|
|
@ -43,37 +43,34 @@ private:
|
|
|
|
* @return Compile-time allocated array of nodes
|
|
|
|
* @return Compile-time allocated array of nodes
|
|
|
|
*/
|
|
|
|
*/
|
|
|
|
consteval static auto build_node_list() {
|
|
|
|
consteval static auto build_node_list() {
|
|
|
|
auto table = std::span(new node[256] {}, 256);
|
|
|
|
// Build a list for counting every occuring value
|
|
|
|
|
|
|
|
auto list = std::span(new node[256] {}, 256);
|
|
|
|
for (int i = 0; i < 256; i++)
|
|
|
|
for (int i = 0; i < 256; i++)
|
|
|
|
table[i].value = i;
|
|
|
|
list[i].value = i;
|
|
|
|
for (size_t i = 0; i < data_length; i++)
|
|
|
|
for (size_t i = 0; i < data_length; i++)
|
|
|
|
table[data[i]].freq++;
|
|
|
|
list[data[i]].freq++;
|
|
|
|
|
|
|
|
|
|
|
|
std::sort(table.begin(), table.end(), [](auto& a, auto& b) { return a.freq < b.freq; });
|
|
|
|
std::sort(list.begin(), list.end(),
|
|
|
|
|
|
|
|
[](const auto& a, const auto& b) { return a.freq < b.freq; });
|
|
|
|
|
|
|
|
|
|
|
|
auto first_valid_node = std::find_if(table.begin(), table.end(),
|
|
|
|
// Filter out the non-occuring values, and build a compact list to return
|
|
|
|
|
|
|
|
auto first_valid_node = std::find_if(list.begin(), list.end(),
|
|
|
|
[](const auto& n) { return n.freq != 0; });
|
|
|
|
[](const auto& n) { return n.freq != 0; });
|
|
|
|
auto iter = std::copy(first_valid_node, table.end(), table.begin());
|
|
|
|
auto fit_size = std::distance(first_valid_node, list.end());
|
|
|
|
std::fill(iter, table.end(), node());
|
|
|
|
auto fit_list = std::span(new node[fit_size] {}, fit_size);
|
|
|
|
return table;
|
|
|
|
std::copy(first_valid_node, list.end(), fit_list.begin());
|
|
|
|
|
|
|
|
delete[] list.data();
|
|
|
|
|
|
|
|
return fit_list;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
/**
|
|
|
|
* Counts how many nodes in build_node_list() are valid.
|
|
|
|
* Returns the count of how many nodes are in the node tree.
|
|
|
|
* @return Number of valid nodes, i.e. the "size" of the list.
|
|
|
|
|
|
|
|
*/
|
|
|
|
*/
|
|
|
|
consteval static auto node_count() {
|
|
|
|
|
|
|
|
auto table = build_node_list();
|
|
|
|
|
|
|
|
size_t i;
|
|
|
|
|
|
|
|
for (i = 0; table[i].freq != 0; i++);
|
|
|
|
|
|
|
|
delete[] table.data();
|
|
|
|
|
|
|
|
return i;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Returns the count of how many nodes are in the node tree.
|
|
|
|
|
|
|
|
public:
|
|
|
|
|
|
|
|
consteval static auto tree_count() {
|
|
|
|
consteval static auto tree_count() {
|
|
|
|
return node_count() * 2 - 1;
|
|
|
|
auto list = build_node_list();
|
|
|
|
|
|
|
|
auto count = list.size() * 2 - 1;
|
|
|
|
|
|
|
|
delete[] list.data();
|
|
|
|
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
/**
|
|
|
@ -85,32 +82,37 @@ public:
|
|
|
|
auto list = build_node_list();
|
|
|
|
auto list = build_node_list();
|
|
|
|
auto tree = std::span(new node[tree_count()] {}, tree_count());
|
|
|
|
auto tree = std::span(new node[tree_count()] {}, tree_count());
|
|
|
|
|
|
|
|
|
|
|
|
auto list_end = node_count();
|
|
|
|
auto list_end = list.end(); // Track end of list as it shrinks
|
|
|
|
auto tree_begin = tree.end();
|
|
|
|
auto tree_begin = tree.end(); // Build tree from bottom
|
|
|
|
int next_merged_node_value = 0x100;
|
|
|
|
int next_parent_node_value = 0x100; // Give parent nodes unique ids
|
|
|
|
while (list[1].freq != 0) {
|
|
|
|
while (1) {
|
|
|
|
// Create the merged parent node
|
|
|
|
// Create parent node for two least-occuring values
|
|
|
|
node new_node {
|
|
|
|
node new_node {
|
|
|
|
next_merged_node_value++,
|
|
|
|
next_parent_node_value++,
|
|
|
|
list[0].freq + list[1].freq,
|
|
|
|
list[0].freq + list[1].freq,
|
|
|
|
-1,
|
|
|
|
-1,
|
|
|
|
list[0].value,
|
|
|
|
list[0].value,
|
|
|
|
list[1].value
|
|
|
|
list[1].value
|
|
|
|
};
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Move the two nodes into the tree and remove them from the list
|
|
|
|
*--tree_begin = list[0];
|
|
|
|
*--tree_begin = list[0];
|
|
|
|
*--tree_begin = list[1];
|
|
|
|
*--tree_begin = list[1];
|
|
|
|
|
|
|
|
std::copy(list.begin() + 2, list_end--, list.begin());
|
|
|
|
|
|
|
|
if (std::distance(list.begin(), list_end) == 1) {
|
|
|
|
|
|
|
|
list.front() = new_node;
|
|
|
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
auto insertion_point = list.begin();
|
|
|
|
// Insert the parent node back into the list
|
|
|
|
while (insertion_point->freq != 0 && insertion_point->freq < new_node.freq)
|
|
|
|
auto insertion_point = std::find_if(list.begin(), list_end - 1,
|
|
|
|
insertion_point++;
|
|
|
|
[&new_node](const auto& n) { return n.freq >= new_node.freq; });
|
|
|
|
|
|
|
|
if (insertion_point != list_end - 1) {
|
|
|
|
|
|
|
|
*(list_end - 1) = node();
|
|
|
|
|
|
|
|
std::copy_backward(insertion_point, list_end - 1, list_end);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
std::copy_backward(insertion_point, list.begin() + list_end, list.begin() + list_end + 1);
|
|
|
|
|
|
|
|
*insertion_point = new_node;
|
|
|
|
*insertion_point = new_node;
|
|
|
|
|
|
|
|
|
|
|
|
std::copy(list.begin() + 2, list.begin() + list_end + 1, list.begin());
|
|
|
|
|
|
|
|
list[list_end - 1] = node();
|
|
|
|
|
|
|
|
list[list_end--] = node();
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Connect child nodes to their parents
|
|
|
|
// Connect child nodes to their parents
|
|
|
@ -130,14 +132,16 @@ public:
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
/**
|
|
|
|
* Determines the size of the compressed data.
|
|
|
|
* Determines the size of the compressed data.
|
|
|
|
* Returns a pair: [total byte size, bits used in last byte].
|
|
|
|
* @return A pair of total bytes used, and bits used in last byte.
|
|
|
|
*/
|
|
|
|
*/
|
|
|
|
consteval static auto output_size() {
|
|
|
|
consteval static auto compressed_size_info() {
|
|
|
|
auto tree = build_node_tree();
|
|
|
|
auto tree = build_node_tree();
|
|
|
|
size_t bytes = 1, bits = 0;
|
|
|
|
size_t bytes = 1, bits = 0;
|
|
|
|
|
|
|
|
|
|
|
|
for (size_t i = 0; i < data_length; i++) {
|
|
|
|
for (size_t i = 0; i < data_length; i++) {
|
|
|
|
auto leaf = std::find_if(tree.begin(), tree.end(),
|
|
|
|
auto leaf = std::find_if(tree.begin(), tree.end(),
|
|
|
|
[c = data[i]](auto& n) { return n.value == c; });
|
|
|
|
[c = data[i]](const auto& n) { return n.value == c; });
|
|
|
|
|
|
|
|
|
|
|
|
while (leaf->parent != -1) {
|
|
|
|
while (leaf->parent != -1) {
|
|
|
|
if (++bits == 8)
|
|
|
|
if (++bits == 8)
|
|
|
|
bits = 0, bytes++;
|
|
|
|
bits = 0, bytes++;
|
|
|
@ -148,58 +152,76 @@ public:
|
|
|
|
delete[] tree.data();
|
|
|
|
delete[] tree.data();
|
|
|
|
return std::make_pair(bytes, bits);
|
|
|
|
return std::make_pair(bytes, bits);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Compresses the input data, placing the result in `output`.
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
|
|
|
* Compresses the input data, storing the result in the object instance.
|
|
|
|
|
|
|
|
*/
|
|
|
|
consteval void compress()
|
|
|
|
consteval void compress()
|
|
|
|
{
|
|
|
|
{
|
|
|
|
auto tree = build_node_tree();
|
|
|
|
auto tree = build_node_tree();
|
|
|
|
size_t bytes = output_size().first;
|
|
|
|
|
|
|
|
int bits;
|
|
|
|
// Set up byte and bit count (note, we're compressing the data backwards)
|
|
|
|
if (auto bitscount = output_size().second; bitscount > 0)
|
|
|
|
auto [bytes, bits] = compressed_size_info();
|
|
|
|
bits = 8 - bitscount;
|
|
|
|
if (bits > 0)
|
|
|
|
|
|
|
|
bits = 8 - bits;
|
|
|
|
else
|
|
|
|
else
|
|
|
|
bits = 0, bytes--;
|
|
|
|
bits = 0, bytes--;
|
|
|
|
for (size_t i = data_length; i > 0; i--) {
|
|
|
|
|
|
|
|
|
|
|
|
// Compress data backwards, because we obtain the Huffman codes backwards
|
|
|
|
|
|
|
|
// as we traverse towards the parent node.
|
|
|
|
|
|
|
|
for (auto i = data_length; i > 0; i--) {
|
|
|
|
auto leaf = std::find_if(tree.begin(), tree.end(),
|
|
|
|
auto leaf = std::find_if(tree.begin(), tree.end(),
|
|
|
|
[c = data[i - 1]](auto& n) { return n.value == c; });
|
|
|
|
[c = data[i - 1]](auto& n) { return n.value == c; });
|
|
|
|
|
|
|
|
|
|
|
|
while (leaf->parent != -1) {
|
|
|
|
while (leaf->parent != -1) {
|
|
|
|
auto parent = tree.begin() + leaf->parent;
|
|
|
|
auto parent = tree.begin() + leaf->parent;
|
|
|
|
if (parent->right == leaf->value)
|
|
|
|
if (parent->right == leaf->value)
|
|
|
|
output[bytes - 1] |= (1 << bits);
|
|
|
|
compressed_data[bytes - 1] |= (1 << bits);
|
|
|
|
if (++bits == 8)
|
|
|
|
if (++bits == 8)
|
|
|
|
bits = 0, --bytes;
|
|
|
|
bits = 0, --bytes;
|
|
|
|
leaf = parent;
|
|
|
|
leaf = parent;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
delete[] tree.data();
|
|
|
|
delete[] tree.data();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Builds the tree that can be used for decompression, stored in `decode_tree`.
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
|
|
|
* Builds the decode tree, used to decompress the data.
|
|
|
|
|
|
|
|
* Format: three bytes per node.
|
|
|
|
|
|
|
|
* 1. Node value, 2. Distance to left child, 3. Distance to right child.
|
|
|
|
|
|
|
|
*/
|
|
|
|
consteval void build_decode_tree() {
|
|
|
|
consteval void build_decode_tree() {
|
|
|
|
auto tree = build_node_tree();
|
|
|
|
auto tree = build_node_tree();
|
|
|
|
|
|
|
|
|
|
|
|
for (size_t i = 0; i < tree_count(); i++) {
|
|
|
|
for (size_t i = 0; i < tree_count(); i++) {
|
|
|
|
|
|
|
|
// Only store node value if it represents a data value
|
|
|
|
decode_tree[i * 3] = tree[i].value <= 0xFF ? tree[i].value : 0;
|
|
|
|
decode_tree[i * 3] = tree[i].value <= 0xFF ? tree[i].value : 0;
|
|
|
|
|
|
|
|
|
|
|
|
size_t j;
|
|
|
|
size_t j;
|
|
|
|
|
|
|
|
// Find the left child of this node
|
|
|
|
for (j = i + 1; j < tree_count(); j++) {
|
|
|
|
for (j = i + 1; j < tree_count(); j++) {
|
|
|
|
if (tree[i].left == tree[j].value)
|
|
|
|
if (tree[i].left == tree[j].value)
|
|
|
|
break;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
decode_tree[i * 3 + 1] = j < tree_count() ? j - i : 0;
|
|
|
|
decode_tree[i * 3 + 1] = j < tree_count() ? j - i : 0;
|
|
|
|
|
|
|
|
// Find the right child of this node
|
|
|
|
for (j = i + 1; j < tree_count(); j++) {
|
|
|
|
for (j = i + 1; j < tree_count(); j++) {
|
|
|
|
if (tree[i].right == tree[j].value)
|
|
|
|
if (tree[i].right == tree[j].value)
|
|
|
|
break;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
decode_tree[i * 3 + 2] = j < tree_count() ? j - i : 0;
|
|
|
|
decode_tree[i * 3 + 2] = j < tree_count() ? j - i : 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
delete[] tree.data();
|
|
|
|
delete[] tree.data();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Contains the compressed data.
|
|
|
|
// Contains the compressed data.
|
|
|
|
unsigned char output[output_size().first] = {};
|
|
|
|
unsigned char compressed_data[compressed_size_info().first] = {};
|
|
|
|
// Contains a 'tree' that can be used to decompress the data.
|
|
|
|
// Contains a 'tree' that can be used to decompress the data.
|
|
|
|
|
|
|
|
unsigned char decode_tree[3 * tree_count()] = {};
|
|
|
|
|
|
|
|
|
|
|
|
public:
|
|
|
|
public:
|
|
|
|
unsigned char decode_tree[3 * tree_count()] = {};
|
|
|
|
|
|
|
|
// Utility for decoding compressed data.
|
|
|
|
// Utility for decoding compressed data.
|
|
|
|
class decode_info {
|
|
|
|
class decode_info {
|
|
|
|
public:
|
|
|
|
public:
|
|
|
@ -208,9 +230,10 @@ public:
|
|
|
|
|
|
|
|
|
|
|
|
// Checks if another byte is available
|
|
|
|
// Checks if another byte is available
|
|
|
|
operator bool() const {
|
|
|
|
operator bool() const {
|
|
|
|
const auto [size_bytes, last_bits_count] = m_data.output_size();
|
|
|
|
const auto [size_bytes, last_bits] = m_data.compressed_size_info();
|
|
|
|
return m_pos < (size_bytes - 1) || m_bit > (8 - last_bits_count);
|
|
|
|
return m_pos < (size_bytes - 1) || m_bit > (8 - last_bits);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Gets the current byte
|
|
|
|
// Gets the current byte
|
|
|
|
int operator*() const { return m_current; }
|
|
|
|
int operator*() const { return m_current; }
|
|
|
|
// Moves to the next byte
|
|
|
|
// Moves to the next byte
|
|
|
@ -224,7 +247,7 @@ public:
|
|
|
|
void get_next() {
|
|
|
|
void get_next() {
|
|
|
|
auto *node = m_data.decode_tree;
|
|
|
|
auto *node = m_data.decode_tree;
|
|
|
|
do {
|
|
|
|
do {
|
|
|
|
bool bit = m_data.output[m_pos] & (1 << (m_bit - 1));
|
|
|
|
bool bit = m_data.compressed_data[m_pos] & (1 << (m_bit - 1));
|
|
|
|
if (--m_bit == 0)
|
|
|
|
if (--m_bit == 0)
|
|
|
|
m_bit = 8, m_pos++;
|
|
|
|
m_bit = 8, m_pos++;
|
|
|
|
node += 3 * node[bit ? 2 : 1];
|
|
|
|
node += 3 * node[bit ? 2 : 1];
|
|
|
@ -246,7 +269,7 @@ public:
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
consteval static auto compressed_size() {
|
|
|
|
consteval static auto compressed_size() {
|
|
|
|
return output_size().first + output_size().second;
|
|
|
|
return sizeof(compressed_data);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
consteval static auto uncompressed_size() {
|
|
|
|
consteval static auto uncompressed_size() {
|
|
|
|
return data_length;
|
|
|
|
return data_length;
|
|
|
|