summaryrefslogtreecommitdiffstats
path: root/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q15.c
diff options
context:
space:
mode:
Diffstat (limited to 'Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q15.c')
-rw-r--r--Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q15.c843
1 files changed, 843 insertions, 0 deletions
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q15.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q15.c
new file mode 100644
index 0000000..e078681
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q15.c
@@ -0,0 +1,843 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_mat_mult_q15.c
+ * Description: Q15 matrix multiplication
+ *
+ * $Date: 3 Nov 2021
+ * $Revision: V1.10.0
+ *
+ * Target Processor: Cortex-M and Cortex-A cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "dsp/matrix_functions.h"
+
+/**
+ @ingroup groupMatrix
+ */
+
+/**
+ @addtogroup MatrixMult
+ @{
+ */
+
+/**
+ @brief Q15 matrix multiplication.
+ @param[in] pSrcA points to the first input matrix structure
+ @param[in] pSrcB points to the second input matrix structure
+ @param[out] pDst points to output matrix structure
+ @param[in] pState points to the array for storing intermediate results
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : Operation successful
+ - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
+
+ @par Scaling and Overflow Behavior
+ The function is implemented using an internal 64-bit accumulator. The inputs to the
+ multiplications are in 1.15 format and multiplications yield a 2.30 result.
+ The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
+ This approach provides 33 guard bits and there is no risk of overflow.
+ The 34.30 result is then truncated to 34.15 format by discarding the low 15 bits
+ and then saturated to 1.15 format.
+ @par
+ Refer to \ref arm_mat_mult_fast_q15() for a faster but less precise version of this function.
+ */
+#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
+
+#define MVE_ASRL_SAT16(acc, shift) ((sqrshrl_sat48(acc, -(32-shift)) >> 32) & 0xffffffff)
+
+#define MATRIX_DIM2 2
+#define MATRIX_DIM3 3
+#define MATRIX_DIM4 4
+
+__STATIC_INLINE arm_status arm_mat_mult_q15_2x2_mve(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst)
+{
+ q15_t *pInB = pSrcB->pData; /* input data matrix pointer B */
+ q15_t *pInA = pSrcA->pData; /* input data matrix pointer A */
+ q15_t *pOut = pDst->pData; /* output data matrix pointer */
+ uint16x8_t vecColBOffs;
+ q15_t *pInA0 = pInA;
+ q15_t *pInA1 = pInA0 + MATRIX_DIM2;
+ q63_t acc0, acc1;
+ q15x8_t vecB, vecA0, vecA1;
+ mve_pred16_t p0 = vctp16q(MATRIX_DIM2);
+
+ vecColBOffs = vidupq_u16((uint32_t)0, 2); /* MATRIX_DIM2 */
+
+ pInB = pSrcB->pData;
+
+ vecB = vldrhq_gather_shifted_offset_z_s16((q15_t const *)pInB, vecColBOffs, p0);
+
+ vecA0 = vldrhq_s16(pInA0);
+ vecA1 = vldrhq_s16(pInA1);
+
+ acc0 = vmlaldavq(vecA0, vecB);
+ acc1 = vmlaldavq(vecA1, vecB);
+
+ acc0 = asrl(acc0, 15);
+ acc1 = asrl(acc1, 15);
+
+ pOut[0 * MATRIX_DIM2] = (q15_t) __SSAT(acc0, 16);
+ pOut[1 * MATRIX_DIM2] = (q15_t) __SSAT(acc1, 16);
+ pOut++;
+
+ /* move to next B column */
+ pInB = pInB + 1;
+
+ vecB = vldrhq_gather_shifted_offset_z_s16(pInB, vecColBOffs, p0);
+
+ acc0 = vmlaldavq(vecA0, vecB);
+ acc1 = vmlaldavq(vecA1, vecB);
+
+ acc0 = asrl(acc0, 15);
+ acc1 = asrl(acc1, 15);
+
+ pOut[0 * MATRIX_DIM2] = (q15_t) __SSAT(acc0, 16);
+ pOut[1 * MATRIX_DIM2] = (q15_t) __SSAT(acc1, 16);
+
+ /*
+ * Return to application
+ */
+ return (ARM_MATH_SUCCESS);
+}
+
+
+
+__STATIC_INLINE arm_status arm_mat_mult_q15_3x3_mve(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst)
+{
+ q15_t *pInB = pSrcB->pData; /* input data matrix pointer B */
+ q15_t *pInA = pSrcA->pData; /* input data matrix pointer A */
+ q15_t *pOut = pDst->pData; /* output data matrix pointer */
+ uint16x8_t vecColBOffs;
+ q15_t *pInA0 = pInA;
+ q15_t *pInA1 = pInA0 + MATRIX_DIM3;
+ q15_t *pInA2 = pInA1 + MATRIX_DIM3;
+ q63_t acc0, acc1, acc2;
+ q15x8_t vecB, vecA0, vecA1, vecA2;
+ mve_pred16_t p0 = vctp16q(MATRIX_DIM3);
+
+ vecColBOffs = vidupq_u16((uint32_t)0, 1);
+ vecColBOffs = vecColBOffs * MATRIX_DIM3;
+
+ pInB = pSrcB->pData;
+
+ vecB = vldrhq_gather_shifted_offset_z_s16((q15_t const *)pInB, vecColBOffs, p0);
+
+ vecA0 = vldrhq_s16(pInA0);
+ vecA1 = vldrhq_s16(pInA1);
+ vecA2 = vldrhq_s16(pInA2);
+
+ acc0 = vmlaldavq(vecA0, vecB);
+ acc1 = vmlaldavq(vecA1, vecB);
+ acc2 = vmlaldavq(vecA2, vecB);
+
+ acc0 = asrl(acc0, 15);
+ acc1 = asrl(acc1, 15);
+ acc2 = asrl(acc2, 15);
+
+ pOut[0 * MATRIX_DIM3] = (q15_t) __SSAT(acc0, 16);
+ pOut[1 * MATRIX_DIM3] = (q15_t) __SSAT(acc1, 16);
+ pOut[2 * MATRIX_DIM3] = (q15_t) __SSAT(acc2, 16);
+ pOut++;
+
+ /* move to next B column */
+ pInB = pInB + 1;
+
+ vecB = vldrhq_gather_shifted_offset_z_s16(pInB, vecColBOffs, p0);
+
+ acc0 = vmlaldavq(vecA0, vecB);
+ acc1 = vmlaldavq(vecA1, vecB);
+ acc2 = vmlaldavq(vecA2, vecB);
+
+ acc0 = asrl(acc0, 15);
+ acc1 = asrl(acc1, 15);
+ acc2 = asrl(acc2, 15);
+
+ pOut[0 * MATRIX_DIM3] = (q15_t) __SSAT(acc0, 16);
+ pOut[1 * MATRIX_DIM3] = (q15_t) __SSAT(acc1, 16);
+ pOut[2 * MATRIX_DIM3] = (q15_t) __SSAT(acc2, 16);
+ pOut++;
+
+ /* move to next B column */
+ pInB = pInB + 1;
+
+ vecB = vldrhq_gather_shifted_offset_z_s16(pInB, vecColBOffs, p0);
+
+ acc0 = vmlaldavq(vecA0, vecB);
+ acc1 = vmlaldavq(vecA1, vecB);
+ acc2 = vmlaldavq(vecA2, vecB);
+
+ acc0 = asrl(acc0, 15);
+ acc1 = asrl(acc1, 15);
+ acc2 = asrl(acc2, 15);
+
+ pOut[0 * MATRIX_DIM3] = (q15_t) __SSAT(acc0, 16);
+ pOut[1 * MATRIX_DIM3] = (q15_t) __SSAT(acc1, 16);
+ pOut[2 * MATRIX_DIM3] = (q15_t) __SSAT(acc2, 16);
+ /*
+ * Return to application
+ */
+ return (ARM_MATH_SUCCESS);
+}
+
+
+__STATIC_INLINE arm_status arm_mat_mult_q15_4x4_mve(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst)
+{
+ q15_t *pInB = pSrcB->pData; /* input data matrix pointer B */
+ q15_t *pInA = pSrcA->pData; /* input data matrix pointer A */
+ q15_t *pOut = pDst->pData; /* output data matrix pointer */
+ uint16x8_t vecColBOffs;
+ q15_t *pInA0 = pInA;
+ q15_t *pInA1 = pInA0 + MATRIX_DIM4;
+ q15_t *pInA2 = pInA1 + MATRIX_DIM4;
+ q15_t *pInA3 = pInA2 + MATRIX_DIM4;
+ q63_t acc0, acc1, acc2, acc3;
+ q15x8_t vecB, vecA0, vecA1, vecA2, vecA3;
+ mve_pred16_t p0 = vctp16q(MATRIX_DIM4);
+
+ vecColBOffs = vidupq_u16((uint32_t)0, 4);
+
+ pInB = pSrcB->pData;
+
+ vecB = vldrhq_gather_shifted_offset_z_s16((q15_t const *)pInB, vecColBOffs, p0);
+
+ vecA0 = vldrhq_s16(pInA0);
+ vecA1 = vldrhq_s16(pInA1);
+ vecA2 = vldrhq_s16(pInA2);
+ vecA3 = vldrhq_s16(pInA3);
+
+ acc0 = vmlaldavq(vecA0, vecB);
+ acc1 = vmlaldavq(vecA1, vecB);
+ acc2 = vmlaldavq(vecA2, vecB);
+ acc3 = vmlaldavq(vecA3, vecB);
+
+ acc0 = asrl(acc0, 15);
+ acc1 = asrl(acc1, 15);
+ acc2 = asrl(acc2, 15);
+ acc3 = asrl(acc3, 15);
+
+ pOut[0 * MATRIX_DIM4] = (q15_t) __SSAT(acc0, 16);
+ pOut[1 * MATRIX_DIM4] = (q15_t) __SSAT(acc1, 16);
+ pOut[2 * MATRIX_DIM4] = (q15_t) __SSAT(acc2, 16);
+ pOut[3 * MATRIX_DIM4] = (q15_t) __SSAT(acc3, 16);
+ pOut++;
+
+ /* move to next B column */
+ pInB = pInB + 1;
+
+ vecB = vldrhq_gather_shifted_offset_z_s16(pInB, vecColBOffs, p0);
+
+ acc0 = vmlaldavq(vecA0, vecB);
+ acc1 = vmlaldavq(vecA1, vecB);
+ acc2 = vmlaldavq(vecA2, vecB);
+ acc3 = vmlaldavq(vecA3, vecB);
+
+ acc0 = asrl(acc0, 15);
+ acc1 = asrl(acc1, 15);
+ acc2 = asrl(acc2, 15);
+ acc3 = asrl(acc3, 15);
+
+ pOut[0 * MATRIX_DIM4] = (q15_t) __SSAT(acc0, 16);
+ pOut[1 * MATRIX_DIM4] = (q15_t) __SSAT(acc1, 16);
+ pOut[2 * MATRIX_DIM4] = (q15_t) __SSAT(acc2, 16);
+ pOut[3 * MATRIX_DIM4] = (q15_t) __SSAT(acc3, 16);
+
+ pOut++;
+
+ /* move to next B column */
+ pInB = pInB + 1;
+
+ vecB = vldrhq_gather_shifted_offset_z_s16(pInB, vecColBOffs, p0);
+
+ acc0 = vmlaldavq(vecA0, vecB);
+ acc1 = vmlaldavq(vecA1, vecB);
+ acc2 = vmlaldavq(vecA2, vecB);
+ acc3 = vmlaldavq(vecA3, vecB);
+
+ acc0 = asrl(acc0, 15);
+ acc1 = asrl(acc1, 15);
+ acc2 = asrl(acc2, 15);
+ acc3 = asrl(acc3, 15);
+
+ pOut[0 * MATRIX_DIM4] = (q15_t) __SSAT(acc0, 16);
+ pOut[1 * MATRIX_DIM4] = (q15_t) __SSAT(acc1, 16);
+ pOut[2 * MATRIX_DIM4] = (q15_t) __SSAT(acc2, 16);
+ pOut[3 * MATRIX_DIM4] = (q15_t) __SSAT(acc3, 16);
+
+ pOut++;
+
+ /* move to next B column */
+ pInB = pInB + 1;
+
+ vecB = vldrhq_gather_shifted_offset_z_s16(pInB, vecColBOffs, p0);
+
+ acc0 = vmlaldavq(vecA0, vecB);
+ acc1 = vmlaldavq(vecA1, vecB);
+ acc2 = vmlaldavq(vecA2, vecB);
+ acc3 = vmlaldavq(vecA3, vecB);
+
+ acc0 = asrl(acc0, 15);
+ acc1 = asrl(acc1, 15);
+ acc2 = asrl(acc2, 15);
+ acc3 = asrl(acc3, 15);
+
+ pOut[0 * MATRIX_DIM4] = (q15_t) __SSAT(acc0, 16);
+ pOut[1 * MATRIX_DIM4] = (q15_t) __SSAT(acc1, 16);
+ pOut[2 * MATRIX_DIM4] = (q15_t) __SSAT(acc2, 16);
+ pOut[3 * MATRIX_DIM4] = (q15_t) __SSAT(acc3, 16);
+ /*
+ * Return to application
+ */
+ return (ARM_MATH_SUCCESS);
+}
+
+
+arm_status arm_mat_mult_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst,
+ q15_t * pState)
+{
+ q15_t *pInA = pSrcA->pData; /* input data matrix pointer A */
+ q15_t *pInB = pSrcB->pData; /* input data matrix pointer B */
+ q15_t *pInA2;
+ q15_t *pInB2;
+ q15_t *px; /* Temporary output data matrix pointer */
+ q15_t *px2; /* Temporary output data matrix pointer */
+ uint32_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
+ uint32_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
+ uint32_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
+ uint32_t numRowsB = pSrcB->numRows; /* number of rows of input matrix A */
+ uint32_t col, i = 0u, j, row = numRowsB; /* loop counters */
+ q15_t *pSrcBT = pState; /* input data matrix pointer for transpose */
+ uint32_t blkCnt; /* loop counters */
+ arm_status status; /* Status of matrix multiplication */
+ arm_matrix_instance_q15 BT;
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrcA->numCols != pSrcB->numRows) ||
+ (pSrcA->numRows != pDst->numRows) ||
+ (pSrcB->numCols != pDst->numCols) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+#endif
+ {
+ /* small squared matrix specialized routines */
+ if (numRowsA == numColsB && numColsB == numColsA) {
+
+ if (numRowsA == 1) {
+ q63_t sum;
+ sum = pInA[0] * pInB[0];
+ pDst->pData[0] = (q15_t) __SSAT((sum >> 15), 16);
+ return (ARM_MATH_SUCCESS);
+ } else if (numRowsA == 2)
+ return arm_mat_mult_q15_2x2_mve(pSrcA, pSrcB, pDst);
+ else if (numRowsA == 3)
+ return arm_mat_mult_q15_3x3_mve(pSrcA, pSrcB, pDst);
+ else if (numRowsA == 4)
+ return arm_mat_mult_q15_4x4_mve(pSrcA, pSrcB, pDst);
+ }
+
+ /*
+ * Matrix transpose
+ */
+
+ BT.numRows = numColsB;
+ BT.numCols = numRowsB;
+ BT.pData = pSrcBT;
+
+ arm_mat_trans_q15(pSrcB, &BT);
+
+
+ /*
+ * Reset the variables for the usage in the following multiplication process
+ */
+ i = 0;
+ row = numRowsA >> 1;
+ px = pDst->pData;
+ px2 = px + numColsB;
+
+ /*
+ * The following loop performs the dot-product of each row in pSrcA with each column in pSrcB
+ */
+
+ /*
+ * row loop
+ */
+ while (row > 0u) {
+ /*
+ * For every row wise process, the column loop counter is to be initiated
+ */
+ col = numColsB >> 1;
+ /*
+ * For every row wise process, the pIn2 pointer is set
+ * to the starting address of the transposed pSrcB data
+ */
+ pInB = pSrcBT;
+ pInB2 = pInB + numRowsB;
+ j = 0;
+
+ /*
+ * column loop
+ */
+ while (col > 0u) {
+ q15_t const *pSrcAVec, *pSrcBVec, *pSrcA2Vec, *pSrcB2Vec;
+ q15x8_t vecA, vecA2, vecB, vecB2;
+ q63_t acc0, acc1, acc2, acc3;
+
+ /*
+ * Initiate the pointer pIn1 to point to the starting address of the column being processed
+ */
+ pInA = pSrcA->pData + i;
+ pInA2 = pInA + numColsA;
+ pInB = pSrcBT + j;
+ pInB2 = pInB + numRowsB;
+
+
+ pSrcAVec = (q15_t const *) pInA;
+ pSrcA2Vec = (q15_t const *) pInA2;
+ pSrcBVec = (q15_t const *) pInB;
+ pSrcB2Vec = (q15_t const *) pInB2;
+
+ acc0 = 0LL;
+ acc1 = 0LL;
+ acc2 = 0LL;
+ acc3 = 0LL;
+
+ vecA = vld1q(pSrcAVec);
+ pSrcAVec += 8;
+
+ blkCnt = numColsA / 8;
+ while (blkCnt > 0U) {
+ vecB = vld1q(pSrcBVec);
+ pSrcBVec += 8;
+ acc0 = vmlaldavaq(acc0, vecA, vecB);
+ vecA2 = vld1q(pSrcA2Vec);
+ pSrcA2Vec += 8;
+ acc1 = vmlaldavaq(acc1, vecA2, vecB);
+ vecB2 = vld1q(pSrcB2Vec);
+ pSrcB2Vec += 8;
+ acc2 = vmlaldavaq(acc2, vecA, vecB2);
+ vecA = vld1q(pSrcAVec);
+ pSrcAVec += 8;
+ acc3 = vmlaldavaq(acc3, vecA2, vecB2);
+
+ blkCnt--;
+ }
+ /*
+ * tail
+ */
+ blkCnt = numColsA & 7;
+ if (blkCnt > 0U) {
+ mve_pred16_t p0 = vctp16q(blkCnt);
+ vecB = vld1q(pSrcBVec);
+ acc0 = vmlaldavaq_p(acc0, vecA, vecB, p0);
+ vecA2 = vld1q(pSrcA2Vec);
+ acc1 = vmlaldavaq_p(acc1, vecA2, vecB, p0);
+ vecB2 = vld1q(pSrcB2Vec);
+ acc2 = vmlaldavaq_p(acc2, vecA, vecB2, p0);
+ vecA = vld1q(pSrcAVec);
+ acc3 = vmlaldavaq_p(acc3, vecA2, vecB2, p0);
+ }
+
+ *px++ = (q15_t) MVE_ASRL_SAT16(acc0, 15);
+ *px++ = (q15_t) MVE_ASRL_SAT16(acc2, 15);
+ *px2++ = (q15_t) MVE_ASRL_SAT16(acc1, 15);
+ *px2++ = (q15_t) MVE_ASRL_SAT16(acc3, 15);
+ j += numRowsB * 2;
+ /*
+ * Decrement the column loop counter
+ */
+ col--;
+
+ }
+
+ i = i + numColsA * 2;
+ px = px2 + (numColsB & 1u);
+ px2 = px + numColsB;
+ /*
+ * Decrement the row loop counter
+ */
+ row--;
+ }
+
+ /*
+ * Compute remaining row and/or column below
+ */
+
+ if (numColsB & 1u) {
+ row = numRowsA & (~0x1); //avoid redundant computation
+ px = pDst->pData + numColsB - 1;
+ i = 0;
+
+ /*
+ * row loop
+ */
+ while (row > 0) {
+ q15_t const *pSrcAVec, *pSrcBVec;
+ q15x8_t vecA, vecB;
+ q63_t acc0;
+
+ /*
+ * point to last column in matrix B
+ */
+ pInB = pSrcBT + numRowsB * (numColsB - 1);
+ pInA = pSrcA->pData + i;
+
+ pSrcAVec = (q15_t const *) pInA;
+ pSrcBVec = (q15_t const *) pInB;
+
+ acc0 = 0LL;
+ blkCnt = (numColsA) / 8;
+ while (blkCnt > 0U) {
+ vecA = vld1q(pSrcAVec);
+ pSrcAVec += 8;
+ vecB = vld1q(pSrcBVec);
+ pSrcBVec += 8;
+ acc0 = vmlaldavaq(acc0, vecA, vecB);
+
+ blkCnt--;
+ }
+ /*
+ * tail
+ */
+ blkCnt = (numColsA & 7);
+ if (blkCnt > 0U) {
+ mve_pred16_t p0 = vctp16q(blkCnt);
+ vecA = vld1q(pSrcAVec);
+ vecB = vld1q(pSrcBVec);
+ acc0 = vmlaldavaq_p(acc0, vecA, vecB, p0);
+ }
+
+ *px = (q15_t) MVE_ASRL_SAT16(acc0, 15);
+
+ px += numColsB;
+
+ i += numColsA;
+ /*
+ * Decrement the row loop counter
+ */
+ row--;
+ }
+ }
+
+ if (numRowsA & 1u) {
+ col = numColsB;
+ i = 0u;
+ /*
+ * point to last row in output matrix
+ */
+ px = pDst->pData + (numColsB) * (numRowsA - 1);
+ /*
+ * col loop
+ */
+ while (col > 0) {
+ q15_t const *pSrcAVec, *pSrcBVec;
+ q15x8_t vecA, vecB;
+ q63_t acc0;
+
+ /*
+ * point to last row in matrix A
+ */
+ pInA = pSrcA->pData + (numRowsA - 1) * numColsA;
+ pInB = pSrcBT + i;
+
+ /*
+ * Set the variable sum, that acts as accumulator, to zero
+ */
+ pSrcAVec = (q15_t const *) pInA;
+ pSrcBVec = (q15_t const *) pInB;
+ acc0 = 0LL;
+
+ blkCnt = ((numColsA) / 8);
+ while (blkCnt > 0U) {
+ vecA = vld1q(pSrcAVec);
+ pSrcAVec += 8;
+ vecB = vld1q(pSrcBVec);
+ pSrcBVec += 8;
+ acc0 = vmlaldavaq(acc0, vecA, vecB);
+
+ blkCnt--;
+ }
+ /*
+ * tail
+ */
+ blkCnt = (numColsA & 7);
+ if (blkCnt > 0U) {
+ mve_pred16_t p0 = vctp16q(blkCnt);
+ vecA = vld1q(pSrcAVec);
+ vecB = vld1q(pSrcBVec);
+ acc0 = vmlaldavaq_p(acc0, vecA, vecB, p0);
+ }
+
+ *px++ = (q15_t) MVE_ASRL_SAT16(acc0, 15);
+
+ i += numColsA;
+
+ /*
+ * Decrement the col loop counter
+ */
+ col--;
+ }
+ }
+
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+ /* Return to application */
+ return (status);
+}
+
+#else
+arm_status arm_mat_mult_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst,
+ q15_t * pState)
+{
+ q63_t sum; /* Accumulator */
+
+#if defined (ARM_MATH_DSP) /* != CM0 */
+
+ q15_t *pSrcBT = pState; /* Input data matrix pointer for transpose */
+ q15_t *pInA = pSrcA->pData; /* Input data matrix pointer A of Q15 type */
+ q15_t *pInB = pSrcB->pData; /* Input data matrix pointer B of Q15 type */
+ q15_t *px; /* Temporary output data matrix pointer */
+ uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
+ uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
+ uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
+ uint16_t numRowsB = pSrcB->numRows; /* Number of rows of input matrix B */
+ uint32_t col, i = 0U, row = numRowsB, colCnt; /* Loop counters */
+ arm_status status; /* Status of matrix multiplication */
+
+ q31_t inA1, inB1, inA2, inB2;
+ arm_matrix_instance_q15 BT;
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrcA->numCols != pSrcB->numRows) ||
+ (pSrcA->numRows != pDst->numRows) ||
+ (pSrcB->numCols != pDst->numCols) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+ {
+
+ BT.numRows = numColsB;
+ BT.numCols = numRowsB;
+ BT.pData = pSrcBT;
+
+ arm_mat_trans_q15(pSrcB,&BT);
+ /* Reset variables for usage in following multiplication process */
+ row = numRowsA;
+ i = 0U;
+ px = pDst->pData;
+
+ /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
+ /* row loop */
+ do
+ {
+ /* For every row wise process, column loop counter is to be initiated */
+ col = numColsB;
+
+ /* For every row wise process, pIn2 pointer is set to starting address of transposed pSrcB data */
+ pInB = pSrcBT;
+
+ /* column loop */
+ do
+ {
+ /* Set variable sum, that acts as accumulator, to zero */
+ sum = 0;
+
+ /* Initiate pointer pInA to point to starting address of column being processed */
+ pInA = pSrcA->pData + i;
+
+ /* Apply loop unrolling and compute 2 MACs simultaneously. */
+ colCnt = numColsA >> 2U;
+
+ /* matrix multiplication */
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
+
+ /* read real and imag values from pSrcA and pSrcB buffer */
+ inA1 = read_q15x2_ia (&pInA);
+ inB1 = read_q15x2_ia (&pInB);
+
+ inA2 = read_q15x2_ia (&pInA);
+ inB2 = read_q15x2_ia (&pInB);
+
+ /* Multiply and Accumulates */
+ sum = __SMLALD(inA1, inB1, sum);
+ sum = __SMLALD(inA2, inB2, sum);
+
+ /* Decrement loop counter */
+ colCnt--;
+ }
+
+ /* process remaining column samples */
+ colCnt = numColsA % 0x4U;
+
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
+ sum += *pInA++ * *pInB++;
+
+ /* Decrement loop counter */
+ colCnt--;
+ }
+
+ /* Saturate and store result in destination buffer */
+ *px = (q15_t) (__SSAT((sum >> 15), 16));
+ px++;
+
+ /* Decrement column loop counter */
+ col--;
+
+ } while (col > 0U);
+
+ i = i + numColsA;
+
+ /* Decrement row loop counter */
+ row--;
+
+ } while (row > 0U);
+
+#else /* #if defined (ARM_MATH_DSP) */
+
+ q15_t *pIn1 = pSrcA->pData; /* Input data matrix pointer A */
+ q15_t *pIn2 = pSrcB->pData; /* Input data matrix pointer B */
+ q15_t *pInA = pSrcA->pData; /* Input data matrix pointer A of Q15 type */
+ q15_t *pInB = pSrcB->pData; /* Input data matrix pointer B of Q15 type */
+ q15_t *pOut = pDst->pData; /* Output data matrix pointer */
+ q15_t *px; /* Temporary output data matrix pointer */
+ uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
+ uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
+ uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
+ uint32_t col, i = 0U, row = numRowsA, colCnt; /* Loop counters */
+ arm_status status; /* Status of matrix multiplication */
+ (void)pState;
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrcA->numCols != pSrcB->numRows) ||
+ (pSrcA->numRows != pDst->numRows) ||
+ (pSrcB->numCols != pDst->numCols) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+ /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
+ /* row loop */
+ do
+ {
+ /* Output pointer is set to starting address of the row being processed */
+ px = pOut + i;
+
+ /* For every row wise process, column loop counter is to be initiated */
+ col = numColsB;
+
+ /* For every row wise process, pIn2 pointer is set to starting address of pSrcB data */
+ pIn2 = pSrcB->pData;
+
+ /* column loop */
+ do
+ {
+ /* Set the variable sum, that acts as accumulator, to zero */
+ sum = 0;
+
+ /* Initiate pointer pIn1 to point to starting address of pSrcA */
+ pIn1 = pInA;
+
+ /* Matrix A columns number of MAC operations are to be performed */
+ colCnt = numColsA;
+
+ /* matrix multiplication */
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
+
+ /* Perform multiply-accumulates */
+ sum += (q31_t) * pIn1++ * *pIn2;
+ pIn2 += numColsB;
+
+ /* Decrement loop counter */
+ colCnt--;
+ }
+
+ /* Convert result from 34.30 to 1.15 format and store saturated value in destination buffer */
+
+ /* Saturate and store result in destination buffer */
+ *px++ = (q15_t) __SSAT((sum >> 15), 16);
+
+ /* Decrement column loop counter */
+ col--;
+
+ /* Update pointer pIn2 to point to starting address of next column */
+ pIn2 = pInB + (numColsB - col);
+
+ } while (col > 0U);
+
+ /* Update pointer pSrcA to point to starting address of next row */
+ i = i + numColsB;
+ pInA = pInA + numColsA;
+
+ /* Decrement row loop counter */
+ row--;
+
+ } while (row > 0U);
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+#endif /* defined(ARM_MATH_MVEI) */
+
+/**
+ @} end of MatrixMult group
+ */