summaryrefslogtreecommitdiffstats
path: root/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q15.c
blob: e078681d2aeb0472ff060c5fd9df46d66f51ba78 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
/* ----------------------------------------------------------------------
 * Project:      CMSIS DSP Library
 * Title:        arm_mat_mult_q15.c
 * Description:  Q15 matrix multiplication
 *
 * $Date:        3 Nov 2021
 * $Revision:    V1.10.0
 *
 * Target Processor: Cortex-M and Cortex-A cores
 * -------------------------------------------------------------------- */
/*
 * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "dsp/matrix_functions.h"

/**
  @ingroup groupMatrix
 */

/**
  @addtogroup MatrixMult
  @{
 */

/**
  @brief         Q15 matrix multiplication.
  @param[in]     pSrcA      points to the first input matrix structure
  @param[in]     pSrcB      points to the second input matrix structure
  @param[out]    pDst       points to output matrix structure
  @param[in]     pState     points to the array for storing intermediate results
  @return        execution status
                   - \ref ARM_MATH_SUCCESS       : Operation successful
                   - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed

  @par           Scaling and Overflow Behavior
                   The function is implemented using an internal 64-bit accumulator. The inputs to the
                   multiplications are in 1.15 format and multiplications yield a 2.30 result.
                   The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
                   This approach provides 33 guard bits and there is no risk of overflow.
                   The 34.30 result is then truncated to 34.15 format by discarding the low 15 bits
                   and then saturated to 1.15 format.
  @par
                   Refer to \ref arm_mat_mult_fast_q15() for a faster but less precise version of this function.
 */
#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)

#define MVE_ASRL_SAT16(acc, shift)          ((sqrshrl_sat48(acc, -(32-shift)) >> 32) & 0xffffffff)

#define MATRIX_DIM2 2
#define MATRIX_DIM3 3
#define MATRIX_DIM4 4

__STATIC_INLINE arm_status arm_mat_mult_q15_2x2_mve(
    const arm_matrix_instance_q15 * pSrcA,
    const arm_matrix_instance_q15 * pSrcB,
    arm_matrix_instance_q15 * pDst)
{
    q15_t       *pInB = pSrcB->pData;  /* input data matrix pointer B */
    q15_t       *pInA = pSrcA->pData;  /* input data matrix pointer A */
    q15_t       *pOut = pDst->pData;   /* output data matrix pointer */
    uint16x8_t  vecColBOffs;
    q15_t       *pInA0 = pInA;
    q15_t       *pInA1 = pInA0 + MATRIX_DIM2;
    q63_t        acc0, acc1;
    q15x8_t     vecB, vecA0, vecA1;
    mve_pred16_t p0 = vctp16q(MATRIX_DIM2);

    vecColBOffs = vidupq_u16((uint32_t)0, 2); /* MATRIX_DIM2 */

    pInB = pSrcB->pData;

    vecB = vldrhq_gather_shifted_offset_z_s16((q15_t const *)pInB, vecColBOffs, p0);

    vecA0 = vldrhq_s16(pInA0);
    vecA1 = vldrhq_s16(pInA1);

    acc0 = vmlaldavq(vecA0, vecB);
    acc1 = vmlaldavq(vecA1, vecB);

    acc0 = asrl(acc0, 15);
    acc1 = asrl(acc1, 15);

    pOut[0 * MATRIX_DIM2] = (q15_t) __SSAT(acc0, 16);
    pOut[1 * MATRIX_DIM2] = (q15_t) __SSAT(acc1, 16);
    pOut++;

    /* move to next B column */
    pInB = pInB + 1;

    vecB = vldrhq_gather_shifted_offset_z_s16(pInB, vecColBOffs, p0);

    acc0 = vmlaldavq(vecA0, vecB);
    acc1 = vmlaldavq(vecA1, vecB);

    acc0 = asrl(acc0, 15);
    acc1 = asrl(acc1, 15);

    pOut[0 * MATRIX_DIM2] = (q15_t) __SSAT(acc0, 16);
    pOut[1 * MATRIX_DIM2] = (q15_t) __SSAT(acc1, 16);

    /*
     * Return to application
     */
    return (ARM_MATH_SUCCESS);
}



__STATIC_INLINE arm_status arm_mat_mult_q15_3x3_mve(
    const arm_matrix_instance_q15 * pSrcA,
    const arm_matrix_instance_q15 * pSrcB,
    arm_matrix_instance_q15 * pDst)
{
    q15_t       *pInB = pSrcB->pData;  /* input data matrix pointer B */
    q15_t       *pInA = pSrcA->pData;  /* input data matrix pointer A */
    q15_t       *pOut = pDst->pData;   /* output data matrix pointer */
    uint16x8_t vecColBOffs;
    q15_t       *pInA0 = pInA;
    q15_t       *pInA1 = pInA0 + MATRIX_DIM3;
    q15_t       *pInA2 = pInA1 + MATRIX_DIM3;
    q63_t        acc0, acc1, acc2;
    q15x8_t    vecB, vecA0, vecA1, vecA2;
    mve_pred16_t p0 = vctp16q(MATRIX_DIM3);

    vecColBOffs = vidupq_u16((uint32_t)0, 1);
    vecColBOffs = vecColBOffs * MATRIX_DIM3;

    pInB = pSrcB->pData;

    vecB = vldrhq_gather_shifted_offset_z_s16((q15_t const *)pInB, vecColBOffs, p0);

    vecA0 = vldrhq_s16(pInA0);
    vecA1 = vldrhq_s16(pInA1);
    vecA2 = vldrhq_s16(pInA2);

    acc0 = vmlaldavq(vecA0, vecB);
    acc1 = vmlaldavq(vecA1, vecB);
    acc2 = vmlaldavq(vecA2, vecB);

    acc0 = asrl(acc0, 15);
    acc1 = asrl(acc1, 15);
    acc2 = asrl(acc2, 15);

    pOut[0 * MATRIX_DIM3] = (q15_t) __SSAT(acc0, 16);
    pOut[1 * MATRIX_DIM3] = (q15_t) __SSAT(acc1, 16);
    pOut[2 * MATRIX_DIM3] = (q15_t) __SSAT(acc2, 16);
    pOut++;

    /* move to next B column */
    pInB = pInB + 1;

    vecB = vldrhq_gather_shifted_offset_z_s16(pInB, vecColBOffs, p0);

    acc0 = vmlaldavq(vecA0, vecB);
    acc1 = vmlaldavq(vecA1, vecB);
    acc2 = vmlaldavq(vecA2, vecB);

    acc0 = asrl(acc0, 15);
    acc1 = asrl(acc1, 15);
    acc2 = asrl(acc2, 15);

    pOut[0 * MATRIX_DIM3] = (q15_t) __SSAT(acc0, 16);
    pOut[1 * MATRIX_DIM3] = (q15_t) __SSAT(acc1, 16);
    pOut[2 * MATRIX_DIM3] = (q15_t) __SSAT(acc2, 16);
    pOut++;

    /* move to next B column */
    pInB = pInB + 1;

    vecB = vldrhq_gather_shifted_offset_z_s16(pInB, vecColBOffs, p0);

    acc0 = vmlaldavq(vecA0, vecB);
    acc1 = vmlaldavq(vecA1, vecB);
    acc2 = vmlaldavq(vecA2, vecB);

    acc0 = asrl(acc0, 15);
    acc1 = asrl(acc1, 15);
    acc2 = asrl(acc2, 15);

    pOut[0 * MATRIX_DIM3] = (q15_t) __SSAT(acc0, 16);
    pOut[1 * MATRIX_DIM3] = (q15_t) __SSAT(acc1, 16);
    pOut[2 * MATRIX_DIM3] = (q15_t) __SSAT(acc2, 16);
    /*
     * Return to application
     */
    return (ARM_MATH_SUCCESS);
}


__STATIC_INLINE arm_status arm_mat_mult_q15_4x4_mve(
    const arm_matrix_instance_q15 * pSrcA,
    const arm_matrix_instance_q15 * pSrcB,
    arm_matrix_instance_q15 * pDst)
{
    q15_t       *pInB = pSrcB->pData;  /* input data matrix pointer B */
    q15_t       *pInA = pSrcA->pData;  /* input data matrix pointer A */
    q15_t       *pOut = pDst->pData;   /* output data matrix pointer */
    uint16x8_t vecColBOffs;
    q15_t       *pInA0 = pInA;
    q15_t       *pInA1 = pInA0 + MATRIX_DIM4;
    q15_t       *pInA2 = pInA1 + MATRIX_DIM4;
    q15_t       *pInA3 = pInA2 + MATRIX_DIM4;
    q63_t        acc0, acc1, acc2, acc3;
    q15x8_t     vecB, vecA0, vecA1, vecA2, vecA3;
    mve_pred16_t p0 = vctp16q(MATRIX_DIM4);

    vecColBOffs = vidupq_u16((uint32_t)0, 4);

    pInB = pSrcB->pData;

    vecB = vldrhq_gather_shifted_offset_z_s16((q15_t const *)pInB, vecColBOffs, p0);

    vecA0 = vldrhq_s16(pInA0);
    vecA1 = vldrhq_s16(pInA1);
    vecA2 = vldrhq_s16(pInA2);
    vecA3 = vldrhq_s16(pInA3);

    acc0 = vmlaldavq(vecA0, vecB);
    acc1 = vmlaldavq(vecA1, vecB);
    acc2 = vmlaldavq(vecA2, vecB);
    acc3 = vmlaldavq(vecA3, vecB);

    acc0 = asrl(acc0, 15);
    acc1 = asrl(acc1, 15);
    acc2 = asrl(acc2, 15);
    acc3 = asrl(acc3, 15);

    pOut[0 * MATRIX_DIM4] = (q15_t) __SSAT(acc0, 16);
    pOut[1 * MATRIX_DIM4] = (q15_t) __SSAT(acc1, 16);
    pOut[2 * MATRIX_DIM4] = (q15_t) __SSAT(acc2, 16);
    pOut[3 * MATRIX_DIM4] = (q15_t) __SSAT(acc3, 16);
    pOut++;

    /* move to next B column */
    pInB = pInB + 1;

    vecB = vldrhq_gather_shifted_offset_z_s16(pInB, vecColBOffs, p0);

    acc0 = vmlaldavq(vecA0, vecB);
    acc1 = vmlaldavq(vecA1, vecB);
    acc2 = vmlaldavq(vecA2, vecB);
    acc3 = vmlaldavq(vecA3, vecB);

    acc0 = asrl(acc0, 15);
    acc1 = asrl(acc1, 15);
    acc2 = asrl(acc2, 15);
    acc3 = asrl(acc3, 15);

    pOut[0 * MATRIX_DIM4] = (q15_t) __SSAT(acc0, 16);
    pOut[1 * MATRIX_DIM4] = (q15_t) __SSAT(acc1, 16);
    pOut[2 * MATRIX_DIM4] = (q15_t) __SSAT(acc2, 16);
    pOut[3 * MATRIX_DIM4] = (q15_t) __SSAT(acc3, 16);

    pOut++;

    /* move to next B column */
    pInB = pInB + 1;

    vecB = vldrhq_gather_shifted_offset_z_s16(pInB, vecColBOffs, p0);

    acc0 = vmlaldavq(vecA0, vecB);
    acc1 = vmlaldavq(vecA1, vecB);
    acc2 = vmlaldavq(vecA2, vecB);
    acc3 = vmlaldavq(vecA3, vecB);

    acc0 = asrl(acc0, 15);
    acc1 = asrl(acc1, 15);
    acc2 = asrl(acc2, 15);
    acc3 = asrl(acc3, 15);

    pOut[0 * MATRIX_DIM4] = (q15_t) __SSAT(acc0, 16);
    pOut[1 * MATRIX_DIM4] = (q15_t) __SSAT(acc1, 16);
    pOut[2 * MATRIX_DIM4] = (q15_t) __SSAT(acc2, 16);
    pOut[3 * MATRIX_DIM4] = (q15_t) __SSAT(acc3, 16);

    pOut++;

    /* move to next B column */
    pInB = pInB + 1;

    vecB = vldrhq_gather_shifted_offset_z_s16(pInB, vecColBOffs, p0);

    acc0 = vmlaldavq(vecA0, vecB);
    acc1 = vmlaldavq(vecA1, vecB);
    acc2 = vmlaldavq(vecA2, vecB);
    acc3 = vmlaldavq(vecA3, vecB);

    acc0 = asrl(acc0, 15);
    acc1 = asrl(acc1, 15);
    acc2 = asrl(acc2, 15);
    acc3 = asrl(acc3, 15);

    pOut[0 * MATRIX_DIM4] = (q15_t) __SSAT(acc0, 16);
    pOut[1 * MATRIX_DIM4] = (q15_t) __SSAT(acc1, 16);
    pOut[2 * MATRIX_DIM4] = (q15_t) __SSAT(acc2, 16);
    pOut[3 * MATRIX_DIM4] = (q15_t) __SSAT(acc3, 16);
    /*
     * Return to application
     */
    return (ARM_MATH_SUCCESS);
}


arm_status arm_mat_mult_q15(
    const arm_matrix_instance_q15 * pSrcA,
    const arm_matrix_instance_q15 * pSrcB,
    arm_matrix_instance_q15 * pDst,
    q15_t * pState)
{
    q15_t          *pInA = pSrcA->pData;        /* input data matrix pointer A */
    q15_t          *pInB = pSrcB->pData;        /* input data matrix pointer B */
    q15_t          *pInA2;
    q15_t          *pInB2;
    q15_t          *px;         /* Temporary output data matrix pointer */
    q15_t          *px2;        /* Temporary output data matrix pointer */
    uint32_t        numRowsA = pSrcA->numRows;  /* number of rows of input matrix A    */
    uint32_t        numColsB = pSrcB->numCols;  /* number of columns of input matrix B */
    uint32_t        numColsA = pSrcA->numCols;  /* number of columns of input matrix A */
    uint32_t        numRowsB = pSrcB->numRows;  /* number of rows of input matrix A    */
    uint32_t        col, i = 0u, j, row = numRowsB;     /* loop counters */
    q15_t          *pSrcBT = pState;    /* input data matrix pointer for transpose */
    uint32_t        blkCnt;     /* loop counters */
    arm_status      status;                             /* Status of matrix multiplication */
    arm_matrix_instance_q15 BT;

#ifdef ARM_MATH_MATRIX_CHECK

    /* Check for matrix mismatch condition */
    if ((pSrcA->numCols != pSrcB->numRows) ||
      (pSrcA->numRows != pDst->numRows)  ||
      (pSrcB->numCols != pDst->numCols)    )
    {
        /* Set status as ARM_MATH_SIZE_MISMATCH */
        status = ARM_MATH_SIZE_MISMATCH;
    }
    else
#endif
    {
        /* small squared matrix specialized routines */
        if (numRowsA == numColsB && numColsB == numColsA) {

            if (numRowsA == 1) {
                q63_t           sum;
                sum = pInA[0] * pInB[0];
                pDst->pData[0] = (q15_t) __SSAT((sum >> 15), 16);
                return (ARM_MATH_SUCCESS);
            } else if (numRowsA == 2)
                return arm_mat_mult_q15_2x2_mve(pSrcA, pSrcB, pDst);
            else if (numRowsA == 3)
                return arm_mat_mult_q15_3x3_mve(pSrcA, pSrcB, pDst);
            else if (numRowsA == 4)
                return arm_mat_mult_q15_4x4_mve(pSrcA, pSrcB, pDst);
        }

        /*
         * Matrix transpose
         */

        BT.numRows = numColsB;
        BT.numCols = numRowsB;
        BT.pData = pSrcBT;

        arm_mat_trans_q15(pSrcB, &BT);


        /*
         * Reset the variables for the usage in the following multiplication process
         */
        i = 0;
        row = numRowsA >> 1;
        px = pDst->pData;
        px2 = px + numColsB;

        /*
         * The following loop performs the dot-product of each row in pSrcA with each column in pSrcB
         */

        /*
         * row loop
         */
        while (row > 0u) {
            /*
             * For every row wise process, the column loop counter is to be initiated
             */
            col = numColsB >> 1;
            /*
             * For every row wise process, the pIn2 pointer is set
             * to the starting address of the transposed pSrcB data
             */
            pInB = pSrcBT;
            pInB2 = pInB + numRowsB;
            j = 0;

            /*
             * column loop
             */
            while (col > 0u) {
                q15_t const    *pSrcAVec, *pSrcBVec, *pSrcA2Vec, *pSrcB2Vec;
                q15x8_t         vecA, vecA2, vecB, vecB2;
                q63_t           acc0, acc1, acc2, acc3;

                /*
                 * Initiate the pointer pIn1 to point to the starting address of the column being processed
                 */
                pInA = pSrcA->pData + i;
                pInA2 = pInA + numColsA;
                pInB = pSrcBT + j;
                pInB2 = pInB + numRowsB;


                pSrcAVec = (q15_t const *) pInA;
                pSrcA2Vec = (q15_t const *) pInA2;
                pSrcBVec = (q15_t const *) pInB;
                pSrcB2Vec = (q15_t const *) pInB2;

                acc0 = 0LL;
                acc1 = 0LL;
                acc2 = 0LL;
                acc3 = 0LL;

                vecA = vld1q(pSrcAVec);
                pSrcAVec += 8;

                blkCnt = numColsA / 8;
                while (blkCnt > 0U) {
                    vecB = vld1q(pSrcBVec);
                    pSrcBVec += 8;
                    acc0 = vmlaldavaq(acc0, vecA, vecB);
                    vecA2 = vld1q(pSrcA2Vec);
                    pSrcA2Vec += 8;
                    acc1 = vmlaldavaq(acc1, vecA2, vecB);
                    vecB2 = vld1q(pSrcB2Vec);
                    pSrcB2Vec += 8;
                    acc2 = vmlaldavaq(acc2, vecA, vecB2);
                    vecA = vld1q(pSrcAVec);
                    pSrcAVec += 8;
                    acc3 = vmlaldavaq(acc3, vecA2, vecB2);

                    blkCnt--;
                }
                /*
                 * tail
                 */
                blkCnt = numColsA & 7;
                if (blkCnt > 0U) {
                    mve_pred16_t    p0 = vctp16q(blkCnt);
                    vecB = vld1q(pSrcBVec);
                    acc0 = vmlaldavaq_p(acc0, vecA, vecB, p0);
                    vecA2 = vld1q(pSrcA2Vec);
                    acc1 = vmlaldavaq_p(acc1, vecA2, vecB, p0);
                    vecB2 = vld1q(pSrcB2Vec);
                    acc2 = vmlaldavaq_p(acc2, vecA, vecB2, p0);
                    vecA = vld1q(pSrcAVec);
                    acc3 = vmlaldavaq_p(acc3, vecA2, vecB2, p0);
                }

                *px++ = (q15_t) MVE_ASRL_SAT16(acc0, 15);
                *px++ = (q15_t) MVE_ASRL_SAT16(acc2, 15);
                *px2++ = (q15_t) MVE_ASRL_SAT16(acc1, 15);
                *px2++ = (q15_t) MVE_ASRL_SAT16(acc3, 15);
                j += numRowsB * 2;
                /*
                 * Decrement the column loop counter
                 */
                col--;

            }

            i = i + numColsA * 2;
            px = px2 + (numColsB & 1u);
            px2 = px + numColsB;
            /*
             * Decrement the row loop counter
             */
            row--;
        }

        /*
         * Compute remaining row and/or column below
         */

        if (numColsB & 1u) {
            row = numRowsA & (~0x1);    //avoid redundant computation
            px = pDst->pData + numColsB - 1;
            i = 0;

            /*
             * row loop
             */
            while (row > 0) {
                q15_t const    *pSrcAVec, *pSrcBVec;
                q15x8_t         vecA, vecB;
                q63_t           acc0;

                /*
                 * point to last column in matrix B
                 */
                pInB = pSrcBT + numRowsB * (numColsB - 1);
                pInA = pSrcA->pData + i;

                pSrcAVec = (q15_t const *) pInA;
                pSrcBVec = (q15_t const *) pInB;

                acc0 = 0LL;
                blkCnt = (numColsA) / 8;
                while (blkCnt > 0U) {
                    vecA = vld1q(pSrcAVec);
                    pSrcAVec += 8;
                    vecB = vld1q(pSrcBVec);
                    pSrcBVec += 8;
                    acc0 = vmlaldavaq(acc0, vecA, vecB);

                    blkCnt--;
                }
                /*
                 * tail
                 */
                blkCnt = (numColsA & 7);
                if (blkCnt > 0U) {
                    mve_pred16_t    p0 = vctp16q(blkCnt);
                    vecA = vld1q(pSrcAVec);
                    vecB = vld1q(pSrcBVec);
                    acc0 = vmlaldavaq_p(acc0, vecA, vecB, p0);
                }

                *px = (q15_t) MVE_ASRL_SAT16(acc0, 15);

                px += numColsB;

                i += numColsA;
                /*
                 * Decrement the row loop counter
                 */
                row--;
            }
        }

        if (numRowsA & 1u) {
            col = numColsB;
            i = 0u;
            /*
             * point to last row in output matrix
             */
            px = pDst->pData + (numColsB) * (numRowsA - 1);
            /*
             * col loop
             */
            while (col > 0) {
                q15_t const    *pSrcAVec, *pSrcBVec;
                q15x8_t         vecA, vecB;
                q63_t           acc0;

                /*
                 * point to last row in matrix A
                 */
                pInA = pSrcA->pData + (numRowsA - 1) * numColsA;
                pInB = pSrcBT + i;

                /*
                 * Set the variable sum, that acts as accumulator, to zero
                 */
                pSrcAVec = (q15_t const *) pInA;
                pSrcBVec = (q15_t const *) pInB;
                acc0 = 0LL;

                blkCnt = ((numColsA) / 8);
                while (blkCnt > 0U) {
                    vecA = vld1q(pSrcAVec);
                    pSrcAVec += 8;
                    vecB = vld1q(pSrcBVec);
                    pSrcBVec += 8;
                    acc0 = vmlaldavaq(acc0, vecA, vecB);

                    blkCnt--;
                }
                /*
                 * tail
                 */
                blkCnt = (numColsA & 7);
                if (blkCnt > 0U) {
                    mve_pred16_t    p0 = vctp16q(blkCnt);
                    vecA = vld1q(pSrcAVec);
                    vecB = vld1q(pSrcBVec);
                    acc0 = vmlaldavaq_p(acc0, vecA, vecB, p0);
                }

                *px++ = (q15_t) MVE_ASRL_SAT16(acc0, 15);

                i += numColsA;

                /*
                 * Decrement the col loop counter
                 */
                col--;
            }
        }

        /* Set status as ARM_MATH_SUCCESS */
        status = ARM_MATH_SUCCESS;
    }
    /* Return to application */
    return (status);
}

#else 
arm_status arm_mat_mult_q15(
  const arm_matrix_instance_q15 * pSrcA,
  const arm_matrix_instance_q15 * pSrcB,
        arm_matrix_instance_q15 * pDst,
        q15_t                   * pState)
{
        q63_t sum;                                     /* Accumulator */

#if defined (ARM_MATH_DSP)                             /* != CM0 */

        q15_t *pSrcBT = pState;                        /* Input data matrix pointer for transpose */
        q15_t *pInA = pSrcA->pData;                    /* Input data matrix pointer A of Q15 type */
        q15_t *pInB = pSrcB->pData;                    /* Input data matrix pointer B of Q15 type */
        q15_t *px;                                     /* Temporary output data matrix pointer */
        uint16_t numRowsA = pSrcA->numRows;            /* Number of rows of input matrix A */
        uint16_t numColsB = pSrcB->numCols;            /* Number of columns of input matrix B */
        uint16_t numColsA = pSrcA->numCols;            /* Number of columns of input matrix A */
        uint16_t numRowsB = pSrcB->numRows;            /* Number of rows of input matrix B */
        uint32_t col, i = 0U, row = numRowsB, colCnt;  /* Loop counters */
        arm_status status;                             /* Status of matrix multiplication */

        q31_t inA1, inB1, inA2, inB2;
        arm_matrix_instance_q15 BT;

#ifdef ARM_MATH_MATRIX_CHECK

  /* Check for matrix mismatch condition */
  if ((pSrcA->numCols != pSrcB->numRows) ||
      (pSrcA->numRows != pDst->numRows)  ||
      (pSrcB->numCols != pDst->numCols)    )
  {
    /* Set status as ARM_MATH_SIZE_MISMATCH */
    status = ARM_MATH_SIZE_MISMATCH;
  }
  else

#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
  {

    BT.numRows = numColsB;
    BT.numCols = numRowsB;
    BT.pData = pSrcBT;

    arm_mat_trans_q15(pSrcB,&BT);
    /* Reset variables for usage in following multiplication process */
    row = numRowsA;
    i = 0U;
    px = pDst->pData;

    /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
    /* row loop */
    do
    {
      /* For every row wise process, column loop counter is to be initiated */
      col = numColsB;

      /* For every row wise process, pIn2 pointer is set to starting address of transposed pSrcB data */
      pInB = pSrcBT;

      /* column loop */
      do
      {
        /* Set variable sum, that acts as accumulator, to zero */
        sum = 0;

        /* Initiate pointer pInA to point to starting address of column being processed */
        pInA = pSrcA->pData + i;

        /* Apply loop unrolling and compute 2 MACs simultaneously. */
        colCnt = numColsA >> 2U;

        /* matrix multiplication */
        while (colCnt > 0U)
        {
          /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */

          /* read real and imag values from pSrcA and pSrcB buffer */
          inA1 = read_q15x2_ia (&pInA);
          inB1 = read_q15x2_ia (&pInB);

          inA2 = read_q15x2_ia (&pInA);
          inB2 = read_q15x2_ia (&pInB);

          /* Multiply and Accumulates */
          sum = __SMLALD(inA1, inB1, sum);
          sum = __SMLALD(inA2, inB2, sum);

          /* Decrement loop counter */
          colCnt--;
        }

        /* process remaining column samples */
        colCnt = numColsA % 0x4U;

        while (colCnt > 0U)
        {
          /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
          sum += *pInA++ * *pInB++;

          /* Decrement loop counter */
          colCnt--;
        }

        /* Saturate and store result in destination buffer */
        *px = (q15_t) (__SSAT((sum >> 15), 16));
        px++;

        /* Decrement column loop counter */
        col--;

      } while (col > 0U);

      i = i + numColsA;

      /* Decrement row loop counter */
      row--;

    } while (row > 0U);

#else /* #if defined (ARM_MATH_DSP) */

        q15_t *pIn1 = pSrcA->pData;                    /* Input data matrix pointer A */
        q15_t *pIn2 = pSrcB->pData;                    /* Input data matrix pointer B */
        q15_t *pInA = pSrcA->pData;                    /* Input data matrix pointer A of Q15 type */
        q15_t *pInB = pSrcB->pData;                    /* Input data matrix pointer B of Q15 type */
        q15_t *pOut = pDst->pData;                     /* Output data matrix pointer */
        q15_t *px;                                     /* Temporary output data matrix pointer */
        uint16_t numColsB = pSrcB->numCols;            /* Number of columns of input matrix B */
        uint16_t numColsA = pSrcA->numCols;            /* Number of columns of input matrix A */
        uint16_t numRowsA = pSrcA->numRows;            /* Number of rows of input matrix A    */
        uint32_t col, i = 0U, row = numRowsA, colCnt;  /* Loop counters */
        arm_status status;                             /* Status of matrix multiplication */
        (void)pState;

#ifdef ARM_MATH_MATRIX_CHECK

  /* Check for matrix mismatch condition */
  if ((pSrcA->numCols != pSrcB->numRows) ||
      (pSrcA->numRows != pDst->numRows)  ||
      (pSrcB->numCols != pDst->numCols)    )
  {
    /* Set status as ARM_MATH_SIZE_MISMATCH */
    status = ARM_MATH_SIZE_MISMATCH;
  }
  else

#endif /* #ifdef ARM_MATH_MATRIX_CHECK */

  {
    /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
    /* row loop */
    do
    {
      /* Output pointer is set to starting address of the row being processed */
      px = pOut + i;

      /* For every row wise process, column loop counter is to be initiated */
      col = numColsB;

      /* For every row wise process, pIn2 pointer is set to starting address of pSrcB data */
      pIn2 = pSrcB->pData;

      /* column loop */
      do
      {
        /* Set the variable sum, that acts as accumulator, to zero */
        sum = 0;

        /* Initiate pointer pIn1 to point to starting address of pSrcA */
        pIn1 = pInA;

        /* Matrix A columns number of MAC operations are to be performed */
        colCnt = numColsA;

        /* matrix multiplication */
        while (colCnt > 0U)
        {
          /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */

          /* Perform multiply-accumulates */
          sum += (q31_t) * pIn1++ * *pIn2;
          pIn2 += numColsB;

          /* Decrement loop counter */
          colCnt--;
        }

        /* Convert result from 34.30 to 1.15 format and store saturated value in destination buffer */

        /* Saturate and store result in destination buffer */
        *px++ = (q15_t) __SSAT((sum >> 15), 16);

        /* Decrement column loop counter */
        col--;

        /* Update pointer pIn2 to point to starting address of next column */
        pIn2 = pInB + (numColsB - col);

      } while (col > 0U);

      /* Update pointer pSrcA to point to starting address of next row */
      i = i + numColsB;
      pInA = pInA + numColsA;

      /* Decrement row loop counter */
      row--;

    } while (row > 0U);

#endif /* #if defined (ARM_MATH_DSP) */

    /* Set status as ARM_MATH_SUCCESS */
    status = ARM_MATH_SUCCESS;
  }

  /* Return to application */
  return (status);
}
#endif /* defined(ARM_MATH_MVEI) */

/**
  @} end of MatrixMult group
 */