a00 b03 + a01 b13
+ * a10 b00 + a11 b10 a10 b01 + a11 b11 a10 b02 + a11 b12 a10 b03 + a11 b13 }
+ */
+ vecDst0 = vfmaq(vecDst0, vecInA, vecInB);
+ /*
+ * jump 2 x A rows (2nd half of matrix)
+ */
+ vecOffsA = vaddq_n_u16(vecOffsA, (uint16_t) 8);
+ /*
+ * load {a21 a21 a21 a21 a31 a31 a31 a31}
+ */
+ vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
+ /*
+ * {a20 b00 + a21 b10 a20 b01 + a21 b11 a20 b02 + a21 b12 a20 b03 + a21 b13
+ * a30 b00 + a31 b10 a30 b01 + a31 b11 a30 b02 + a31 b12 a30 b03 + a31 b13 }
+ */
+ vecDst1 = vfmaq(vecDst1, vecInA, vecInB);
+
+ /*
+ * rewind back to top half of the A matrix (3rd column)
+ */
+ vecOffsA = vsubq(vecOffsA, (uint16_t) 7);
+ /*
+ * load {a02 a02 a02 a02 a12 a12 a12 a12}
+ */
+ vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
+ /*
+ * move to next B row
+ */
+ vecOffsB = vaddq_n_u16(vecOffsB, (uint16_t) 4);
+ /*
+ * load {b20, b21, b22, b23, b20, b21, b22, b23}
+ */
+ vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB);
+ /*
+ * { a00 b00 + a01 b10 + a02 b20 a00 b01 + a01 b11 + a02 b21 a00 b02 + a01 b12 + a02 b22 a00 b03 + a01 b13 + a02 b23
+ * a10 b00 + a11 b10 + a12 b20 a10 b01 + a11 b11 + a12 b21 a10 b02 + a11 b12 + a12 b22 a10 b03 + a11 b13 + a12 b23 }
+ */
+ vecDst0 = vfmaq(vecDst0, vecInA, vecInB);
+ /*
+ * jump 2 x A rows
+ */
+ vecOffsA = vaddq_n_u16(vecOffsA, (uint16_t) 8);
+
+ /*
+ * load {a22 a22 a22 a22 a32 a32 a32 a32}
+ */
+ vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
+ /*
+ * {a20 b00 + a21 b10 + a22 b20 a20 b01 + a21 b11 + a22 b21 a20 b02 + a21 b12 + a22 b22 a20 b03 + a21 b13 + a22 b23
+ * a30 b00 + a31 b10 + a32 b20 a30 b01 + a31 b11 + a32 b21 a30 b02 + a31 b12 + a32 b22 a30 b03 + a31 b13 + a32 b23 }
+ */
+ vecDst1 = vfmaq(vecDst1, vecInA, vecInB);
+
+ /*
+ * rewind back to top half of the A matrix (4th column)
+ */
+ vecOffsA = vsubq(vecOffsA, (uint16_t) 7);
+ /*
+ * load {a03 a03 a03 a03 a13 a13 a13 a13}
+ */
+ vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
+ /*
+ * move to next B row
+ */
+ vecOffsB = vaddq_n_u16(vecOffsB, (uint16_t) 4);
+ /*
+ * load {b30, b31, b32, b33, b30, b31, b32, b33}
+ */
+ vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB);
+ /*
+ * { a00 b00 +...+ a03 b30, a00 b01 +...+ a03 b31, a00 b02 +...+ a03 b32, a00 b03 +...+ a03 b33
+ * a10 b00 +...+ a13 b30, a10 b01 +...+ a13 b31, a10 b02 +...+ a13 b32, a10 b03 +...+ a13 b33 }
+ */
+ vecDst0 = vfmaq(vecDst0, vecInA, vecInB);
+ /*
+ * jump 2 x A rows
+ */
+ vecOffsA = vaddq_n_u16(vecOffsA, (uint16_t) 8);
+ /*
+ * load {a23 a23 a23 a23 a33 a33 a33 a33}
+ */
+ vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
+ /*
+ * {a20 b00 +...+ a23 b30, a20 b01 +...+ a23 b31, a20 b02 +...+ a23 b32, a20 b03 +...+ a23 b33
+ * a30 b00 +...+ a33 b30, a30 b01 +...+ a33 b31, a30 b02 +...+ a33 b32, a30 b03 +...+ a33 b33 }
+ */
+ vecDst1 = vfmaq(vecDst1, vecInA, vecInB);
+
+ /*
+ * Store the result in the destination buffer
+ */
+ vst1q(pOut, vecDst0); pOut += 8;
+ vst1q(pOut, vecDst1);
+
+ return (ARM_MATH_SUCCESS);
+}
+
+
+arm_status arm_mat_mult_f16(
+ const arm_matrix_instance_f16 * pSrcA,
+ const arm_matrix_instance_f16 * pSrcB,
+ arm_matrix_instance_f16 * pDst)
+{
+ float16_t *pInB = pSrcB->pData; /* input data matrix pointer B */
+ float16_t *pInA = pSrcA->pData; /* input data matrix pointer A */
+ float16_t *pOut = pDst->pData; /* output data matrix pointer */
+ int numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
+ int numColsB = pSrcB->numCols; /* number of columns of input matrix B */
+ int numColsA = pSrcA->numCols; /* number of columns of input matrix A */
+ uint32_t blkCnt; /* loop counters */
+ int i;
+
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrcA->numCols != pSrcB->numRows) ||
+ (pSrcA->numRows != pDst->numRows) ||
+ (pSrcB->numCols != pDst->numCols) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ return(ARM_MATH_SIZE_MISMATCH);
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+{
+ /* small squared matrix specialized routines */
+ if(numRowsA == numColsB && numColsB == numColsA) {
+ if(numRowsA == 2)
+ return arm_mat_mult_f16_2x2_mve(pSrcA, pSrcB, pDst);
+ else if(numRowsA == 3)
+ return arm_mat_mult_f16_3x3_mve(pSrcA, pSrcB, pDst);
+ else if(numRowsA == 4)
+ return arm_mat_mult_f16_4x4_mve(pSrcA, pSrcB, pDst);
+ }
+
+ /* main loop process 4 rows */
+ i = numRowsA / 4;
+ while(i > 0)
+ {
+ float16_t *pInA0, *pInA1, *pInA2, *pInA3;
+ float16_t *pInB0;
+ float16_t *pOut0, *pOut1, *pOut2, *pOut3;
+ f16x8_t vecMac0, vecMac1, vecMac2, vecMac3;
+ f16x8_t vecInB;
+
+ /* pointers to 4 consecutive output rows */
+ pOut0 = pOut;
+ pOut1 = pOut0 + numColsB;
+ pOut2 = pOut1 + numColsB;
+ pOut3 = pOut2 + numColsB;
+ pInB0 = pInB;
+
+ int k = numColsB >> 3;
+ while(k > 0)
+ {
+ /* pointers to 4 consecutive Matrix A rows */
+ pInA0 = pInA;
+ pInA1 = pInA0 + numColsA;
+ pInA2 = pInA1 + numColsA;
+ pInA3 = pInA2 + numColsA;
+
+ vecMac0 = vdupq_n_f16(0.0f16);
+ vecMac1 = vdupq_n_f16(0.0f16);
+ vecMac2 = vdupq_n_f16(0.0f16);
+ vecMac3 = vdupq_n_f16(0.0f16);
+
+ blkCnt = numColsA;
+
+ while (blkCnt > 0U)
+ {
+ /*
+ * load {bi,4n+0, bi,4n+1, bi,4n+2, bi,4n+3..., bi,4n+7}
+ */
+ vecInB = *(f16x8_t *)pInB0; /* vldrhq_f16(pInB0, 0); */
+
+ vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
+ vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
+ vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
+ vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++);
+
+ pInB0 = pInB0 + numColsB;
+ /*
+ * Decrement the blockSize loop counter
+ */
+ blkCnt--;
+ }
+
+ /* Store the results (4 x 8 block) in the destination buffer */
+ vst1q(pOut0, vecMac0); pOut0 += 8;
+ vst1q(pOut1, vecMac1); pOut1 += 8;
+ vst1q(pOut2, vecMac2); pOut2 += 8;
+ vst1q(pOut3, vecMac3); pOut3 += 8;
+ /*
+ * rewind
+ */
+ pInB0 -= (numColsB * numColsA) - 8;
+ k--;
+ }
+
+ int colBLeft = numColsB & 7;
+ if (colBLeft)
+ {
+ pInA0 = pInA;
+ pInA1 = pInA0 + numColsA;
+ pInA2 = pInA1 + numColsA;
+ pInA3 = pInA2 + numColsA;
+ mve_pred16_t p0 = vctp16q(colBLeft);
+
+ vecMac0 = vdupq_n_f16(0.0f16);
+ vecMac1 = vdupq_n_f16(0.0f16);
+ vecMac2 = vdupq_n_f16(0.0f16);
+ vecMac3 = vdupq_n_f16(0.0f16);
+
+ blkCnt = numColsA;
+
+ while (blkCnt > 0U)
+ {
+ /*
+ * load {bi,4n+0, bi,4n+1, bi,4n+2, ..bi,4n+colBLeft-1, 0, ..}
+ */
+ vecInB = vldrhq_z_f16(pInB0, p0);
+
+ vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
+ vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
+ vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
+ vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++);
+
+ pInB0 = pInB0 + numColsB;
+ /*
+ * Decrement the blockSize loop counter
+ */
+ blkCnt--;
+ }
+
+ /* Store the results (4 x colBLeft block) in the destination buffer */
+ vstrhq_p_f16(pOut0, vecMac0, p0);
+ vstrhq_p_f16(pOut1, vecMac1, p0);
+ vstrhq_p_f16(pOut2, vecMac2, p0);
+ vstrhq_p_f16(pOut3, vecMac3, p0);
+ }
+
+ pInA += 4 * numColsA;
+ pOut += 4 * numColsB;
+ i--;
+ }
+
+ /*
+ * non multiple of 4 rows for Matrix A
+ * process single row
+ */
+ if (numRowsA & 3)
+ {
+ i = numRowsA & 3;
+ do
+ {
+ float16_t *pInA0;
+ float16_t *pInB0;
+ float16_t *pOut0;
+ f16x8_t vecInB;
+ f16x8_t vecMac0;
+
+ pOut0 = pOut;
+ pInB0 = pInB;
+
+ int k = numColsB >> 3;
+ while(k > 0)
+ {
+ pInA0 = pInA;
+
+ vecMac0 = vdupq_n_f16(0.0f16);
+ blkCnt = numColsA;
+
+ while (blkCnt > 0U)
+ {
+ /*
+ * load {bi,4n+0, bi,4n+1, bi,4n+2, bi,4n+3, ...bi,4n+7}
+ */
+ vecInB = *(f16x8_t *)pInB0; /* vldrhq_f16(pInB0, 0); */
+
+ vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
+
+ pInB0 = pInB0 + numColsB;
+ /*
+ * Decrement the blockSize loop counter
+ */
+ blkCnt--;
+ }
+ /* Store the results (1 x 8 block) in the destination buffer */
+ vst1q(pOut0, vecMac0); pOut0 += 8;
+ /*
+ * rewind
+ */
+ pInB0 -= (numColsB * numColsA) - 8;
+ k--;
+ }
+
+ int colBLeft = numColsB & 7;
+ if (colBLeft)
+ {
+ pInA0 = pInA;
+ mve_pred16_t p0 = vctp16q(colBLeft);
+
+ vecMac0 = vdupq_n_f16(0.0f16);
+ blkCnt = numColsA;
+
+ while (blkCnt > 0U)
+ {
+ /*
+ * load {bi,4n+0, bi,4n+1, bi,4n+2, ..., bi,4n+colBLeft, 0, ...}
+ */
+ vecInB = vldrhq_z_f16(pInB0, p0);
+
+ vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
+
+ pInB0 = pInB0 + numColsB;
+ /*
+ * Decrement the blockSize loop counter
+ */
+ blkCnt--;
+ }
+ /* Store the results (1 x colBLeft block) in the destination buffer */
+ vstrhq_p_f16(pOut0, vecMac0, p0);
+ }
+
+ pInA += 1 * numColsA;
+ pOut += 1 * numColsB;
+ }
+ while (--i);
+ }
+ /*
+ * Return to application
+ */
+ return (ARM_MATH_SUCCESS);
+ }
+}
+#else
+
+
+arm_status arm_mat_mult_f16(
+ const arm_matrix_instance_f16 * pSrcA,
+ const arm_matrix_instance_f16 * pSrcB,
+ arm_matrix_instance_f16 * pDst)
+{
+ float16_t *pIn1 = pSrcA->pData; /* Input data matrix pointer A */
+ float16_t *pIn2 = pSrcB->pData; /* Input data matrix pointer B */
+ float16_t *pInA = pSrcA->pData; /* Input data matrix pointer A */
+ float16_t *pInB = pSrcB->pData; /* Input data matrix pointer B */
+ float16_t *pOut = pDst->pData; /* Output data matrix pointer */
+ float16_t *px; /* Temporary output data matrix pointer */
+ _Float16 sum; /* Accumulator */
+ uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
+ uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
+ uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
+ uint32_t col, i = 0U, row = numRowsA, colCnt; /* Loop counters */
+ arm_status status; /* Status of matrix multiplication */
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrcA->numCols != pSrcB->numRows) ||
+ (pSrcA->numRows != pDst->numRows) ||
+ (pSrcB->numCols != pDst->numCols) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+ /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
+ /* row loop */
+ do
+ {
+ /* Output pointer is set to starting address of row being processed */
+ px = pOut + i;
+
+ /* For every row wise process, column loop counter is to be initiated */
+ col = numColsB;
+
+ /* For every row wise process, pIn2 pointer is set to starting address of pSrcB data */
+ pIn2 = pSrcB->pData;
+
+ /* column loop */
+ do
+ {
+ /* Set the variable sum, that acts as accumulator, to zero */
+ sum = 0.0f16;
+
+ /* Initialize pointer pIn1 to point to starting address of column being processed */
+ pIn1 = pInA;
+
+#if defined (ARM_MATH_LOOPUNROLL)
+
+ /* Loop unrolling: Compute 4 MACs at a time. */
+ colCnt = numColsA >> 2U;
+
+ /* matrix multiplication */
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
+
+ /* Perform the multiply-accumulates */
+ sum += (_Float16)*pIn1++ * (_Float16)*pIn2;
+ pIn2 += numColsB;
+
+ sum += (_Float16)*pIn1++ * (_Float16)*pIn2;
+ pIn2 += numColsB;
+
+ sum += (_Float16)*pIn1++ * (_Float16)*pIn2;
+ pIn2 += numColsB;
+
+ sum += (_Float16)*pIn1++ * (_Float16)*pIn2;
+ pIn2 += numColsB;
+
+ /* Decrement loop counter */
+ colCnt--;
+ }
+
+ /* Loop unrolling: Compute remaining MACs */
+ colCnt = numColsA % 0x4U;
+
+#else
+
+ /* Initialize cntCnt with number of columns */
+ colCnt = numColsA;
+
+#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
+
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
+
+ /* Perform the multiply-accumulates */
+ sum += (_Float16)*pIn1++ * (_Float16)*pIn2;
+ pIn2 += numColsB;
+
+ /* Decrement loop counter */
+ colCnt--;
+ }
+
+ /* Store result in destination buffer */
+ *px++ = sum;
+
+ /* Decrement column loop counter */
+ col--;
+
+ /* Update pointer pIn2 to point to starting address of next column */
+ pIn2 = pInB + (numColsB - col);
+
+ } while (col > 0U);
+
+ /* Update pointer pInA to point to starting address of next row */
+ i = i + numColsB;
+ pInA = pInA + numColsA;
+
+ /* Decrement row loop counter */
+ row--;
+
+ } while (row > 0U);
+
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+
+#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
+
+/**
+ * @} end of MatrixMult group
+ */
+
+#endif /* #if defined(ARM_FLOAT16_SUPPORTED) */
+