summaryrefslogtreecommitdiffstats
path: root/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_f32.c
blob: d1fd9eacf1a4a6a32ea6534548c87c86733148ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
/* ----------------------------------------------------------------------
 * Project:      CMSIS DSP Library
 * Title:        arm_mat_mult_f32.c
 * Description:  Floating-point matrix multiplication
 *
 * $Date:        23 April 2021
 * $Revision:    V1.9.0
 *
 * Target Processor: Cortex-M and Cortex-A cores
 * -------------------------------------------------------------------- */
/*
 * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "dsp/matrix_functions.h"

#if defined(ARM_MATH_NEON)
#define GROUPOFROWS 8
#endif

/**
 * @ingroup groupMatrix
 */

/**
 * @defgroup MatrixMult Matrix Multiplication
 *
 * Multiplies two matrices.
 *
 * \image html MatrixMultiplication.gif "Multiplication of two 3 x 3 matrices"

 * Matrix multiplication is only defined if the number of columns of the
 * first matrix equals the number of rows of the second matrix.
 * Multiplying an <code>M x N</code> matrix with an <code>N x P</code> matrix results
 * in an <code>M x P</code> matrix.
 * When matrix size checking is enabled, the functions check: (1) that the inner dimensions of
 * <code>pSrcA</code> and <code>pSrcB</code> are equal; and (2) that the size of the output
 * matrix equals the outer dimensions of <code>pSrcA</code> and <code>pSrcB</code>.
 */


/**
 * @addtogroup MatrixMult
 * @{
 */



#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)

#define MATRIX_DIM3 3 
#define MATRIX_DIM4 4 

__STATIC_INLINE  arm_status arm_mat_mult_f32_2x2_mve(
    const arm_matrix_instance_f32 *pSrcA,
    const arm_matrix_instance_f32 *pSrcB,
    arm_matrix_instance_f32 *pDst)
{
    /* {a00, a00, a10, a10} */
    static const uint32_t  offsetA0[4] = { 0, 0, 2, 2 };
    /* {b00, b01, b00, b01} */
    static const uint32_t  offsetB0[4] = { 0, 1, 0, 1 };
    /* {a01, a01, a11, a11} */
    static const uint32_t  offsetA1[4] = { 1, 1, 3, 3 };
    /* {b10, b11, b10, b11} */
    static const uint32_t  offsetB1[4] = { 2, 3, 2, 3 };

    uint32x4_t vecOffsA, vecOffsB;
    f32x4_t vecInA, vecInB, vecDst;

    vecOffsA = vldrwq_u32((uint32_t const *) offsetA0);
    vecOffsB = vldrwq_u32((uint32_t const *) offsetB0);

    vecInA = vldrwq_gather_shifted_offset((float32_t const *) pSrcA->pData, vecOffsA);
    vecInB = vldrwq_gather_shifted_offset((float32_t const *) pSrcB->pData, vecOffsB);

    vecDst = vmulq(vecInA, vecInB);

    vecOffsA = vldrwq_u32((uint32_t const *) offsetA1);
    vecOffsB = vldrwq_u32((uint32_t const *) offsetB1);

    vecInA = vldrwq_gather_shifted_offset((float32_t const *) pSrcA->pData, vecOffsA);
    vecInB = vldrwq_gather_shifted_offset((float32_t const *) pSrcB->pData, vecOffsB);

    vecDst = vfmaq(vecDst, vecInA, vecInB);

    vstrwq_f32(pDst->pData, vecDst);

    return (ARM_MATH_SUCCESS);

}


/*
 * A  =  {{a00, a01, a02},
 *        {a10, a11, a12},
 *        {a20, a21, a22}}
 * B  =  {{b00, b01, b02},
 *        {b10, b11, b12},
 *        {b20, b21, b22}}
 *
 * Dst = {{a00 b00 + a01 b10 + a02 b20, a00 b01 + a01 b11 + a02 b21, a00 b02 + a01 b12 + a02 b22},
 *        {a10 b00 + a11 b10 + a12 b20, a10 b01 + a11 b11 + a12 b21, a10 b02 + a11 b12 + a12 b22},
 *        {a20 b00 + a21 b10 + a22 b20, a20 b01 + a21 b11 + a22 b21, a20 b02 + a21 b12 + a22 b22}}
 */
__STATIC_INLINE  arm_status arm_mat_mult_f32_3x3_mve(
    const arm_matrix_instance_f32 *pSrcA,
    const arm_matrix_instance_f32 *pSrcB,
    arm_matrix_instance_f32 *pDst)
{
    float32_t   *pInB = pSrcB->pData; /* input data matrix pointer B */
    float32_t   *pInA = pSrcA->pData; /* input data matrix pointer A  */
    float32_t   *pOut = pDst->pData;  /* output data matrix pointer */
    float32_t   *pInA0, *pInA1, *pInA2;
    f32x4_t    vecMac0, vecMac1, vecMac2;
    f32x4_t    vecInB;
    float32_t const *pSrBVec;

    pSrBVec = (float32_t const *) pInB;

    pInA0 = pInA;
    pInA1 = pInA0 + MATRIX_DIM3;
    pInA2 = pInA1 + MATRIX_DIM3;
    /* enable predication to disable last (4th) vector element */
    mve_pred16_t p0 = vctp32q(MATRIX_DIM3);

    /*
     * load {b0,0, b0,1, b0,2, 0}
     */
    vecInB = vldrwq_z_f32(pSrBVec, p0);  
    pSrBVec += MATRIX_DIM3;

    vecMac0 = vmulq(vecInB, *pInA0++);
    vecMac1 = vmulq(vecInB, *pInA1++);
    vecMac2 = vmulq(vecInB, *pInA2++);
    /*
     * load {b1,0, b1,1, b1,2, 0}
     */
    vecInB = vldrwq_z_f32(pSrBVec, p0);  
    pSrBVec += MATRIX_DIM3;

    vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
    vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
    vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
    /*
     * load {b2,0, b2,1 , b2,2, 0}
     */
    vecInB = vldrwq_z_f32(pSrBVec, p0);  
    pSrBVec += MATRIX_DIM3;

    vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
    vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
    vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);

    /* partial vector stores */
    vstrwq_p_f32(pOut, vecMac0, p0); 
    pOut += MATRIX_DIM3;
    vstrwq_p_f32(pOut, vecMac1, p0); 
    pOut += MATRIX_DIM3;
    vstrwq_p_f32(pOut, vecMac2, p0);
    /*
     * Return to application
     */
    return (ARM_MATH_SUCCESS);
}




__STATIC_INLINE arm_status arm_mat_mult_f32_4x4_mve(
    const arm_matrix_instance_f32 *pSrcA,
    const arm_matrix_instance_f32 *pSrcB,
    arm_matrix_instance_f32 *pDst)
{
    float32_t const *pSrBVec;
    float32_t *pInB = pSrcB->pData; /* input data matrix pointer B */
    float32_t *pInA = pSrcA->pData; /* input data matrix pointer A  */
    float32_t *pOut = pDst->pData;  /* output data matrix pointer */
    float32_t *pInA0, *pInA1, *pInA2, *pInA3;
    f32x4_t vecMac0, vecMac1, vecMac2, vecMac3;
    f32x4_t vecInB;

    pSrBVec = (float32_t const *) pInB;

    pInA0 = pInA;
    pInA1 = pInA0 + MATRIX_DIM4;
    pInA2 = pInA1 + MATRIX_DIM4;
    pInA3 = pInA2 + MATRIX_DIM4;
    /*
     * load {b0,0, b0,1, b0,2, b0,3}
     */
    vecInB = vld1q(pSrBVec);  
    pSrBVec += MATRIX_DIM4;

    vecMac0 = vmulq(vecInB, *pInA0++);
    vecMac1 = vmulq(vecInB, *pInA1++);
    vecMac2 = vmulq(vecInB, *pInA2++);
    vecMac3 = vmulq(vecInB, *pInA3++);
    /*
     * load {b1,0, b1,1, b1,2, b1,3}
     */
    vecInB = vld1q(pSrBVec);  
    pSrBVec += MATRIX_DIM4;

    vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
    vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
    vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
    vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++);
    /*
     * load {b2,0, b2,1, b2,2, b2,3}
     */
    vecInB = vld1q(pSrBVec);  
    pSrBVec += MATRIX_DIM4;

    vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
    vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
    vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
    vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++);
    /*
     * load {b3,0, b3,1, b3,2, b3,3}
     */
    vecInB = vld1q(pSrBVec);  
    pSrBVec += MATRIX_DIM4;

    vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
    vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
    vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
    vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++);

    vst1q(pOut, vecMac0);  
    pOut += MATRIX_DIM4;
    vst1q(pOut, vecMac1);  
    pOut += MATRIX_DIM4;
    vst1q(pOut, vecMac2);  
    pOut += MATRIX_DIM4;
    vst1q(pOut, vecMac3);
    /*
     * Return to application
     */
    return (ARM_MATH_SUCCESS);
}


/**
 * @brief Floating-point matrix multiplication.
 * @param[in]       *pSrcA points to the first input matrix structure
 * @param[in]       *pSrcB points to the second input matrix structure
 * @param[out]      *pDst points to output matrix structure
 * @return          The function returns either
 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
 */
arm_status arm_mat_mult_f32(
  const arm_matrix_instance_f32 * pSrcA,
  const arm_matrix_instance_f32 * pSrcB,
  arm_matrix_instance_f32 * pDst)
{
    float32_t  *pInB = pSrcB->pData;        /* input data matrix pointer B */
    float32_t  *pInA = pSrcA->pData;        /* input data matrix pointer A  */
    float32_t  *pOut = pDst->pData;         /* output data matrix pointer */
    int         numRowsA = pSrcA->numRows;  /* number of rows of input matrix A */
    int         numColsB = pSrcB->numCols;  /* number of columns of input matrix B */
    int         numColsA = pSrcA->numCols;  /* number of columns of input matrix A */
    uint32_t    blkCnt;                     /* loop counters */
    uint32_t    i;
    arm_status status; 

#ifdef ARM_MATH_MATRIX_CHECK

  /* Check for matrix mismatch condition */
  if ((pSrcA->numCols != pSrcB->numRows) ||
     (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
  {
    /* Set status as ARM_MATH_SIZE_MISMATCH */
    status = ARM_MATH_SIZE_MISMATCH;
  }
  else
#endif /*      #ifdef ARM_MATH_MATRIX_CHECK    */
  {
      /* small squared matrix specialized routines */
    if(numRowsA == numColsB && numColsB == numColsA) {
        if (numRowsA == 1)
        {
           pOut[0] = pInA[0] * pInB[0];
           return(ARM_MATH_SUCCESS);
        }
        else if(numRowsA == 2)
            return arm_mat_mult_f32_2x2_mve(pSrcA, pSrcB, pDst);
        else if(numRowsA == 3)
            return arm_mat_mult_f32_3x3_mve(pSrcA, pSrcB, pDst);
        else if(numRowsA == 4)
            return arm_mat_mult_f32_4x4_mve(pSrcA, pSrcB, pDst);
    }

    /* main loop process 4 rows */
    i = numRowsA >> 2;
    while (i > 0U)
    {
        float32_t *pInA0, *pInA1, *pInA2, *pInA3;
        float32_t *pInB0;
        float32_t *pOut0, *pOut1, *pOut2, *pOut3;
        f32x4_t vecMac0, vecMac1, vecMac2, vecMac3;
        f32x4_t vecInB;

        /* pointers to 4 consecutive output rows */
        pOut0 = pOut;
        pOut1 = pOut0 + numColsB;
        pOut2 = pOut1 + numColsB;
        pOut3 = pOut2 + numColsB;
        pInB0 = pInB;

        uint32_t  k = numColsB >> 2;
        while (k > 0U)
        {
            /* pointers to 4 consecutive Matrix A rows */
            pInA0 = pInA;
            pInA1 = pInA0 + numColsA;
            pInA2 = pInA1 + numColsA;
            pInA3 = pInA2 + numColsA;

            vecMac0 = vdupq_n_f32(0.0f);
            vecMac1 = vdupq_n_f32(0.0f);
            vecMac2 = vdupq_n_f32(0.0f);
            vecMac3 = vdupq_n_f32(0.0f);

            blkCnt = numColsA;

            while (blkCnt > 0U)
            {
                /*
                 * load {bi,4n+0, bi,4n+1, bi,4n+2, bi,4n+3}
                 */
                vecInB = *(f32x4_t *)pInB0; /* vldrwq_f32(pInB0, 0); */

                vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
                vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
                vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
                vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++);

                pInB0 = pInB0 + numColsB;
                /*
                 * Decrement the blockSize loop counter
                 */
                blkCnt--;
            }

            /* Store the results (4 x 4 block) in the destination buffer */
            vst1q(pOut0, vecMac0);  
            pOut0 += 4;
            vst1q(pOut1, vecMac1);  
            pOut1 += 4;
            vst1q(pOut2, vecMac2);  
            pOut2 += 4;
            vst1q(pOut3, vecMac3);  
            pOut3 += 4;

            /*
             * rewind
             */
            pInB0 -= (numColsB * numColsA) - 4;
            k--;
        }

        int       colBLeft = numColsB & 3;
        if (colBLeft)
        {
            pInA0 = pInA;
            pInA1 = pInA0 + numColsA;
            pInA2 = pInA1 + numColsA;
            pInA3 = pInA2 + numColsA;
            mve_pred16_t p0 = vctp32q(colBLeft);

            vecMac0 = vdupq_n_f32(0.0f);
            vecMac1 = vdupq_n_f32(0.0f);
            vecMac2 = vdupq_n_f32(0.0f);
            vecMac3 = vdupq_n_f32(0.0f);

            blkCnt = numColsA;

            while (blkCnt > 0U)
            {
                /*
                 * load {bi,4n+0, bi,4n+1, bi,4n+2, bi,4n+3}
                 */
                vecInB = vldrwq_z_f32(pInB0, p0);

                vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
                vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
                vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
                vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++);

                pInB0 = pInB0 + numColsB;
                /*
                 * Decrement the blockSize loop counter
                 */
                blkCnt--;
            }

            /* Store the results (4 x colBLeft block) in the destination buffer */
            vstrwq_p_f32(pOut0, vecMac0, p0);
            vstrwq_p_f32(pOut1, vecMac1, p0);
            vstrwq_p_f32(pOut2, vecMac2, p0);
            vstrwq_p_f32(pOut3, vecMac3, p0);
        }

        /* move to next rows */
        pInA += 4 * numColsA;
        pOut += 4 * numColsB;
        i--;
    }

    /*
     * non multiple of 4 rows for Matrix A
     * process single row
     */
    if (numRowsA & 3)
    {
        i = numRowsA & 3;
        while (i > 0U)
        {
            float32_t   *pInA0;
            float32_t   *pInB0;
            float32_t   *pOut0;
            f32x4_t    vecInB;
            f32x4_t    vecMac0;

            pOut0 = pOut;
            pInB0 = pInB;

            uint32_t       k = numColsB >> 2;
            while (k > 0U)
            {
                pInA0 = pInA;

                vecMac0 = vdupq_n_f32(0.0f);
                blkCnt = numColsA;
                while (blkCnt > 0U)
                {
                    /*
                     * load {bi,4n+0, bi,4n+1, bi,4n+2, bi,4n+3}
                     */
                    vecInB = *(f32x4_t *)pInB0; /* vldrwq_f32(pInB0, 0); */

                    vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);

                    pInB0 = pInB0 + numColsB;
                    /*
                     * Decrement the blockSize loop counter
                     */
                    blkCnt--;
                }

                /* Store the results (1 x 4 block) in the destination buffer */
                vst1q(pOut0, vecMac0);  
                pOut0 += 4;

                /*
                 * rewind
                 */
                pInB0 -= (numColsB * numColsA) - 4;
                k--;
            }

            int       colBLeft = numColsB & 3;
            if (colBLeft)
            {
                pInA0 = pInA;
                mve_pred16_t p0 = vctp32q(colBLeft);

                vecMac0 = vdupq_n_f32(0.0f);
                blkCnt = numColsA;
                while (blkCnt > 0U)
                {
                    /*
                     * load {bi,4n+0, bi,4n+1, bi,4n+2, bi,4n+3}
                     */
                    vecInB = vldrwq_z_f32(pInB0, p0);

                    vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);

                    pInB0 = pInB0 + numColsB;
                    /*
                     * Decrement the blockSize loop counter
                     */
                    blkCnt--;
                }
                /* Store the results (1 x colBLeft block) in the destination buffer */
                vstrwq_p_f32(pOut0, vecMac0, p0);
            }

            /* move to next row */
            pInA += 1 * numColsA;
            pOut += 1 * numColsB;
            i--;
        }
        
      }
      status = ARM_MATH_SUCCESS;
  }

  /* Return to application */
  return (status);
}
#else

#if defined(ARM_MATH_NEON)
/**
 * @brief Floating-point matrix multiplication.
 * @param[in]       *pSrcA points to the first input matrix structure
 * @param[in]       *pSrcB points to the second input matrix structure
 * @param[out]      *pDst points to output matrix structure
 * @return          The function returns either
 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
 */
arm_status arm_mat_mult_f32(
  const arm_matrix_instance_f32 * pSrcA,
  const arm_matrix_instance_f32 * pSrcB,
  arm_matrix_instance_f32 * pDst)
{
  float32_t *pIn1 = pSrcA->pData;                /* input data matrix pointer A */
  float32_t *pIn2 = pSrcB->pData;                /* input data matrix pointer B */
  float32_t *pInA = pSrcA->pData;                /* input data matrix pointer A  */
  float32_t *pOut = pDst->pData;                 /* output data matrix pointer */
  float32_t *px;                                 /* Temporary output data matrix pointer */
  float32_t sum;                                 /* Accumulator */
  uint16_t numRowsA = pSrcA->numRows;            /* number of rows of input matrix A */
  uint16_t numColsB = pSrcB->numCols;            /* number of columns of input matrix B */
  uint16_t numColsA = pSrcA->numCols;            /* number of columns of input matrix A */


  uint16_t col, i = 0U, j, row = numRowsA, rowCnt, colCnt;      /* loop counters */
  arm_status status;                             /* status of matrix multiplication */

  float32x4_t a0V, a1V, a2V, a3V, a4V, a5V, a6V, a7V;
  float32x4_t acc0,acc1,acc2,acc3,acc4,acc5,acc6,acc7,temp;
  float32x2_t accum = vdup_n_f32(0);
  float32_t *pIn1B = pSrcA->pData;    
  float32_t *pIn1C = pSrcA->pData;    
  float32_t *pIn1D = pSrcA->pData;  
  float32_t *pIn1E = pSrcA->pData; 
  float32_t *pIn1F = pSrcA->pData; 
  float32_t *pIn1G = pSrcA->pData; 
  float32_t *pIn1H = pSrcA->pData;   

  float32_t *pxB,*pxC, *pxD, *pxE, *pxF, *pxG, *pxH;                                 /* Temporary output data matrix pointer */
  float32_t sum0,sum1, sum2,sum3, sum4, sum5 , sum6, sum7;

#ifdef ARM_MATH_MATRIX_CHECK

  /* Check for matrix mismatch condition */
  if ((pSrcA->numCols != pSrcB->numRows) ||
     (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
  {
    /* Set status as ARM_MATH_SIZE_MISMATCH */
    status = ARM_MATH_SIZE_MISMATCH;
  }
  else
#endif /*      #ifdef ARM_MATH_MATRIX_CHECK    */
  {
    /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
    /* Row loop */
    rowCnt = row >> 3;

    while(rowCnt > 0)
    {
      /* Output pointer is set to starting address of the row being processed */
      px = pOut + GROUPOFROWS*i;
      pxB = px + numColsB;
      pxC = px + 2*numColsB;
      pxD = px + 3*numColsB;
      pxE = px + 4*numColsB;
      pxF = px + 5*numColsB;
      pxG = px + 6*numColsB;
      pxH = px + 7*numColsB;

      /* For every row wise process, the column loop counter is to be initiated */
      col = numColsB;

      /* For every row wise process, the pIn2 pointer is set
       ** to the starting address of the pSrcB data */
      pIn2 = pSrcB->pData;

      j = 0U;

      /* Column loop */
      do
      {
        /* Set the variable sum, that acts as accumulator, to zero */
        sum0 = 0.0f;
        sum1 = 0.0f;
        sum2 = 0.0f;
        sum3 = 0.0f;
        sum4 = 0.0f;
        sum5 = 0.0f;
        sum6 = 0.0f;
        sum7 = 0.0f;

        /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
        pIn1 = pInA;
        pIn1B = pIn1 + numColsA;
        pIn1C = pIn1 + 2*numColsA;
        pIn1D = pIn1 + 3*numColsA;
        pIn1E = pIn1 + 4*numColsA;
        pIn1F = pIn1 + 5*numColsA;
        pIn1G = pIn1 + 6*numColsA;
        pIn1H = pIn1 + 7*numColsA;

        acc0 = vdupq_n_f32(0.0);
        acc1 = vdupq_n_f32(0.0);
        acc2 = vdupq_n_f32(0.0);
        acc3 = vdupq_n_f32(0.0);
        acc4 = vdupq_n_f32(0.0);
        acc5 = vdupq_n_f32(0.0);
        acc6 = vdupq_n_f32(0.0);
        acc7 = vdupq_n_f32(0.0);

        /* Compute 4 MACs simultaneously. */
        colCnt = numColsA >> 2U;

        /* Matrix multiplication */
        while (colCnt > 0U)
        {
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
          a0V = vld1q_f32(pIn1);  
          a1V = vld1q_f32(pIn1B);  
          a2V = vld1q_f32(pIn1C); 
          a3V = vld1q_f32(pIn1D); 
          a4V = vld1q_f32(pIn1E); 
          a5V = vld1q_f32(pIn1F); 
          a6V = vld1q_f32(pIn1G); 
          a7V = vld1q_f32(pIn1H); 

	      pIn1 += 4;
          pIn1B += 4;
          pIn1C += 4;
          pIn1D += 4;
          pIn1E += 4;
          pIn1F += 4;
          pIn1G += 4;
          pIn1H += 4;
          
          temp = vsetq_lane_f32(*pIn2,temp,0);
          pIn2 += numColsB;
          temp = vsetq_lane_f32(*pIn2,temp,1);
          pIn2 += numColsB;
          temp = vsetq_lane_f32(*pIn2,temp,2);
          pIn2 += numColsB;
          temp = vsetq_lane_f32(*pIn2,temp,3);
          pIn2 += numColsB;

          acc0 = vmlaq_f32(acc0,a0V,temp);
          acc1 = vmlaq_f32(acc1,a1V,temp);
          acc2 = vmlaq_f32(acc2,a2V,temp);
          acc3 = vmlaq_f32(acc3,a3V,temp);
          acc4 = vmlaq_f32(acc4,a4V,temp);
          acc5 = vmlaq_f32(acc5,a5V,temp);
          acc6 = vmlaq_f32(acc6,a6V,temp);
          acc7 = vmlaq_f32(acc7,a7V,temp);

          /* Decrement the loop count */
          colCnt--;
        }

        accum = vpadd_f32(vget_low_f32(acc0), vget_high_f32(acc0));
        sum0 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);

        accum = vpadd_f32(vget_low_f32(acc1), vget_high_f32(acc1));
        sum1 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);

        accum = vpadd_f32(vget_low_f32(acc2), vget_high_f32(acc2));
        sum2 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);

        accum = vpadd_f32(vget_low_f32(acc3), vget_high_f32(acc3));
        sum3 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);

        accum = vpadd_f32(vget_low_f32(acc4), vget_high_f32(acc4));
        sum4 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);

        accum = vpadd_f32(vget_low_f32(acc5), vget_high_f32(acc5));
        sum5 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);

        accum = vpadd_f32(vget_low_f32(acc6), vget_high_f32(acc6));
        sum6 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);

        accum = vpadd_f32(vget_low_f32(acc7), vget_high_f32(acc7));
        sum7 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);

        /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
         ** No loop unrolling is used. */
        colCnt = numColsA & 3;

        while (colCnt > 0U)
        {
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
          sum0 += *pIn1++ * (*pIn2);
          sum1 += *pIn1B++ * (*pIn2);
          sum2 += *pIn1C++ * (*pIn2);
          sum3 += *pIn1D++ * (*pIn2);
          sum4 += *pIn1E++ * (*pIn2);
          sum5 += *pIn1F++ * (*pIn2);
          sum6 += *pIn1G++ * (*pIn2);
          sum7 += *pIn1H++ * (*pIn2);
          pIn2 += numColsB;

          /* Decrement the loop counter */
          colCnt--;
        }

        /* Store the result in the destination buffer */
        *px++ = sum0;
        *pxB++ = sum1;
        *pxC++ = sum2;
        *pxD++ = sum3;
        *pxE++ = sum4;
        *pxF++ = sum5;
        *pxG++ = sum6;
        *pxH++ = sum7;

        /* Update the pointer pIn2 to point to the  starting address of the next column */
        j++;
        pIn2 = pSrcB->pData + j;

        /* Decrement the column loop counter */
        col--;

      } while (col > 0U);

      /* Update the pointer pInA to point to the  starting address of the next row */
      i = i + numColsB;
      pInA = pInA + GROUPOFROWS*numColsA;

      /* Decrement the row loop counter */
      rowCnt--;
    } 

    /*

    i was the index of a group of rows computed by previous loop.
    Now i is the index of a row since below code is computing row per row
    and no more group of row per group of rows.

    */

    i = GROUPOFROWS*i;
    rowCnt = row & 7;

    while(rowCnt > 0)
    {
      /* Output pointer is set to starting address of the row being processed */
      px = pOut + i;

      /* For every row wise process, the column loop counter is to be initiated */
      col = numColsB;

      /* For every row wise process, the pIn2 pointer is set
       ** to the starting address of the pSrcB data */
      pIn2 = pSrcB->pData;

      j = 0U;

      /* Column loop */
      do
      {
        /* Set the variable sum, that acts as accumulator, to zero */
        sum = 0.0f;

        /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
        pIn1 = pInA;

        acc0 = vdupq_n_f32(0.0);

        /* Compute 4 MACs simultaneously. */
        colCnt = numColsA >> 2U;

        /* Matrix multiplication   */
        while (colCnt > 0U)
        {
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
          a0V = vld1q_f32(pIn1);  // load & separate real/imag pSrcA (de-interleave 2)
          pIn1 += 4;
          
          temp = vsetq_lane_f32(*pIn2,temp,0);
          pIn2 += numColsB;
          temp = vsetq_lane_f32(*pIn2,temp,1);
          pIn2 += numColsB;
          temp = vsetq_lane_f32(*pIn2,temp,2);
          pIn2 += numColsB;
          temp = vsetq_lane_f32(*pIn2,temp,3);
          pIn2 += numColsB;

          acc0 = vmlaq_f32(acc0,a0V,temp);

          /* Decrement the loop count */
          colCnt--;
        }

        accum = vpadd_f32(vget_low_f32(acc0), vget_high_f32(acc0));
        sum += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);

        /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
         ** No loop unrolling is used. */
        colCnt = numColsA % 0x4U;

        while (colCnt > 0U)
        {
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
          sum += *pIn1++ * (*pIn2);
          pIn2 += numColsB;

          /* Decrement the loop counter */
          colCnt--;
        }

        /* Store the result in the destination buffer */
        *px++ = sum;

        /* Update the pointer pIn2 to point to the  starting address of the next column */
        j++;
        pIn2 = pSrcB->pData + j;

        /* Decrement the column loop counter */
        col--;

      } while (col > 0U);


      /* Update the pointer pInA to point to the  starting address of the next row */
      i = i + numColsB;
      pInA = pInA + numColsA;

      /* Decrement the row loop counter */
      rowCnt--;

    } 
    /* Set status as ARM_MATH_SUCCESS */
    status = ARM_MATH_SUCCESS;
  }

  /* Return to application */
  return (status);
}
#else
/**
 * @brief Floating-point matrix multiplication.
 * @param[in]       *pSrcA points to the first input matrix structure
 * @param[in]       *pSrcB points to the second input matrix structure
 * @param[out]      *pDst points to output matrix structure
 * @return          The function returns either
 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
 */
arm_status arm_mat_mult_f32(
  const arm_matrix_instance_f32 * pSrcA,
  const arm_matrix_instance_f32 * pSrcB,
        arm_matrix_instance_f32 * pDst)
{
  float32_t *pIn1 = pSrcA->pData;                /* Input data matrix pointer A */
  float32_t *pIn2 = pSrcB->pData;                /* Input data matrix pointer B */
  float32_t *pInA = pSrcA->pData;                /* Input data matrix pointer A */
  float32_t *pInB = pSrcB->pData;                /* Input data matrix pointer B */
  float32_t *pOut = pDst->pData;                 /* Output data matrix pointer */
  float32_t *px;                                 /* Temporary output data matrix pointer */
  float32_t sum;                                 /* Accumulator */
  uint16_t numRowsA = pSrcA->numRows;            /* Number of rows of input matrix A */
  uint16_t numColsB = pSrcB->numCols;            /* Number of columns of input matrix B */
  uint16_t numColsA = pSrcA->numCols;            /* Number of columns of input matrix A */
  uint32_t col, i = 0U, row = numRowsA, colCnt;  /* Loop counters */
  arm_status status;                             /* Status of matrix multiplication */

#ifdef ARM_MATH_MATRIX_CHECK

  /* Check for matrix mismatch condition */
  if ((pSrcA->numCols != pSrcB->numRows) ||
      (pSrcA->numRows != pDst->numRows)  ||
      (pSrcB->numCols != pDst->numCols)    )
  {
    /* Set status as ARM_MATH_SIZE_MISMATCH */
    status = ARM_MATH_SIZE_MISMATCH;
  }
  else

#endif /* #ifdef ARM_MATH_MATRIX_CHECK */

  {
    /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
    /* row loop */
    do
    {
      /* Output pointer is set to starting address of row being processed */
      px = pOut + i;

      /* For every row wise process, column loop counter is to be initiated */
      col = numColsB;

      /* For every row wise process, pIn2 pointer is set to starting address of pSrcB data */
      pIn2 = pSrcB->pData;

      /* column loop */
      do
      {
        /* Set the variable sum, that acts as accumulator, to zero */
        sum = 0.0f;

        /* Initialize pointer pIn1 to point to starting address of column being processed */
        pIn1 = pInA;

#if defined (ARM_MATH_LOOPUNROLL)

        /* Loop unrolling: Compute 4 MACs at a time. */
        colCnt = numColsA >> 2U;

        /* matrix multiplication */
        while (colCnt > 0U)
        {
          /* c(m,p) = a(m,1) * b(1,p) + a(m,2) * b(2,p) + .... + a(m,n) * b(n,p) */

          /* Perform the multiply-accumulates */
          sum += *pIn1++ * *pIn2;
          pIn2 += numColsB;

          sum += *pIn1++ * *pIn2;
          pIn2 += numColsB;

          sum += *pIn1++ * *pIn2;
          pIn2 += numColsB;

          sum += *pIn1++ * *pIn2;
          pIn2 += numColsB;

          /* Decrement loop counter */
          colCnt--;
        }

        /* Loop unrolling: Compute remaining MACs */
        colCnt = numColsA % 0x4U;

#else

        /* Initialize cntCnt with number of columns */
        colCnt = numColsA;

#endif /* #if defined (ARM_MATH_LOOPUNROLL) */

        while (colCnt > 0U)
        {
          /* c(m,p) = a(m,1) * b(1,p) + a(m,2) * b(2,p) + .... + a(m,n) * b(n,p) */

          /* Perform the multiply-accumulates */
          sum += *pIn1++ * *pIn2;
          pIn2 += numColsB;

          /* Decrement loop counter */
          colCnt--;
        }

        /* Store result in destination buffer */
        *px++ = sum;

        /* Decrement column loop counter */
        col--;

        /* Update pointer pIn2 to point to starting address of next column */
        pIn2 = pInB + (numColsB - col);

      } while (col > 0U);

      /* Update pointer pInA to point to starting address of next row */
      i = i + numColsB;
      pInA = pInA + numColsA;

      /* Decrement row loop counter */
      row--;

    } while (row > 0U);

    /* Set status as ARM_MATH_SUCCESS */
    status = ARM_MATH_SUCCESS;
  }

  /* Return to application */
  return (status);
}

#endif /* #if defined(ARM_MATH_NEON) */
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */

/**
 * @} end of MatrixMult group
 */