summaryrefslogtreecommitdiffstats
path: root/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_f32.c
diff options
context:
space:
mode:
Diffstat (limited to 'Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_f32.c')
-rw-r--r--Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_f32.c1001
1 files changed, 1001 insertions, 0 deletions
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_f32.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_f32.c
new file mode 100644
index 0000000..d1fd9ea
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_f32.c
@@ -0,0 +1,1001 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_mat_mult_f32.c
+ * Description: Floating-point matrix multiplication
+ *
+ * $Date: 23 April 2021
+ * $Revision: V1.9.0
+ *
+ * Target Processor: Cortex-M and Cortex-A cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "dsp/matrix_functions.h"
+
+#if defined(ARM_MATH_NEON)
+#define GROUPOFROWS 8
+#endif
+
+/**
+ * @ingroup groupMatrix
+ */
+
+/**
+ * @defgroup MatrixMult Matrix Multiplication
+ *
+ * Multiplies two matrices.
+ *
+ * \image html MatrixMultiplication.gif "Multiplication of two 3 x 3 matrices"
+
+ * Matrix multiplication is only defined if the number of columns of the
+ * first matrix equals the number of rows of the second matrix.
+ * Multiplying an <code>M x N</code> matrix with an <code>N x P</code> matrix results
+ * in an <code>M x P</code> matrix.
+ * When matrix size checking is enabled, the functions check: (1) that the inner dimensions of
+ * <code>pSrcA</code> and <code>pSrcB</code> are equal; and (2) that the size of the output
+ * matrix equals the outer dimensions of <code>pSrcA</code> and <code>pSrcB</code>.
+ */
+
+
+/**
+ * @addtogroup MatrixMult
+ * @{
+ */
+
+
+
+#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
+
+#define MATRIX_DIM3 3
+#define MATRIX_DIM4 4
+
+__STATIC_INLINE arm_status arm_mat_mult_f32_2x2_mve(
+ const arm_matrix_instance_f32 *pSrcA,
+ const arm_matrix_instance_f32 *pSrcB,
+ arm_matrix_instance_f32 *pDst)
+{
+ /* {a00, a00, a10, a10} */
+ static const uint32_t offsetA0[4] = { 0, 0, 2, 2 };
+ /* {b00, b01, b00, b01} */
+ static const uint32_t offsetB0[4] = { 0, 1, 0, 1 };
+ /* {a01, a01, a11, a11} */
+ static const uint32_t offsetA1[4] = { 1, 1, 3, 3 };
+ /* {b10, b11, b10, b11} */
+ static const uint32_t offsetB1[4] = { 2, 3, 2, 3 };
+
+ uint32x4_t vecOffsA, vecOffsB;
+ f32x4_t vecInA, vecInB, vecDst;
+
+ vecOffsA = vldrwq_u32((uint32_t const *) offsetA0);
+ vecOffsB = vldrwq_u32((uint32_t const *) offsetB0);
+
+ vecInA = vldrwq_gather_shifted_offset((float32_t const *) pSrcA->pData, vecOffsA);
+ vecInB = vldrwq_gather_shifted_offset((float32_t const *) pSrcB->pData, vecOffsB);
+
+ vecDst = vmulq(vecInA, vecInB);
+
+ vecOffsA = vldrwq_u32((uint32_t const *) offsetA1);
+ vecOffsB = vldrwq_u32((uint32_t const *) offsetB1);
+
+ vecInA = vldrwq_gather_shifted_offset((float32_t const *) pSrcA->pData, vecOffsA);
+ vecInB = vldrwq_gather_shifted_offset((float32_t const *) pSrcB->pData, vecOffsB);
+
+ vecDst = vfmaq(vecDst, vecInA, vecInB);
+
+ vstrwq_f32(pDst->pData, vecDst);
+
+ return (ARM_MATH_SUCCESS);
+
+}
+
+
+/*
+ * A = {{a00, a01, a02},
+ * {a10, a11, a12},
+ * {a20, a21, a22}}
+ * B = {{b00, b01, b02},
+ * {b10, b11, b12},
+ * {b20, b21, b22}}
+ *
+ * Dst = {{a00 b00 + a01 b10 + a02 b20, a00 b01 + a01 b11 + a02 b21, a00 b02 + a01 b12 + a02 b22},
+ * {a10 b00 + a11 b10 + a12 b20, a10 b01 + a11 b11 + a12 b21, a10 b02 + a11 b12 + a12 b22},
+ * {a20 b00 + a21 b10 + a22 b20, a20 b01 + a21 b11 + a22 b21, a20 b02 + a21 b12 + a22 b22}}
+ */
+__STATIC_INLINE arm_status arm_mat_mult_f32_3x3_mve(
+ const arm_matrix_instance_f32 *pSrcA,
+ const arm_matrix_instance_f32 *pSrcB,
+ arm_matrix_instance_f32 *pDst)
+{
+ float32_t *pInB = pSrcB->pData; /* input data matrix pointer B */
+ float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
+ float32_t *pOut = pDst->pData; /* output data matrix pointer */
+ float32_t *pInA0, *pInA1, *pInA2;
+ f32x4_t vecMac0, vecMac1, vecMac2;
+ f32x4_t vecInB;
+ float32_t const *pSrBVec;
+
+ pSrBVec = (float32_t const *) pInB;
+
+ pInA0 = pInA;
+ pInA1 = pInA0 + MATRIX_DIM3;
+ pInA2 = pInA1 + MATRIX_DIM3;
+ /* enable predication to disable last (4th) vector element */
+ mve_pred16_t p0 = vctp32q(MATRIX_DIM3);
+
+ /*
+ * load {b0,0, b0,1, b0,2, 0}
+ */
+ vecInB = vldrwq_z_f32(pSrBVec, p0);
+ pSrBVec += MATRIX_DIM3;
+
+ vecMac0 = vmulq(vecInB, *pInA0++);
+ vecMac1 = vmulq(vecInB, *pInA1++);
+ vecMac2 = vmulq(vecInB, *pInA2++);
+ /*
+ * load {b1,0, b1,1, b1,2, 0}
+ */
+ vecInB = vldrwq_z_f32(pSrBVec, p0);
+ pSrBVec += MATRIX_DIM3;
+
+ vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
+ vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
+ vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
+ /*
+ * load {b2,0, b2,1 , b2,2, 0}
+ */
+ vecInB = vldrwq_z_f32(pSrBVec, p0);
+ pSrBVec += MATRIX_DIM3;
+
+ vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
+ vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
+ vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
+
+ /* partial vector stores */
+ vstrwq_p_f32(pOut, vecMac0, p0);
+ pOut += MATRIX_DIM3;
+ vstrwq_p_f32(pOut, vecMac1, p0);
+ pOut += MATRIX_DIM3;
+ vstrwq_p_f32(pOut, vecMac2, p0);
+ /*
+ * Return to application
+ */
+ return (ARM_MATH_SUCCESS);
+}
+
+
+
+
+__STATIC_INLINE arm_status arm_mat_mult_f32_4x4_mve(
+ const arm_matrix_instance_f32 *pSrcA,
+ const arm_matrix_instance_f32 *pSrcB,
+ arm_matrix_instance_f32 *pDst)
+{
+ float32_t const *pSrBVec;
+ float32_t *pInB = pSrcB->pData; /* input data matrix pointer B */
+ float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
+ float32_t *pOut = pDst->pData; /* output data matrix pointer */
+ float32_t *pInA0, *pInA1, *pInA2, *pInA3;
+ f32x4_t vecMac0, vecMac1, vecMac2, vecMac3;
+ f32x4_t vecInB;
+
+ pSrBVec = (float32_t const *) pInB;
+
+ pInA0 = pInA;
+ pInA1 = pInA0 + MATRIX_DIM4;
+ pInA2 = pInA1 + MATRIX_DIM4;
+ pInA3 = pInA2 + MATRIX_DIM4;
+ /*
+ * load {b0,0, b0,1, b0,2, b0,3}
+ */
+ vecInB = vld1q(pSrBVec);
+ pSrBVec += MATRIX_DIM4;
+
+ vecMac0 = vmulq(vecInB, *pInA0++);
+ vecMac1 = vmulq(vecInB, *pInA1++);
+ vecMac2 = vmulq(vecInB, *pInA2++);
+ vecMac3 = vmulq(vecInB, *pInA3++);
+ /*
+ * load {b1,0, b1,1, b1,2, b1,3}
+ */
+ vecInB = vld1q(pSrBVec);
+ pSrBVec += MATRIX_DIM4;
+
+ vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
+ vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
+ vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
+ vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++);
+ /*
+ * load {b2,0, b2,1, b2,2, b2,3}
+ */
+ vecInB = vld1q(pSrBVec);
+ pSrBVec += MATRIX_DIM4;
+
+ vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
+ vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
+ vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
+ vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++);
+ /*
+ * load {b3,0, b3,1, b3,2, b3,3}
+ */
+ vecInB = vld1q(pSrBVec);
+ pSrBVec += MATRIX_DIM4;
+
+ vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
+ vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
+ vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
+ vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++);
+
+ vst1q(pOut, vecMac0);
+ pOut += MATRIX_DIM4;
+ vst1q(pOut, vecMac1);
+ pOut += MATRIX_DIM4;
+ vst1q(pOut, vecMac2);
+ pOut += MATRIX_DIM4;
+ vst1q(pOut, vecMac3);
+ /*
+ * Return to application
+ */
+ return (ARM_MATH_SUCCESS);
+}
+
+
+/**
+ * @brief Floating-point matrix multiplication.
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_mult_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst)
+{
+ float32_t *pInB = pSrcB->pData; /* input data matrix pointer B */
+ float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
+ float32_t *pOut = pDst->pData; /* output data matrix pointer */
+ int numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
+ int numColsB = pSrcB->numCols; /* number of columns of input matrix B */
+ int numColsA = pSrcA->numCols; /* number of columns of input matrix A */
+ uint32_t blkCnt; /* loop counters */
+ uint32_t i;
+ arm_status status;
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrcA->numCols != pSrcB->numRows) ||
+ (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+ {
+ /* small squared matrix specialized routines */
+ if(numRowsA == numColsB && numColsB == numColsA) {
+ if (numRowsA == 1)
+ {
+ pOut[0] = pInA[0] * pInB[0];
+ return(ARM_MATH_SUCCESS);
+ }
+ else if(numRowsA == 2)
+ return arm_mat_mult_f32_2x2_mve(pSrcA, pSrcB, pDst);
+ else if(numRowsA == 3)
+ return arm_mat_mult_f32_3x3_mve(pSrcA, pSrcB, pDst);
+ else if(numRowsA == 4)
+ return arm_mat_mult_f32_4x4_mve(pSrcA, pSrcB, pDst);
+ }
+
+ /* main loop process 4 rows */
+ i = numRowsA >> 2;
+ while (i > 0U)
+ {
+ float32_t *pInA0, *pInA1, *pInA2, *pInA3;
+ float32_t *pInB0;
+ float32_t *pOut0, *pOut1, *pOut2, *pOut3;
+ f32x4_t vecMac0, vecMac1, vecMac2, vecMac3;
+ f32x4_t vecInB;
+
+ /* pointers to 4 consecutive output rows */
+ pOut0 = pOut;
+ pOut1 = pOut0 + numColsB;
+ pOut2 = pOut1 + numColsB;
+ pOut3 = pOut2 + numColsB;
+ pInB0 = pInB;
+
+ uint32_t k = numColsB >> 2;
+ while (k > 0U)
+ {
+ /* pointers to 4 consecutive Matrix A rows */
+ pInA0 = pInA;
+ pInA1 = pInA0 + numColsA;
+ pInA2 = pInA1 + numColsA;
+ pInA3 = pInA2 + numColsA;
+
+ vecMac0 = vdupq_n_f32(0.0f);
+ vecMac1 = vdupq_n_f32(0.0f);
+ vecMac2 = vdupq_n_f32(0.0f);
+ vecMac3 = vdupq_n_f32(0.0f);
+
+ blkCnt = numColsA;
+
+ while (blkCnt > 0U)
+ {
+ /*
+ * load {bi,4n+0, bi,4n+1, bi,4n+2, bi,4n+3}
+ */
+ vecInB = *(f32x4_t *)pInB0; /* vldrwq_f32(pInB0, 0); */
+
+ vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
+ vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
+ vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
+ vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++);
+
+ pInB0 = pInB0 + numColsB;
+ /*
+ * Decrement the blockSize loop counter
+ */
+ blkCnt--;
+ }
+
+ /* Store the results (4 x 4 block) in the destination buffer */
+ vst1q(pOut0, vecMac0);
+ pOut0 += 4;
+ vst1q(pOut1, vecMac1);
+ pOut1 += 4;
+ vst1q(pOut2, vecMac2);
+ pOut2 += 4;
+ vst1q(pOut3, vecMac3);
+ pOut3 += 4;
+
+ /*
+ * rewind
+ */
+ pInB0 -= (numColsB * numColsA) - 4;
+ k--;
+ }
+
+ int colBLeft = numColsB & 3;
+ if (colBLeft)
+ {
+ pInA0 = pInA;
+ pInA1 = pInA0 + numColsA;
+ pInA2 = pInA1 + numColsA;
+ pInA3 = pInA2 + numColsA;
+ mve_pred16_t p0 = vctp32q(colBLeft);
+
+ vecMac0 = vdupq_n_f32(0.0f);
+ vecMac1 = vdupq_n_f32(0.0f);
+ vecMac2 = vdupq_n_f32(0.0f);
+ vecMac3 = vdupq_n_f32(0.0f);
+
+ blkCnt = numColsA;
+
+ while (blkCnt > 0U)
+ {
+ /*
+ * load {bi,4n+0, bi,4n+1, bi,4n+2, bi,4n+3}
+ */
+ vecInB = vldrwq_z_f32(pInB0, p0);
+
+ vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
+ vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
+ vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
+ vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++);
+
+ pInB0 = pInB0 + numColsB;
+ /*
+ * Decrement the blockSize loop counter
+ */
+ blkCnt--;
+ }
+
+ /* Store the results (4 x colBLeft block) in the destination buffer */
+ vstrwq_p_f32(pOut0, vecMac0, p0);
+ vstrwq_p_f32(pOut1, vecMac1, p0);
+ vstrwq_p_f32(pOut2, vecMac2, p0);
+ vstrwq_p_f32(pOut3, vecMac3, p0);
+ }
+
+ /* move to next rows */
+ pInA += 4 * numColsA;
+ pOut += 4 * numColsB;
+ i--;
+ }
+
+ /*
+ * non multiple of 4 rows for Matrix A
+ * process single row
+ */
+ if (numRowsA & 3)
+ {
+ i = numRowsA & 3;
+ while (i > 0U)
+ {
+ float32_t *pInA0;
+ float32_t *pInB0;
+ float32_t *pOut0;
+ f32x4_t vecInB;
+ f32x4_t vecMac0;
+
+ pOut0 = pOut;
+ pInB0 = pInB;
+
+ uint32_t k = numColsB >> 2;
+ while (k > 0U)
+ {
+ pInA0 = pInA;
+
+ vecMac0 = vdupq_n_f32(0.0f);
+ blkCnt = numColsA;
+ while (blkCnt > 0U)
+ {
+ /*
+ * load {bi,4n+0, bi,4n+1, bi,4n+2, bi,4n+3}
+ */
+ vecInB = *(f32x4_t *)pInB0; /* vldrwq_f32(pInB0, 0); */
+
+ vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
+
+ pInB0 = pInB0 + numColsB;
+ /*
+ * Decrement the blockSize loop counter
+ */
+ blkCnt--;
+ }
+
+ /* Store the results (1 x 4 block) in the destination buffer */
+ vst1q(pOut0, vecMac0);
+ pOut0 += 4;
+
+ /*
+ * rewind
+ */
+ pInB0 -= (numColsB * numColsA) - 4;
+ k--;
+ }
+
+ int colBLeft = numColsB & 3;
+ if (colBLeft)
+ {
+ pInA0 = pInA;
+ mve_pred16_t p0 = vctp32q(colBLeft);
+
+ vecMac0 = vdupq_n_f32(0.0f);
+ blkCnt = numColsA;
+ while (blkCnt > 0U)
+ {
+ /*
+ * load {bi,4n+0, bi,4n+1, bi,4n+2, bi,4n+3}
+ */
+ vecInB = vldrwq_z_f32(pInB0, p0);
+
+ vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
+
+ pInB0 = pInB0 + numColsB;
+ /*
+ * Decrement the blockSize loop counter
+ */
+ blkCnt--;
+ }
+ /* Store the results (1 x colBLeft block) in the destination buffer */
+ vstrwq_p_f32(pOut0, vecMac0, p0);
+ }
+
+ /* move to next row */
+ pInA += 1 * numColsA;
+ pOut += 1 * numColsB;
+ i--;
+ }
+
+ }
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+#else
+
+#if defined(ARM_MATH_NEON)
+/**
+ * @brief Floating-point matrix multiplication.
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_mult_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst)
+{
+ float32_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */
+ float32_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */
+ float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
+ float32_t *pOut = pDst->pData; /* output data matrix pointer */
+ float32_t *px; /* Temporary output data matrix pointer */
+ float32_t sum; /* Accumulator */
+ uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
+ uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
+ uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
+
+
+ uint16_t col, i = 0U, j, row = numRowsA, rowCnt, colCnt; /* loop counters */
+ arm_status status; /* status of matrix multiplication */
+
+ float32x4_t a0V, a1V, a2V, a3V, a4V, a5V, a6V, a7V;
+ float32x4_t acc0,acc1,acc2,acc3,acc4,acc5,acc6,acc7,temp;
+ float32x2_t accum = vdup_n_f32(0);
+ float32_t *pIn1B = pSrcA->pData;
+ float32_t *pIn1C = pSrcA->pData;
+ float32_t *pIn1D = pSrcA->pData;
+ float32_t *pIn1E = pSrcA->pData;
+ float32_t *pIn1F = pSrcA->pData;
+ float32_t *pIn1G = pSrcA->pData;
+ float32_t *pIn1H = pSrcA->pData;
+
+ float32_t *pxB,*pxC, *pxD, *pxE, *pxF, *pxG, *pxH; /* Temporary output data matrix pointer */
+ float32_t sum0,sum1, sum2,sum3, sum4, sum5 , sum6, sum7;
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrcA->numCols != pSrcB->numRows) ||
+ (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+ {
+ /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
+ /* Row loop */
+ rowCnt = row >> 3;
+
+ while(rowCnt > 0)
+ {
+ /* Output pointer is set to starting address of the row being processed */
+ px = pOut + GROUPOFROWS*i;
+ pxB = px + numColsB;
+ pxC = px + 2*numColsB;
+ pxD = px + 3*numColsB;
+ pxE = px + 4*numColsB;
+ pxF = px + 5*numColsB;
+ pxG = px + 6*numColsB;
+ pxH = px + 7*numColsB;
+
+ /* For every row wise process, the column loop counter is to be initiated */
+ col = numColsB;
+
+ /* For every row wise process, the pIn2 pointer is set
+ ** to the starting address of the pSrcB data */
+ pIn2 = pSrcB->pData;
+
+ j = 0U;
+
+ /* Column loop */
+ do
+ {
+ /* Set the variable sum, that acts as accumulator, to zero */
+ sum0 = 0.0f;
+ sum1 = 0.0f;
+ sum2 = 0.0f;
+ sum3 = 0.0f;
+ sum4 = 0.0f;
+ sum5 = 0.0f;
+ sum6 = 0.0f;
+ sum7 = 0.0f;
+
+ /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
+ pIn1 = pInA;
+ pIn1B = pIn1 + numColsA;
+ pIn1C = pIn1 + 2*numColsA;
+ pIn1D = pIn1 + 3*numColsA;
+ pIn1E = pIn1 + 4*numColsA;
+ pIn1F = pIn1 + 5*numColsA;
+ pIn1G = pIn1 + 6*numColsA;
+ pIn1H = pIn1 + 7*numColsA;
+
+ acc0 = vdupq_n_f32(0.0);
+ acc1 = vdupq_n_f32(0.0);
+ acc2 = vdupq_n_f32(0.0);
+ acc3 = vdupq_n_f32(0.0);
+ acc4 = vdupq_n_f32(0.0);
+ acc5 = vdupq_n_f32(0.0);
+ acc6 = vdupq_n_f32(0.0);
+ acc7 = vdupq_n_f32(0.0);
+
+ /* Compute 4 MACs simultaneously. */
+ colCnt = numColsA >> 2U;
+
+ /* Matrix multiplication */
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
+ a0V = vld1q_f32(pIn1);
+ a1V = vld1q_f32(pIn1B);
+ a2V = vld1q_f32(pIn1C);
+ a3V = vld1q_f32(pIn1D);
+ a4V = vld1q_f32(pIn1E);
+ a5V = vld1q_f32(pIn1F);
+ a6V = vld1q_f32(pIn1G);
+ a7V = vld1q_f32(pIn1H);
+
+ pIn1 += 4;
+ pIn1B += 4;
+ pIn1C += 4;
+ pIn1D += 4;
+ pIn1E += 4;
+ pIn1F += 4;
+ pIn1G += 4;
+ pIn1H += 4;
+
+ temp = vsetq_lane_f32(*pIn2,temp,0);
+ pIn2 += numColsB;
+ temp = vsetq_lane_f32(*pIn2,temp,1);
+ pIn2 += numColsB;
+ temp = vsetq_lane_f32(*pIn2,temp,2);
+ pIn2 += numColsB;
+ temp = vsetq_lane_f32(*pIn2,temp,3);
+ pIn2 += numColsB;
+
+ acc0 = vmlaq_f32(acc0,a0V,temp);
+ acc1 = vmlaq_f32(acc1,a1V,temp);
+ acc2 = vmlaq_f32(acc2,a2V,temp);
+ acc3 = vmlaq_f32(acc3,a3V,temp);
+ acc4 = vmlaq_f32(acc4,a4V,temp);
+ acc5 = vmlaq_f32(acc5,a5V,temp);
+ acc6 = vmlaq_f32(acc6,a6V,temp);
+ acc7 = vmlaq_f32(acc7,a7V,temp);
+
+ /* Decrement the loop count */
+ colCnt--;
+ }
+
+ accum = vpadd_f32(vget_low_f32(acc0), vget_high_f32(acc0));
+ sum0 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
+
+ accum = vpadd_f32(vget_low_f32(acc1), vget_high_f32(acc1));
+ sum1 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
+
+ accum = vpadd_f32(vget_low_f32(acc2), vget_high_f32(acc2));
+ sum2 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
+
+ accum = vpadd_f32(vget_low_f32(acc3), vget_high_f32(acc3));
+ sum3 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
+
+ accum = vpadd_f32(vget_low_f32(acc4), vget_high_f32(acc4));
+ sum4 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
+
+ accum = vpadd_f32(vget_low_f32(acc5), vget_high_f32(acc5));
+ sum5 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
+
+ accum = vpadd_f32(vget_low_f32(acc6), vget_high_f32(acc6));
+ sum6 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
+
+ accum = vpadd_f32(vget_low_f32(acc7), vget_high_f32(acc7));
+ sum7 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
+
+ /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ colCnt = numColsA & 3;
+
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
+ sum0 += *pIn1++ * (*pIn2);
+ sum1 += *pIn1B++ * (*pIn2);
+ sum2 += *pIn1C++ * (*pIn2);
+ sum3 += *pIn1D++ * (*pIn2);
+ sum4 += *pIn1E++ * (*pIn2);
+ sum5 += *pIn1F++ * (*pIn2);
+ sum6 += *pIn1G++ * (*pIn2);
+ sum7 += *pIn1H++ * (*pIn2);
+ pIn2 += numColsB;
+
+ /* Decrement the loop counter */
+ colCnt--;
+ }
+
+ /* Store the result in the destination buffer */
+ *px++ = sum0;
+ *pxB++ = sum1;
+ *pxC++ = sum2;
+ *pxD++ = sum3;
+ *pxE++ = sum4;
+ *pxF++ = sum5;
+ *pxG++ = sum6;
+ *pxH++ = sum7;
+
+ /* Update the pointer pIn2 to point to the starting address of the next column */
+ j++;
+ pIn2 = pSrcB->pData + j;
+
+ /* Decrement the column loop counter */
+ col--;
+
+ } while (col > 0U);
+
+ /* Update the pointer pInA to point to the starting address of the next row */
+ i = i + numColsB;
+ pInA = pInA + GROUPOFROWS*numColsA;
+
+ /* Decrement the row loop counter */
+ rowCnt--;
+ }
+
+ /*
+
+ i was the index of a group of rows computed by previous loop.
+ Now i is the index of a row since below code is computing row per row
+ and no more group of row per group of rows.
+
+ */
+
+ i = GROUPOFROWS*i;
+ rowCnt = row & 7;
+
+ while(rowCnt > 0)
+ {
+ /* Output pointer is set to starting address of the row being processed */
+ px = pOut + i;
+
+ /* For every row wise process, the column loop counter is to be initiated */
+ col = numColsB;
+
+ /* For every row wise process, the pIn2 pointer is set
+ ** to the starting address of the pSrcB data */
+ pIn2 = pSrcB->pData;
+
+ j = 0U;
+
+ /* Column loop */
+ do
+ {
+ /* Set the variable sum, that acts as accumulator, to zero */
+ sum = 0.0f;
+
+ /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
+ pIn1 = pInA;
+
+ acc0 = vdupq_n_f32(0.0);
+
+ /* Compute 4 MACs simultaneously. */
+ colCnt = numColsA >> 2U;
+
+ /* Matrix multiplication */
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
+ a0V = vld1q_f32(pIn1); // load & separate real/imag pSrcA (de-interleave 2)
+ pIn1 += 4;
+
+ temp = vsetq_lane_f32(*pIn2,temp,0);
+ pIn2 += numColsB;
+ temp = vsetq_lane_f32(*pIn2,temp,1);
+ pIn2 += numColsB;
+ temp = vsetq_lane_f32(*pIn2,temp,2);
+ pIn2 += numColsB;
+ temp = vsetq_lane_f32(*pIn2,temp,3);
+ pIn2 += numColsB;
+
+ acc0 = vmlaq_f32(acc0,a0V,temp);
+
+ /* Decrement the loop count */
+ colCnt--;
+ }
+
+ accum = vpadd_f32(vget_low_f32(acc0), vget_high_f32(acc0));
+ sum += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
+
+ /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ colCnt = numColsA % 0x4U;
+
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
+ sum += *pIn1++ * (*pIn2);
+ pIn2 += numColsB;
+
+ /* Decrement the loop counter */
+ colCnt--;
+ }
+
+ /* Store the result in the destination buffer */
+ *px++ = sum;
+
+ /* Update the pointer pIn2 to point to the starting address of the next column */
+ j++;
+ pIn2 = pSrcB->pData + j;
+
+ /* Decrement the column loop counter */
+ col--;
+
+ } while (col > 0U);
+
+
+ /* Update the pointer pInA to point to the starting address of the next row */
+ i = i + numColsB;
+ pInA = pInA + numColsA;
+
+ /* Decrement the row loop counter */
+ rowCnt--;
+
+ }
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+#else
+/**
+ * @brief Floating-point matrix multiplication.
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_mult_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst)
+{
+ float32_t *pIn1 = pSrcA->pData; /* Input data matrix pointer A */
+ float32_t *pIn2 = pSrcB->pData; /* Input data matrix pointer B */
+ float32_t *pInA = pSrcA->pData; /* Input data matrix pointer A */
+ float32_t *pInB = pSrcB->pData; /* Input data matrix pointer B */
+ float32_t *pOut = pDst->pData; /* Output data matrix pointer */
+ float32_t *px; /* Temporary output data matrix pointer */
+ float32_t sum; /* Accumulator */
+ uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
+ uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
+ uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
+ uint32_t col, i = 0U, row = numRowsA, colCnt; /* Loop counters */
+ arm_status status; /* Status of matrix multiplication */
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrcA->numCols != pSrcB->numRows) ||
+ (pSrcA->numRows != pDst->numRows) ||
+ (pSrcB->numCols != pDst->numCols) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+ /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
+ /* row loop */
+ do
+ {
+ /* Output pointer is set to starting address of row being processed */
+ px = pOut + i;
+
+ /* For every row wise process, column loop counter is to be initiated */
+ col = numColsB;
+
+ /* For every row wise process, pIn2 pointer is set to starting address of pSrcB data */
+ pIn2 = pSrcB->pData;
+
+ /* column loop */
+ do
+ {
+ /* Set the variable sum, that acts as accumulator, to zero */
+ sum = 0.0f;
+
+ /* Initialize pointer pIn1 to point to starting address of column being processed */
+ pIn1 = pInA;
+
+#if defined (ARM_MATH_LOOPUNROLL)
+
+ /* Loop unrolling: Compute 4 MACs at a time. */
+ colCnt = numColsA >> 2U;
+
+ /* matrix multiplication */
+ while (colCnt > 0U)
+ {
+ /* c(m,p) = a(m,1) * b(1,p) + a(m,2) * b(2,p) + .... + a(m,n) * b(n,p) */
+
+ /* Perform the multiply-accumulates */
+ sum += *pIn1++ * *pIn2;
+ pIn2 += numColsB;
+
+ sum += *pIn1++ * *pIn2;
+ pIn2 += numColsB;
+
+ sum += *pIn1++ * *pIn2;
+ pIn2 += numColsB;
+
+ sum += *pIn1++ * *pIn2;
+ pIn2 += numColsB;
+
+ /* Decrement loop counter */
+ colCnt--;
+ }
+
+ /* Loop unrolling: Compute remaining MACs */
+ colCnt = numColsA % 0x4U;
+
+#else
+
+ /* Initialize cntCnt with number of columns */
+ colCnt = numColsA;
+
+#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
+
+ while (colCnt > 0U)
+ {
+ /* c(m,p) = a(m,1) * b(1,p) + a(m,2) * b(2,p) + .... + a(m,n) * b(n,p) */
+
+ /* Perform the multiply-accumulates */
+ sum += *pIn1++ * *pIn2;
+ pIn2 += numColsB;
+
+ /* Decrement loop counter */
+ colCnt--;
+ }
+
+ /* Store result in destination buffer */
+ *px++ = sum;
+
+ /* Decrement column loop counter */
+ col--;
+
+ /* Update pointer pIn2 to point to starting address of next column */
+ pIn2 = pInB + (numColsB - col);
+
+ } while (col > 0U);
+
+ /* Update pointer pInA to point to starting address of next row */
+ i = i + numColsB;
+ pInA = pInA + numColsA;
+
+ /* Decrement row loop counter */
+ row--;
+
+ } while (row > 0U);
+
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+
+#endif /* #if defined(ARM_MATH_NEON) */
+#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
+
+/**
+ * @} end of MatrixMult group
+ */