1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
|
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_mat_mult_f16.c
* Description: Floating-point matrix multiplication
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/matrix_functions_f16.h"
#if defined(ARM_FLOAT16_SUPPORTED)
/**
* @ingroup groupMatrix
*/
/**
* @addtogroup MatrixMult
* @{
*/
/**
* @brief Floating-point matrix multiplication.
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
__STATIC_FORCEINLINE arm_status arm_mat_mult_f16_2x2_mve(
const arm_matrix_instance_f16 *pSrcA,
const arm_matrix_instance_f16 *pSrcB,
arm_matrix_instance_f16 *pDst)
{
static const uint16_t offsetA[8] = { 0, 0, 2, 2, 0, 0, 2, 2 };
/* offsetB allows to read and duplicate 1 row of B */
static const uint16_t offsetB[8] = { 0, 1, 0, 1, 0, 1, 0, 1 };
uint16x8_t vecOffsA, vecOffsB;
f16x8_t vecInA, vecInB, vecDst;
float16_t *pOut = pDst->pData; /* output data matrix pointer */
/*
* load initial offsets
*/
vecOffsA = vldrhq_u16((uint16_t const *) offsetA);
vecOffsB = vldrhq_u16((uint16_t const *) offsetB);
/*
* load {a00 a00 a10 a10 x x x x }
*/
vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
/*
* load {b00 b01 b00 b01 x x x x }
*/
vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB);
/*
* { a00 b00 a00 b01
* a10 b00 a10 b01
* x x
* x x }
*/
vecDst = vmulq(vecInA, vecInB);
/*
* move to 2nd column of matrix A
*/
vecOffsA = vaddq_n_u16(vecOffsA, (uint16_t) 1);
/*
* load {a01 a01 a11 a11 x x x x}
*/
vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
/*
* move to next B row
*/
vecOffsB = vaddq_n_u16(vecOffsB, (uint16_t) 2);
/*
* load {b10, b11, b10, b11, x x x x }
*/
vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB);
/*
* { a00 b00 + a01 b10 a00 b01 + a01 b11
* a10 b00 + a11 b10 a10 b01 + a11 b11
* x x
* x x }
*/
vecDst = vfmaq(vecDst, vecInA, vecInB);
mve_pred16_t p0 = vctp16q(2*2);
/*
* Store the result in the destination buffer
* (lower half of the vector)
*/
vstrhq_p(pOut, vecDst, p0);
return (ARM_MATH_SUCCESS);
}
__STATIC_FORCEINLINE arm_status arm_mat_mult_f16_3x3_mve(
const arm_matrix_instance_f16 *pSrcA,
const arm_matrix_instance_f16 *pSrcB,
arm_matrix_instance_f16 *pDst)
{
static const uint16_t offsetA[8] = { 0, 0, 0, 3, 3, 3, 6, 6 };
/* offsetB allows to read and duplicate 1 row of B */
static const uint16_t offsetB[8] = { 0, 1, 2, 0, 1, 2, 0, 1 };
uint16x8_t vecOffsA, vecOffsB;
f16x8_t vecInA, vecInB, vecDst;
float16_t *pOut = pDst->pData; /* output data matrix pointer */
/*
* load initial offsets
*/
vecOffsA = vldrhq_u16((uint16_t const *) offsetA);
vecOffsB = vldrhq_u16((uint16_t const *) offsetB);
/*
* load {a00 a00 a00 a10 a10 a10 a20 a20}
*/
vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
/*
* load {b00 b01 b02 b00 b01 b02 b00 b01}
*/
vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB);
/*
* { a00 b00 a00 b01 a00 b02
* a10 b00 a10 b01 a10 b02
* a20 b00 a20 b01}
*/
vecDst = vmulq(vecInA, vecInB);
/*
* move to 2nd column of matrix A
*/
vecOffsA = vaddq_n_u16(vecOffsA, (uint16_t) 1);
/*
* load {a01 a01 a01 a11 a11 a11 a21 a21}
*/
vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
/*
* move to next B row
*/
vecOffsB = vaddq_n_u16(vecOffsB, (uint16_t) 3);
/*
* load {b10, b11, b12, b10, b11, b12, b10, b11}
*/
vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB);
/*
* { a00 b00 + a01 b10 a00 b01 + a01 b11 a00 b02 + a01 b12
* a10 b00 + a11 b10 a10 b01 + a11 b11 a10 b02 + a11 b12
* a20 b00 + a21 b10 a20 b01 + a21 b11 }
*/
vecDst = vfmaq(vecDst, vecInA, vecInB);
/*
* move to 3rd column of matrix A
*/
vecOffsA = vaddq_n_u16(vecOffsA, (uint16_t) 1);
/*
* load {a02 a02 a02 a12 a12 a12 a22 a22}
*/
vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
/*
* move to next B row
*/
vecOffsB = vaddq_n_u16(vecOffsB, (uint16_t) 3);
/*
* load {b20, b21, b22, b20, b21, b22, b20, b21}
*/
vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB);
/*
* {a00 b00 + a01 b10 + a02 b20 a00 b01 + a01 b11 + a02 b21 a00 b02 + a01 b12 + a02 b22},
* a10 b00 + a11 b10 + a12 b20 a10 b01 + a11 b11 + a12 b21 a10 b02 + a11 b12 + a12 b22},
* a20 b00 + a21 b10 + a22 b20 a20 b01 + a21 b11 + a22 b21 }
*/
vecDst = vfmaq(vecDst, vecInA, vecInB);
/*
* Store the result in the destination buffer
*/
vst1q(pOut, vecDst); pOut += 8;
/* last element computed in scalar mode
* a20 b02 + a21 b12 + a22 b22
*/
_Float16 * pA = (_Float16 *)pSrcA->pData;
_Float16 * pB = (_Float16 *)pSrcB->pData;
*pOut = pA[2*3] * pB[2] + pA[2*3+1] * pB[3+2] + pA[2*3+2] * pB[2*3+2];
return (ARM_MATH_SUCCESS);
}
__STATIC_FORCEINLINE arm_status arm_mat_mult_f16_4x4_mve(
const arm_matrix_instance_f16 *pSrcA,
const arm_matrix_instance_f16 *pSrcB,
arm_matrix_instance_f16 *pDst)
{
/* offsetA allows to read and duplicate 2 successive column elements of A */
static const uint16_t offsetA[8] = { 0, 0, 0, 0, 4, 4, 4, 4 };
/* offsetB allows to read and duplicate 1 row of B */
static const uint16_t offsetB[8] = { 0, 1, 2, 3, 0, 1, 2, 3 };
uint16x8_t vecOffsA, vecOffsB;
f16x8_t vecInA, vecInB, vecDst0, vecDst1;
float16_t *pOut = pDst->pData; /* output data matrix pointer */
/*
* load initial offsets
*/
vecOffsA = vldrhq_u16((uint16_t const *) offsetA);
vecOffsB = vldrhq_u16((uint16_t const *) offsetB);
/*
* load {a00 a00 a00 a00 a10 a10 a10 a10}
*/
vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
/*
* load {b00 b01 b02 b03 b00 b01 b02 b03}
*/
vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB);
/*
* { a00 b00 a00 b01 a00 b02 a00 b03
* a10 b00 a10 b01 a10 b02 a10 b03 }
*/
vecDst0 = vmulq(vecInA, vecInB);
/*
* jump 2 x A rows (2nd half of matrix)
*/
vecOffsA = vaddq_n_u16(vecOffsA, (uint16_t) 8);
/*
* load {a20 a20 a20 a20 a30 a30 a30 a30}
*/
vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
/*
* { a20 b00 a20 b01 a20 b02 a20 b03
* a30 b00 a30 b01 a30 b02 + a31 b12 }
*/
vecDst1 = vmulq(vecInA, vecInB);
/*
* rewind back to top half of the A matrix (2nd column)
*/
vecOffsA = vsubq(vecOffsA, (uint16_t) 7);
/*
* load {a01 a01 a01 a01 a11 a11 a11 a11}
*/
vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
/*
* move to next B row
*/
vecOffsB = vaddq_n_u16(vecOffsB, (uint16_t) 4);
/*
* load {b10, b11, b12, b13, b10, b11, b12, b13}
*/
vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB);
/*
* { a00 b00 + a01 b10 a00 b01 + a01 b11 a00 b02 + a01 b12 a00 b03 + a01 b13
* a10 b00 + a11 b10 a10 b01 + a11 b11 a10 b02 + a11 b12 a10 b03 + a11 b13 }
*/
vecDst0 = vfmaq(vecDst0, vecInA, vecInB);
/*
* jump 2 x A rows (2nd half of matrix)
*/
vecOffsA = vaddq_n_u16(vecOffsA, (uint16_t) 8);
/*
* load {a21 a21 a21 a21 a31 a31 a31 a31}
*/
vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
/*
* {a20 b00 + a21 b10 a20 b01 + a21 b11 a20 b02 + a21 b12 a20 b03 + a21 b13
* a30 b00 + a31 b10 a30 b01 + a31 b11 a30 b02 + a31 b12 a30 b03 + a31 b13 }
*/
vecDst1 = vfmaq(vecDst1, vecInA, vecInB);
/*
* rewind back to top half of the A matrix (3rd column)
*/
vecOffsA = vsubq(vecOffsA, (uint16_t) 7);
/*
* load {a02 a02 a02 a02 a12 a12 a12 a12}
*/
vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
/*
* move to next B row
*/
vecOffsB = vaddq_n_u16(vecOffsB, (uint16_t) 4);
/*
* load {b20, b21, b22, b23, b20, b21, b22, b23}
*/
vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB);
/*
* { a00 b00 + a01 b10 + a02 b20 a00 b01 + a01 b11 + a02 b21 a00 b02 + a01 b12 + a02 b22 a00 b03 + a01 b13 + a02 b23
* a10 b00 + a11 b10 + a12 b20 a10 b01 + a11 b11 + a12 b21 a10 b02 + a11 b12 + a12 b22 a10 b03 + a11 b13 + a12 b23 }
*/
vecDst0 = vfmaq(vecDst0, vecInA, vecInB);
/*
* jump 2 x A rows
*/
vecOffsA = vaddq_n_u16(vecOffsA, (uint16_t) 8);
/*
* load {a22 a22 a22 a22 a32 a32 a32 a32}
*/
vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
/*
* {a20 b00 + a21 b10 + a22 b20 a20 b01 + a21 b11 + a22 b21 a20 b02 + a21 b12 + a22 b22 a20 b03 + a21 b13 + a22 b23
* a30 b00 + a31 b10 + a32 b20 a30 b01 + a31 b11 + a32 b21 a30 b02 + a31 b12 + a32 b22 a30 b03 + a31 b13 + a32 b23 }
*/
vecDst1 = vfmaq(vecDst1, vecInA, vecInB);
/*
* rewind back to top half of the A matrix (4th column)
*/
vecOffsA = vsubq(vecOffsA, (uint16_t) 7);
/*
* load {a03 a03 a03 a03 a13 a13 a13 a13}
*/
vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
/*
* move to next B row
*/
vecOffsB = vaddq_n_u16(vecOffsB, (uint16_t) 4);
/*
* load {b30, b31, b32, b33, b30, b31, b32, b33}
*/
vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB);
/*
* { a00 b00 +...+ a03 b30, a00 b01 +...+ a03 b31, a00 b02 +...+ a03 b32, a00 b03 +...+ a03 b33
* a10 b00 +...+ a13 b30, a10 b01 +...+ a13 b31, a10 b02 +...+ a13 b32, a10 b03 +...+ a13 b33 }
*/
vecDst0 = vfmaq(vecDst0, vecInA, vecInB);
/*
* jump 2 x A rows
*/
vecOffsA = vaddq_n_u16(vecOffsA, (uint16_t) 8);
/*
* load {a23 a23 a23 a23 a33 a33 a33 a33}
*/
vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA);
/*
* {a20 b00 +...+ a23 b30, a20 b01 +...+ a23 b31, a20 b02 +...+ a23 b32, a20 b03 +...+ a23 b33
* a30 b00 +...+ a33 b30, a30 b01 +...+ a33 b31, a30 b02 +...+ a33 b32, a30 b03 +...+ a33 b33 }
*/
vecDst1 = vfmaq(vecDst1, vecInA, vecInB);
/*
* Store the result in the destination buffer
*/
vst1q(pOut, vecDst0); pOut += 8;
vst1q(pOut, vecDst1);
return (ARM_MATH_SUCCESS);
}
arm_status arm_mat_mult_f16(
const arm_matrix_instance_f16 * pSrcA,
const arm_matrix_instance_f16 * pSrcB,
arm_matrix_instance_f16 * pDst)
{
float16_t *pInB = pSrcB->pData; /* input data matrix pointer B */
float16_t *pInA = pSrcA->pData; /* input data matrix pointer A */
float16_t *pOut = pDst->pData; /* output data matrix pointer */
int numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
int numColsB = pSrcB->numCols; /* number of columns of input matrix B */
int numColsA = pSrcA->numCols; /* number of columns of input matrix A */
uint32_t blkCnt; /* loop counters */
int i;
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if ((pSrcA->numCols != pSrcB->numRows) ||
(pSrcA->numRows != pDst->numRows) ||
(pSrcB->numCols != pDst->numCols) )
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
return(ARM_MATH_SIZE_MISMATCH);
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/* small squared matrix specialized routines */
if(numRowsA == numColsB && numColsB == numColsA) {
if(numRowsA == 2)
return arm_mat_mult_f16_2x2_mve(pSrcA, pSrcB, pDst);
else if(numRowsA == 3)
return arm_mat_mult_f16_3x3_mve(pSrcA, pSrcB, pDst);
else if(numRowsA == 4)
return arm_mat_mult_f16_4x4_mve(pSrcA, pSrcB, pDst);
}
/* main loop process 4 rows */
i = numRowsA / 4;
while(i > 0)
{
float16_t *pInA0, *pInA1, *pInA2, *pInA3;
float16_t *pInB0;
float16_t *pOut0, *pOut1, *pOut2, *pOut3;
f16x8_t vecMac0, vecMac1, vecMac2, vecMac3;
f16x8_t vecInB;
/* pointers to 4 consecutive output rows */
pOut0 = pOut;
pOut1 = pOut0 + numColsB;
pOut2 = pOut1 + numColsB;
pOut3 = pOut2 + numColsB;
pInB0 = pInB;
int k = numColsB >> 3;
while(k > 0)
{
/* pointers to 4 consecutive Matrix A rows */
pInA0 = pInA;
pInA1 = pInA0 + numColsA;
pInA2 = pInA1 + numColsA;
pInA3 = pInA2 + numColsA;
vecMac0 = vdupq_n_f16(0.0f16);
vecMac1 = vdupq_n_f16(0.0f16);
vecMac2 = vdupq_n_f16(0.0f16);
vecMac3 = vdupq_n_f16(0.0f16);
blkCnt = numColsA;
while (blkCnt > 0U)
{
/*
* load {bi,4n+0, bi,4n+1, bi,4n+2, bi,4n+3..., bi,4n+7}
*/
vecInB = *(f16x8_t *)pInB0; /* vldrhq_f16(pInB0, 0); */
vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++);
pInB0 = pInB0 + numColsB;
/*
* Decrement the blockSize loop counter
*/
blkCnt--;
}
/* Store the results (4 x 8 block) in the destination buffer */
vst1q(pOut0, vecMac0); pOut0 += 8;
vst1q(pOut1, vecMac1); pOut1 += 8;
vst1q(pOut2, vecMac2); pOut2 += 8;
vst1q(pOut3, vecMac3); pOut3 += 8;
/*
* rewind
*/
pInB0 -= (numColsB * numColsA) - 8;
k--;
}
int colBLeft = numColsB & 7;
if (colBLeft)
{
pInA0 = pInA;
pInA1 = pInA0 + numColsA;
pInA2 = pInA1 + numColsA;
pInA3 = pInA2 + numColsA;
mve_pred16_t p0 = vctp16q(colBLeft);
vecMac0 = vdupq_n_f16(0.0f16);
vecMac1 = vdupq_n_f16(0.0f16);
vecMac2 = vdupq_n_f16(0.0f16);
vecMac3 = vdupq_n_f16(0.0f16);
blkCnt = numColsA;
while (blkCnt > 0U)
{
/*
* load {bi,4n+0, bi,4n+1, bi,4n+2, ..bi,4n+colBLeft-1, 0, ..}
*/
vecInB = vldrhq_z_f16(pInB0, p0);
vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++);
pInB0 = pInB0 + numColsB;
/*
* Decrement the blockSize loop counter
*/
blkCnt--;
}
/* Store the results (4 x colBLeft block) in the destination buffer */
vstrhq_p_f16(pOut0, vecMac0, p0);
vstrhq_p_f16(pOut1, vecMac1, p0);
vstrhq_p_f16(pOut2, vecMac2, p0);
vstrhq_p_f16(pOut3, vecMac3, p0);
}
pInA += 4 * numColsA;
pOut += 4 * numColsB;
i--;
}
/*
* non multiple of 4 rows for Matrix A
* process single row
*/
if (numRowsA & 3)
{
i = numRowsA & 3;
do
{
float16_t *pInA0;
float16_t *pInB0;
float16_t *pOut0;
f16x8_t vecInB;
f16x8_t vecMac0;
pOut0 = pOut;
pInB0 = pInB;
int k = numColsB >> 3;
while(k > 0)
{
pInA0 = pInA;
vecMac0 = vdupq_n_f16(0.0f16);
blkCnt = numColsA;
while (blkCnt > 0U)
{
/*
* load {bi,4n+0, bi,4n+1, bi,4n+2, bi,4n+3, ...bi,4n+7}
*/
vecInB = *(f16x8_t *)pInB0; /* vldrhq_f16(pInB0, 0); */
vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
pInB0 = pInB0 + numColsB;
/*
* Decrement the blockSize loop counter
*/
blkCnt--;
}
/* Store the results (1 x 8 block) in the destination buffer */
vst1q(pOut0, vecMac0); pOut0 += 8;
/*
* rewind
*/
pInB0 -= (numColsB * numColsA) - 8;
k--;
}
int colBLeft = numColsB & 7;
if (colBLeft)
{
pInA0 = pInA;
mve_pred16_t p0 = vctp16q(colBLeft);
vecMac0 = vdupq_n_f16(0.0f16);
blkCnt = numColsA;
while (blkCnt > 0U)
{
/*
* load {bi,4n+0, bi,4n+1, bi,4n+2, ..., bi,4n+colBLeft, 0, ...}
*/
vecInB = vldrhq_z_f16(pInB0, p0);
vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
pInB0 = pInB0 + numColsB;
/*
* Decrement the blockSize loop counter
*/
blkCnt--;
}
/* Store the results (1 x colBLeft block) in the destination buffer */
vstrhq_p_f16(pOut0, vecMac0, p0);
}
pInA += 1 * numColsA;
pOut += 1 * numColsB;
}
while (--i);
}
/*
* Return to application
*/
return (ARM_MATH_SUCCESS);
}
}
#else
arm_status arm_mat_mult_f16(
const arm_matrix_instance_f16 * pSrcA,
const arm_matrix_instance_f16 * pSrcB,
arm_matrix_instance_f16 * pDst)
{
float16_t *pIn1 = pSrcA->pData; /* Input data matrix pointer A */
float16_t *pIn2 = pSrcB->pData; /* Input data matrix pointer B */
float16_t *pInA = pSrcA->pData; /* Input data matrix pointer A */
float16_t *pInB = pSrcB->pData; /* Input data matrix pointer B */
float16_t *pOut = pDst->pData; /* Output data matrix pointer */
float16_t *px; /* Temporary output data matrix pointer */
_Float16 sum; /* Accumulator */
uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
uint32_t col, i = 0U, row = numRowsA, colCnt; /* Loop counters */
arm_status status; /* Status of matrix multiplication */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if ((pSrcA->numCols != pSrcB->numRows) ||
(pSrcA->numRows != pDst->numRows) ||
(pSrcB->numCols != pDst->numCols) )
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
/* row loop */
do
{
/* Output pointer is set to starting address of row being processed */
px = pOut + i;
/* For every row wise process, column loop counter is to be initiated */
col = numColsB;
/* For every row wise process, pIn2 pointer is set to starting address of pSrcB data */
pIn2 = pSrcB->pData;
/* column loop */
do
{
/* Set the variable sum, that acts as accumulator, to zero */
sum = 0.0f16;
/* Initialize pointer pIn1 to point to starting address of column being processed */
pIn1 = pInA;
#if defined (ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 4 MACs at a time. */
colCnt = numColsA >> 2U;
/* matrix multiplication */
while (colCnt > 0U)
{
/* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
/* Perform the multiply-accumulates */
sum += (_Float16)*pIn1++ * (_Float16)*pIn2;
pIn2 += numColsB;
sum += (_Float16)*pIn1++ * (_Float16)*pIn2;
pIn2 += numColsB;
sum += (_Float16)*pIn1++ * (_Float16)*pIn2;
pIn2 += numColsB;
sum += (_Float16)*pIn1++ * (_Float16)*pIn2;
pIn2 += numColsB;
/* Decrement loop counter */
colCnt--;
}
/* Loop unrolling: Compute remaining MACs */
colCnt = numColsA % 0x4U;
#else
/* Initialize cntCnt with number of columns */
colCnt = numColsA;
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (colCnt > 0U)
{
/* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
/* Perform the multiply-accumulates */
sum += (_Float16)*pIn1++ * (_Float16)*pIn2;
pIn2 += numColsB;
/* Decrement loop counter */
colCnt--;
}
/* Store result in destination buffer */
*px++ = sum;
/* Decrement column loop counter */
col--;
/* Update pointer pIn2 to point to starting address of next column */
pIn2 = pInB + (numColsB - col);
} while (col > 0U);
/* Update pointer pInA to point to starting address of next row */
i = i + numColsB;
pInA = pInA + numColsA;
/* Decrement row loop counter */
row--;
} while (row > 0U);
/* Set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
/**
* @} end of MatrixMult group
*/
#endif /* #if defined(ARM_FLOAT16_SUPPORTED) */
|