summaryrefslogtreecommitdiffstats
path: root/Drivers/CMSIS/DSP/Include
diff options
context:
space:
mode:
Diffstat (limited to 'Drivers/CMSIS/DSP/Include')
-rw-r--r--Drivers/CMSIS/DSP/Include/arm_common_tables.h539
-rw-r--r--Drivers/CMSIS/DSP/Include/arm_common_tables_f16.h132
-rw-r--r--Drivers/CMSIS/DSP/Include/arm_const_structs.h86
-rw-r--r--Drivers/CMSIS/DSP/Include/arm_const_structs_f16.h77
-rw-r--r--Drivers/CMSIS/DSP/Include/arm_helium_utils.h753
-rw-r--r--Drivers/CMSIS/DSP/Include/arm_math.h236
-rw-r--r--Drivers/CMSIS/DSP/Include/arm_math_f16.h59
-rw-r--r--Drivers/CMSIS/DSP/Include/arm_math_memory.h206
-rw-r--r--Drivers/CMSIS/DSP/Include/arm_math_types.h616
-rw-r--r--Drivers/CMSIS/DSP/Include/arm_math_types_f16.h163
-rw-r--r--Drivers/CMSIS/DSP/Include/arm_mve_tables.h231
-rw-r--r--Drivers/CMSIS/DSP/Include/arm_mve_tables_f16.h109
-rw-r--r--Drivers/CMSIS/DSP/Include/arm_vec_math.h373
-rw-r--r--Drivers/CMSIS/DSP/Include/arm_vec_math_f16.h312
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/basic_math_functions.h880
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/basic_math_functions_f16.h168
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/bayes_functions.h89
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/bayes_functions_f16.h80
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/complex_math_functions.h345
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/complex_math_functions_f16.h123
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/controller_functions.h791
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/controller_functions_f16.h41
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/distance_functions.h341
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/distance_functions_f16.h180
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/fast_math_functions.h389
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/fast_math_functions_f16.h125
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/filtering_functions.h2529
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/filtering_functions_f16.h237
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/interpolation_functions.h319
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/interpolation_functions_f16.h107
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/matrix_functions.h757
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/matrix_functions_f16.h221
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/none.h576
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/quaternion_math_functions.h159
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/statistics_functions.h977
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/statistics_functions_f16.h266
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/support_functions.h453
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/support_functions_f16.h187
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/svm_defines.h46
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/svm_functions.h299
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/svm_functions_f16.h281
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/transform_functions.h735
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/transform_functions_f16.h208
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/utils.h240
44 files changed, 16041 insertions, 0 deletions
diff --git a/Drivers/CMSIS/DSP/Include/arm_common_tables.h b/Drivers/CMSIS/DSP/Include/arm_common_tables.h
new file mode 100644
index 0000000..3e72c80
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/arm_common_tables.h
@@ -0,0 +1,539 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_common_tables.h
+ * Description: Extern declaration for common tables
+ *
+ * @version V1.10.0
+ * @date 08 July 2021
+ *
+ * Target Processor: Cortex-M and Cortex-A cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef _ARM_COMMON_TABLES_H
+#define _ARM_COMMON_TABLES_H
+
+#include "arm_math_types.h"
+#include "dsp/fast_math_functions.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES)
+ /* Double Precision Float CFFT twiddles */
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREV_1024)
+ extern const uint16_t armBitRevTable[1024];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_16)
+ extern const uint64_t twiddleCoefF64_16[32];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_32)
+ extern const uint64_t twiddleCoefF64_32[64];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_64)
+ extern const uint64_t twiddleCoefF64_64[128];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_128)
+ extern const uint64_t twiddleCoefF64_128[256];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_256)
+ extern const uint64_t twiddleCoefF64_256[512];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_512)
+ extern const uint64_t twiddleCoefF64_512[1024];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_1024)
+ extern const uint64_t twiddleCoefF64_1024[2048];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_2048)
+ extern const uint64_t twiddleCoefF64_2048[4096];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_4096)
+ extern const uint64_t twiddleCoefF64_4096[8192];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_16)
+ extern const float32_t twiddleCoef_16[32];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_32)
+ extern const float32_t twiddleCoef_32[64];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_64)
+ extern const float32_t twiddleCoef_64[128];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_128)
+ extern const float32_t twiddleCoef_128[256];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_256)
+ extern const float32_t twiddleCoef_256[512];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_512)
+ extern const float32_t twiddleCoef_512[1024];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_1024)
+ extern const float32_t twiddleCoef_1024[2048];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_2048)
+ extern const float32_t twiddleCoef_2048[4096];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_4096)
+ extern const float32_t twiddleCoef_4096[8192];
+ #define twiddleCoef twiddleCoef_4096
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ /* Q31 */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_16)
+ extern const q31_t twiddleCoef_16_q31[24];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_32)
+ extern const q31_t twiddleCoef_32_q31[48];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_64)
+ extern const q31_t twiddleCoef_64_q31[96];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_128)
+ extern const q31_t twiddleCoef_128_q31[192];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_256)
+ extern const q31_t twiddleCoef_256_q31[384];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_512)
+ extern const q31_t twiddleCoef_512_q31[768];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_1024)
+ extern const q31_t twiddleCoef_1024_q31[1536];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_2048)
+ extern const q31_t twiddleCoef_2048_q31[3072];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_4096)
+ extern const q31_t twiddleCoef_4096_q31[6144];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_16)
+ extern const q15_t twiddleCoef_16_q15[24];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_32)
+ extern const q15_t twiddleCoef_32_q15[48];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_64)
+ extern const q15_t twiddleCoef_64_q15[96];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_128)
+ extern const q15_t twiddleCoef_128_q15[192];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_256)
+ extern const q15_t twiddleCoef_256_q15[384];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_512)
+ extern const q15_t twiddleCoef_512_q15[768];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_1024)
+ extern const q15_t twiddleCoef_1024_q15[1536];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_2048)
+ extern const q15_t twiddleCoef_2048_q15[3072];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_4096)
+ extern const q15_t twiddleCoef_4096_q15[6144];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ /* Double Precision Float RFFT twiddles */
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_32)
+ extern const uint64_t twiddleCoefF64_rfft_32[32];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_64)
+ extern const uint64_t twiddleCoefF64_rfft_64[64];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_128)
+ extern const uint64_t twiddleCoefF64_rfft_128[128];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_256)
+ extern const uint64_t twiddleCoefF64_rfft_256[256];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_512)
+ extern const uint64_t twiddleCoefF64_rfft_512[512];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_1024)
+ extern const uint64_t twiddleCoefF64_rfft_1024[1024];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_2048)
+ extern const uint64_t twiddleCoefF64_rfft_2048[2048];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_4096)
+ extern const uint64_t twiddleCoefF64_rfft_4096[4096];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_32)
+ extern const float32_t twiddleCoef_rfft_32[32];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_64)
+ extern const float32_t twiddleCoef_rfft_64[64];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_128)
+ extern const float32_t twiddleCoef_rfft_128[128];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_256)
+ extern const float32_t twiddleCoef_rfft_256[256];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_512)
+ extern const float32_t twiddleCoef_rfft_512[512];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_1024)
+ extern const float32_t twiddleCoef_rfft_1024[1024];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_2048)
+ extern const float32_t twiddleCoef_rfft_2048[2048];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_4096)
+ extern const float32_t twiddleCoef_rfft_4096[4096];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+
+ /* Double precision floating-point bit reversal tables */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_16)
+ #define ARMBITREVINDEXTABLEF64_16_TABLE_LENGTH ((uint16_t)12)
+ extern const uint16_t armBitRevIndexTableF64_16[ARMBITREVINDEXTABLEF64_16_TABLE_LENGTH];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_32)
+ #define ARMBITREVINDEXTABLEF64_32_TABLE_LENGTH ((uint16_t)24)
+ extern const uint16_t armBitRevIndexTableF64_32[ARMBITREVINDEXTABLEF64_32_TABLE_LENGTH];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_64)
+ #define ARMBITREVINDEXTABLEF64_64_TABLE_LENGTH ((uint16_t)56)
+ extern const uint16_t armBitRevIndexTableF64_64[ARMBITREVINDEXTABLEF64_64_TABLE_LENGTH];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_128)
+ #define ARMBITREVINDEXTABLEF64_128_TABLE_LENGTH ((uint16_t)112)
+ extern const uint16_t armBitRevIndexTableF64_128[ARMBITREVINDEXTABLEF64_128_TABLE_LENGTH];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_256)
+ #define ARMBITREVINDEXTABLEF64_256_TABLE_LENGTH ((uint16_t)240)
+ extern const uint16_t armBitRevIndexTableF64_256[ARMBITREVINDEXTABLEF64_256_TABLE_LENGTH];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_512)
+ #define ARMBITREVINDEXTABLEF64_512_TABLE_LENGTH ((uint16_t)480)
+ extern const uint16_t armBitRevIndexTableF64_512[ARMBITREVINDEXTABLEF64_512_TABLE_LENGTH];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_1024)
+ #define ARMBITREVINDEXTABLEF64_1024_TABLE_LENGTH ((uint16_t)992)
+ extern const uint16_t armBitRevIndexTableF64_1024[ARMBITREVINDEXTABLEF64_1024_TABLE_LENGTH];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_2048)
+ #define ARMBITREVINDEXTABLEF64_2048_TABLE_LENGTH ((uint16_t)1984)
+ extern const uint16_t armBitRevIndexTableF64_2048[ARMBITREVINDEXTABLEF64_2048_TABLE_LENGTH];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_4096)
+ #define ARMBITREVINDEXTABLEF64_4096_TABLE_LENGTH ((uint16_t)4032)
+ extern const uint16_t armBitRevIndexTableF64_4096[ARMBITREVINDEXTABLEF64_4096_TABLE_LENGTH];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+ /* floating-point bit reversal tables */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_16)
+ #define ARMBITREVINDEXTABLE_16_TABLE_LENGTH ((uint16_t)20)
+ extern const uint16_t armBitRevIndexTable16[ARMBITREVINDEXTABLE_16_TABLE_LENGTH];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_32)
+ #define ARMBITREVINDEXTABLE_32_TABLE_LENGTH ((uint16_t)48)
+ extern const uint16_t armBitRevIndexTable32[ARMBITREVINDEXTABLE_32_TABLE_LENGTH];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_64)
+ #define ARMBITREVINDEXTABLE_64_TABLE_LENGTH ((uint16_t)56)
+ extern const uint16_t armBitRevIndexTable64[ARMBITREVINDEXTABLE_64_TABLE_LENGTH];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_128)
+ #define ARMBITREVINDEXTABLE_128_TABLE_LENGTH ((uint16_t)208)
+ extern const uint16_t armBitRevIndexTable128[ARMBITREVINDEXTABLE_128_TABLE_LENGTH];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_256)
+ #define ARMBITREVINDEXTABLE_256_TABLE_LENGTH ((uint16_t)440)
+ extern const uint16_t armBitRevIndexTable256[ARMBITREVINDEXTABLE_256_TABLE_LENGTH];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_512)
+ #define ARMBITREVINDEXTABLE_512_TABLE_LENGTH ((uint16_t)448)
+ extern const uint16_t armBitRevIndexTable512[ARMBITREVINDEXTABLE_512_TABLE_LENGTH];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_1024)
+ #define ARMBITREVINDEXTABLE_1024_TABLE_LENGTH ((uint16_t)1800)
+ extern const uint16_t armBitRevIndexTable1024[ARMBITREVINDEXTABLE_1024_TABLE_LENGTH];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_2048)
+ #define ARMBITREVINDEXTABLE_2048_TABLE_LENGTH ((uint16_t)3808)
+ extern const uint16_t armBitRevIndexTable2048[ARMBITREVINDEXTABLE_2048_TABLE_LENGTH];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_4096)
+ #define ARMBITREVINDEXTABLE_4096_TABLE_LENGTH ((uint16_t)4032)
+ extern const uint16_t armBitRevIndexTable4096[ARMBITREVINDEXTABLE_4096_TABLE_LENGTH];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+
+ /* fixed-point bit reversal tables */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_16)
+ #define ARMBITREVINDEXTABLE_FIXED_16_TABLE_LENGTH ((uint16_t)12)
+ extern const uint16_t armBitRevIndexTable_fixed_16[ARMBITREVINDEXTABLE_FIXED_16_TABLE_LENGTH];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_32)
+ #define ARMBITREVINDEXTABLE_FIXED_32_TABLE_LENGTH ((uint16_t)24)
+ extern const uint16_t armBitRevIndexTable_fixed_32[ARMBITREVINDEXTABLE_FIXED_32_TABLE_LENGTH];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_64)
+ #define ARMBITREVINDEXTABLE_FIXED_64_TABLE_LENGTH ((uint16_t)56)
+ extern const uint16_t armBitRevIndexTable_fixed_64[ARMBITREVINDEXTABLE_FIXED_64_TABLE_LENGTH];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_128)
+ #define ARMBITREVINDEXTABLE_FIXED_128_TABLE_LENGTH ((uint16_t)112)
+ extern const uint16_t armBitRevIndexTable_fixed_128[ARMBITREVINDEXTABLE_FIXED_128_TABLE_LENGTH];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_256)
+ #define ARMBITREVINDEXTABLE_FIXED_256_TABLE_LENGTH ((uint16_t)240)
+ extern const uint16_t armBitRevIndexTable_fixed_256[ARMBITREVINDEXTABLE_FIXED_256_TABLE_LENGTH];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_512)
+ #define ARMBITREVINDEXTABLE_FIXED_512_TABLE_LENGTH ((uint16_t)480)
+ extern const uint16_t armBitRevIndexTable_fixed_512[ARMBITREVINDEXTABLE_FIXED_512_TABLE_LENGTH];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_1024)
+ #define ARMBITREVINDEXTABLE_FIXED_1024_TABLE_LENGTH ((uint16_t)992)
+ extern const uint16_t armBitRevIndexTable_fixed_1024[ARMBITREVINDEXTABLE_FIXED_1024_TABLE_LENGTH];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_2048)
+ #define ARMBITREVINDEXTABLE_FIXED_2048_TABLE_LENGTH ((uint16_t)1984)
+ extern const uint16_t armBitRevIndexTable_fixed_2048[ARMBITREVINDEXTABLE_FIXED_2048_TABLE_LENGTH];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_4096)
+ #define ARMBITREVINDEXTABLE_FIXED_4096_TABLE_LENGTH ((uint16_t)4032)
+ extern const uint16_t armBitRevIndexTable_fixed_4096[ARMBITREVINDEXTABLE_FIXED_4096_TABLE_LENGTH];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_REALCOEF_F32)
+ extern const float32_t realCoefA[8192];
+ extern const float32_t realCoefB[8192];
+ #endif
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_REALCOEF_Q31)
+ extern const q31_t realCoefAQ31[8192];
+ extern const q31_t realCoefBQ31[8192];
+ #endif
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_REALCOEF_Q15)
+ extern const q15_t realCoefAQ15[8192];
+ extern const q15_t realCoefBQ15[8192];
+ #endif
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_F32_128)
+ extern const float32_t Weights_128[256];
+ extern const float32_t cos_factors_128[128];
+ #endif
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_F32_512)
+ extern const float32_t Weights_512[1024];
+ extern const float32_t cos_factors_512[512];
+ #endif
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_F32_2048)
+ extern const float32_t Weights_2048[4096];
+ extern const float32_t cos_factors_2048[2048];
+ #endif
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_F32_8192)
+ extern const float32_t Weights_8192[16384];
+ extern const float32_t cos_factors_8192[8192];
+ #endif
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q15_128)
+ extern const q15_t WeightsQ15_128[256];
+ extern const q15_t cos_factorsQ15_128[128];
+ #endif
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q15_512)
+ extern const q15_t WeightsQ15_512[1024];
+ extern const q15_t cos_factorsQ15_512[512];
+ #endif
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q15_2048)
+ extern const q15_t WeightsQ15_2048[4096];
+ extern const q15_t cos_factorsQ15_2048[2048];
+ #endif
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q15_8192)
+ extern const q15_t WeightsQ15_8192[16384];
+ extern const q15_t cos_factorsQ15_8192[8192];
+ #endif
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q31_128)
+ extern const q31_t WeightsQ31_128[256];
+ extern const q31_t cos_factorsQ31_128[128];
+ #endif
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q31_512)
+ extern const q31_t WeightsQ31_512[1024];
+ extern const q31_t cos_factorsQ31_512[512];
+ #endif
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q31_2048)
+ extern const q31_t WeightsQ31_2048[4096];
+ extern const q31_t cos_factorsQ31_2048[2048];
+ #endif
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q31_8192)
+ extern const q31_t WeightsQ31_8192[16384];
+ extern const q31_t cos_factorsQ31_8192[8192];
+ #endif
+
+#endif /* if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_TABLES) */
+
+#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FAST_ALLOW_TABLES)
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_RECIP_Q15)
+ extern const q15_t armRecipTableQ15[64];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_RECIP_Q31)
+ extern const q31_t armRecipTableQ31[64];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */
+
+ /* Tables for Fast Math Sine and Cosine */
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_SIN_F32)
+ extern const float32_t sinTable_f32[FAST_MATH_TABLE_SIZE + 1];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_SIN_Q31)
+ extern const q31_t sinTable_q31[FAST_MATH_TABLE_SIZE + 1];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_SIN_Q15)
+ extern const q15_t sinTable_q15[FAST_MATH_TABLE_SIZE + 1];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */
+
+ /* Fast vector sqrt */
+ #if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_FAST_SQRT_Q31_MVE)
+ extern const q31_t sqrtTable_Q31[256];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */
+ #endif
+
+ /* Accurate scalar sqrt */
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_SQRT_Q31)
+ extern const q31_t sqrt_initial_lut_q31[32];
+ #endif
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_SQRT_Q15)
+ extern const q15_t sqrt_initial_lut_q15[16];
+ #endif
+
+ #if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_FAST_SQRT_Q15_MVE)
+ extern const q15_t sqrtTable_Q15[256];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */
+ #endif
+
+#endif /* if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FAST_TABLES) */
+
+#if (defined(ARM_MATH_MVEF) || defined(ARM_MATH_HELIUM)) && !defined(ARM_MATH_AUTOVECTORIZE)
+ extern const float32_t exp_tab[8];
+ extern const float32_t __logf_lut_f32[8];
+#endif /* (defined(ARM_MATH_MVEF) || defined(ARM_MATH_HELIUM)) && !defined(ARM_MATH_AUTOVECTORIZE) */
+
+#if (defined(ARM_MATH_MVEI) || defined(ARM_MATH_HELIUM)) && !defined(ARM_MATH_AUTOVECTORIZE)
+extern const unsigned char hwLUT[256];
+#endif /* (defined(ARM_MATH_MVEI) || defined(ARM_MATH_HELIUM)) */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ARM_COMMON_TABLES_H */
+
diff --git a/Drivers/CMSIS/DSP/Include/arm_common_tables_f16.h b/Drivers/CMSIS/DSP/Include/arm_common_tables_f16.h
new file mode 100644
index 0000000..f9a63fe
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/arm_common_tables_f16.h
@@ -0,0 +1,132 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_common_tables_f16.h
+ * Description: Extern declaration for common tables
+ *
+ * @version V1.10.0
+ * @date 08 July 2021
+ *
+ * Target Processor: Cortex-M and Cortex-A cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef _ARM_COMMON_TABLES_F16_H
+#define _ARM_COMMON_TABLES_F16_H
+
+#include "arm_math_types_f16.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES)
+
+ /* F16 */
+ #if !defined(__CC_ARM) && defined(ARM_FLOAT16_SUPPORTED)
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_16)
+ extern const float16_t twiddleCoefF16_16[32];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_32)
+ extern const float16_t twiddleCoefF16_32[64];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_64)
+ extern const float16_t twiddleCoefF16_64[128];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_128)
+ extern const float16_t twiddleCoefF16_128[256];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_256)
+ extern const float16_t twiddleCoefF16_256[512];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_512)
+ extern const float16_t twiddleCoefF16_512[1024];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_1024)
+ extern const float16_t twiddleCoefF16_1024[2048];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_2048)
+ extern const float16_t twiddleCoefF16_2048[4096];
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_4096)
+ extern const float16_t twiddleCoefF16_4096[8192];
+ #define twiddleCoefF16 twiddleCoefF16_4096
+ #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
+
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_32)
+ extern const float16_t twiddleCoefF16_rfft_32[32];
+ #endif
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_64)
+ extern const float16_t twiddleCoefF16_rfft_64[64];
+ #endif
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_128)
+ extern const float16_t twiddleCoefF16_rfft_128[128];
+ #endif
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_256)
+ extern const float16_t twiddleCoefF16_rfft_256[256];
+ #endif
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_512)
+ extern const float16_t twiddleCoefF16_rfft_512[512];
+ #endif
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_1024)
+ extern const float16_t twiddleCoefF16_rfft_1024[1024];
+ #endif
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_2048)
+ extern const float16_t twiddleCoefF16_rfft_2048[2048];
+ #endif
+
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_4096)
+ extern const float16_t twiddleCoefF16_rfft_4096[4096];
+ #endif
+
+ #endif /* ARMAC5 */
+
+#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES) */
+
+#if !defined(__CC_ARM) && defined(ARM_FLOAT16_SUPPORTED)
+
+#if (defined(ARM_MATH_MVEF) || defined(ARM_MATH_HELIUM)) && !defined(ARM_MATH_AUTOVECTORIZE)
+ extern const float16_t exp_tab_f16[8];
+ extern const float16_t __logf_lut_f16[8];
+#endif /* (defined(ARM_MATH_MVEF) || defined(ARM_MATH_HELIUM)) && !defined(ARM_MATH_AUTOVECTORIZE) */
+#endif
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* _ARM_COMMON_TABLES_F16_H */
+
+
diff --git a/Drivers/CMSIS/DSP/Include/arm_const_structs.h b/Drivers/CMSIS/DSP/Include/arm_const_structs.h
new file mode 100644
index 0000000..59026db
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/arm_const_structs.h
@@ -0,0 +1,86 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_const_structs.h
+ * Description: Constant structs that are initialized for user convenience.
+ * For example, some can be given as arguments to the arm_cfft_f32() function.
+ *
+ * @version V1.10.0
+ * @date 08 July 2021
+ *
+ * Target Processor: Cortex-M and Cortex-A cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef _ARM_CONST_STRUCTS_H
+#define _ARM_CONST_STRUCTS_H
+
+#include "arm_math_types.h"
+#include "arm_common_tables.h"
+#include "dsp/transform_functions.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+ extern const arm_cfft_instance_f64 arm_cfft_sR_f64_len16;
+ extern const arm_cfft_instance_f64 arm_cfft_sR_f64_len32;
+ extern const arm_cfft_instance_f64 arm_cfft_sR_f64_len64;
+ extern const arm_cfft_instance_f64 arm_cfft_sR_f64_len128;
+ extern const arm_cfft_instance_f64 arm_cfft_sR_f64_len256;
+ extern const arm_cfft_instance_f64 arm_cfft_sR_f64_len512;
+ extern const arm_cfft_instance_f64 arm_cfft_sR_f64_len1024;
+ extern const arm_cfft_instance_f64 arm_cfft_sR_f64_len2048;
+ extern const arm_cfft_instance_f64 arm_cfft_sR_f64_len4096;
+
+ extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len16;
+ extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len32;
+ extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len64;
+ extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len128;
+ extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len256;
+ extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len512;
+ extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len1024;
+ extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len2048;
+ extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len4096;
+
+ extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len16;
+ extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len32;
+ extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len64;
+ extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len128;
+ extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len256;
+ extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len512;
+ extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len1024;
+ extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len2048;
+ extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len4096;
+
+ extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len16;
+ extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len32;
+ extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len64;
+ extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len128;
+ extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len256;
+ extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len512;
+ extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len1024;
+ extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len2048;
+ extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len4096;
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif
+
diff --git a/Drivers/CMSIS/DSP/Include/arm_const_structs_f16.h b/Drivers/CMSIS/DSP/Include/arm_const_structs_f16.h
new file mode 100644
index 0000000..0984d74
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/arm_const_structs_f16.h
@@ -0,0 +1,77 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_const_structs_f16.h
+ * Description: Constant structs that are initialized for user convenience.
+ * For example, some can be given as arguments to the arm_cfft_f16() function.
+ *
+ * @version V1.10.0
+ * @date 08 July 2021
+ *
+ * Target Processor: Cortex-M and Cortex-A cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef _ARM_CONST_STRUCTS_F16_H
+#define _ARM_CONST_STRUCTS_F16_H
+
+#include "arm_math_types_f16.h"
+#include "arm_common_tables.h"
+#include "arm_common_tables_f16.h"
+#include "dsp/transform_functions_f16.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#if !defined(__CC_ARM) && defined(ARM_FLOAT16_SUPPORTED)
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_16) && defined(ARM_TABLE_BITREVIDX_FLT_16))
+ extern const arm_cfft_instance_f16 arm_cfft_sR_f16_len16;
+ #endif
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_32) && defined(ARM_TABLE_BITREVIDX_FLT_32))
+ extern const arm_cfft_instance_f16 arm_cfft_sR_f16_len32;
+ #endif
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_64) && defined(ARM_TABLE_BITREVIDX_FLT_64))
+ extern const arm_cfft_instance_f16 arm_cfft_sR_f16_len64;
+ #endif
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_128) && defined(ARM_TABLE_BITREVIDX_FLT_128))
+ extern const arm_cfft_instance_f16 arm_cfft_sR_f16_len128;
+ #endif
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_256) && defined(ARM_TABLE_BITREVIDX_FLT_256))
+ extern const arm_cfft_instance_f16 arm_cfft_sR_f16_len256;
+ #endif
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_512) && defined(ARM_TABLE_BITREVIDX_FLT_512))
+ extern const arm_cfft_instance_f16 arm_cfft_sR_f16_len512;
+ #endif
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_1024) && defined(ARM_TABLE_BITREVIDX_FLT_1024))
+ extern const arm_cfft_instance_f16 arm_cfft_sR_f16_len1024;
+ #endif
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_2048) && defined(ARM_TABLE_BITREVIDX_FLT_2048))
+ extern const arm_cfft_instance_f16 arm_cfft_sR_f16_len2048;
+ #endif
+ #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_4096) && defined(ARM_TABLE_BITREVIDX_FLT_4096))
+ extern const arm_cfft_instance_f16 arm_cfft_sR_f16_len4096;
+ #endif
+#endif
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif
diff --git a/Drivers/CMSIS/DSP/Include/arm_helium_utils.h b/Drivers/CMSIS/DSP/Include/arm_helium_utils.h
new file mode 100644
index 0000000..ae9037c
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/arm_helium_utils.h
@@ -0,0 +1,753 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_helium_utils.h
+ * Description: Utility functions for Helium development
+ *
+ * @version V1.10.0
+ * @date 08 July 2021
+ *
+ * Target Processor: Cortex-M and Cortex-A cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef _ARM_UTILS_HELIUM_H_
+#define _ARM_UTILS_HELIUM_H_
+
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+/***************************************
+
+Definitions available for MVEF and MVEI
+
+***************************************/
+#if (defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF) || defined(ARM_MATH_MVEI)) && !defined(ARM_MATH_AUTOVECTORIZE)
+
+#define INACTIVELANE 0 /* inactive lane content */
+
+
+#endif /* defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF) || defined(ARM_MATH_MVEI) */
+
+/***************************************
+
+Definitions available for MVEF only
+
+***************************************/
+#if (defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF)) && !defined(ARM_MATH_AUTOVECTORIZE)
+
+__STATIC_FORCEINLINE float32_t vecAddAcrossF32Mve(float32x4_t in)
+{
+ float32_t acc;
+
+ acc = vgetq_lane(in, 0) + vgetq_lane(in, 1) +
+ vgetq_lane(in, 2) + vgetq_lane(in, 3);
+
+ return acc;
+}
+
+
+
+
+/* newton initial guess */
+#define INVSQRT_MAGIC_F32 0x5f3759df
+#define INV_NEWTON_INIT_F32 0x7EF127EA
+
+
+#define INVSQRT_NEWTON_MVE_F32(invSqrt, xHalf, xStart)\
+{ \
+ float32x4_t tmp; \
+ \
+ /* tmp = xhalf * x * x */ \
+ tmp = vmulq(xStart, xStart); \
+ tmp = vmulq(tmp, xHalf); \
+ /* (1.5f - xhalf * x * x) */ \
+ tmp = vsubq(vdupq_n_f32(1.5f), tmp); \
+ /* x = x*(1.5f-xhalf*x*x); */ \
+ invSqrt = vmulq(tmp, xStart); \
+}
+#endif /* defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF) */
+
+
+/***************************************
+
+Definitions available for f16 datatype with HW acceleration only
+
+***************************************/
+#if defined(ARM_FLOAT16_SUPPORTED)
+#if defined (ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
+
+__STATIC_FORCEINLINE float16_t vecAddAcrossF16Mve(float16x8_t in)
+{
+ float16x8_t tmpVec;
+ _Float16 acc;
+
+ tmpVec = (float16x8_t) vrev32q_s16((int16x8_t) in);
+ in = vaddq_f16(tmpVec, in);
+ tmpVec = (float16x8_t) vrev64q_s32((int32x4_t) in);
+ in = vaddq_f16(tmpVec, in);
+ acc = (_Float16)vgetq_lane_f16(in, 0) + (_Float16)vgetq_lane_f16(in, 4);
+
+ return acc;
+}
+
+__STATIC_FORCEINLINE float16x8_t __mve_cmplx_sum_intra_vec_f16(
+ float16x8_t vecIn)
+{
+ float16x8_t vecTmp, vecOut;
+ uint32_t tmp;
+
+ vecTmp = (float16x8_t) vrev64q_s32((int32x4_t) vecIn);
+ // TO TRACK : using canonical addition leads to unefficient code generation for f16
+ // vecTmp = vecTmp + vecAccCpx0;
+ /*
+ * Compute
+ * re0+re1 | im0+im1 | re0+re1 | im0+im1
+ * re2+re3 | im2+im3 | re2+re3 | im2+im3
+ */
+ vecTmp = vaddq_f16(vecTmp, vecIn);
+ vecOut = vecTmp;
+ /*
+ * shift left, random tmp insertion in bottom
+ */
+ vecOut = vreinterpretq_f16_s32(vshlcq_s32(vreinterpretq_s32_f16(vecOut) , &tmp, 32));
+ /*
+ * Compute:
+ * DONTCARE | DONTCARE | re0+re1+re0+re1 |im0+im1+im0+im1
+ * re0+re1+re2+re3 | im0+im1+im2+im3 | re2+re3+re2+re3 |im2+im3+im2+im3
+ */
+ vecOut = vaddq_f16(vecOut, vecTmp);
+ /*
+ * Cmplx sum is in 4rd & 5th f16 elt
+ * return full vector
+ */
+ return vecOut;
+}
+
+
+#define mve_cmplx_sum_intra_r_i_f16(vec, Re, Im) \
+{ \
+ float16x8_t vecOut = __mve_cmplx_sum_intra_vec_f16(vec); \
+ Re = vgetq_lane(vecOut, 4); \
+ Im = vgetq_lane(vecOut, 5); \
+}
+
+__STATIC_FORCEINLINE void mve_cmplx_sum_intra_vec_f16(
+ float16x8_t vecIn,
+ float16_t *pOut)
+{
+ float16x8_t vecOut = __mve_cmplx_sum_intra_vec_f16(vecIn);
+ /*
+ * Cmplx sum is in 4rd & 5th f16 elt
+ * use 32-bit extraction
+ */
+ *(float32_t *) pOut = ((float32x4_t) vecOut)[2];
+}
+
+
+#define INVSQRT_MAGIC_F16 0x59ba /* ( 0x1ba = 0x3759df >> 13) */
+
+/* canonical version of INVSQRT_NEWTON_MVE_F16 leads to bad performance */
+#define INVSQRT_NEWTON_MVE_F16(invSqrt, xHalf, xStart) \
+{ \
+ float16x8_t tmp; \
+ \
+ /* tmp = xhalf * x * x */ \
+ tmp = vmulq(xStart, xStart); \
+ tmp = vmulq(tmp, xHalf); \
+ /* (1.5f - xhalf * x * x) */ \
+ tmp = vsubq(vdupq_n_f16((float16_t)1.5), tmp); \
+ /* x = x*(1.5f-xhalf*x*x); */ \
+ invSqrt = vmulq(tmp, xStart); \
+}
+
+#endif
+#endif
+
+/***************************************
+
+Definitions available for MVEI and MVEF only
+
+***************************************/
+#if (defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF) || defined(ARM_MATH_MVEI)) && !defined(ARM_MATH_AUTOVECTORIZE)
+/* Following functions are used to transpose matrix in f32 and q31 cases */
+__STATIC_INLINE arm_status arm_mat_trans_32bit_2x2_mve(
+ uint32_t * pDataSrc,
+ uint32_t * pDataDest)
+{
+ static const uint32x4_t vecOffs = { 0, 2, 1, 3 };
+ /*
+ *
+ * | 0 1 | => | 0 2 |
+ * | 2 3 | | 1 3 |
+ *
+ */
+ uint32x4_t vecIn = vldrwq_u32((uint32_t const *)pDataSrc);
+ vstrwq_scatter_shifted_offset_u32(pDataDest, vecOffs, vecIn);
+
+ return (ARM_MATH_SUCCESS);
+}
+
+__STATIC_INLINE arm_status arm_mat_trans_32bit_3x3_mve(
+ uint32_t * pDataSrc,
+ uint32_t * pDataDest)
+{
+ const uint32x4_t vecOffs1 = { 0, 3, 6, 1};
+ const uint32x4_t vecOffs2 = { 4, 7, 2, 5};
+ /*
+ *
+ * | 0 1 2 | | 0 3 6 | 4 x 32 flattened version | 0 3 6 1 |
+ * | 3 4 5 | => | 1 4 7 | => | 4 7 2 5 |
+ * | 6 7 8 | | 2 5 8 | (row major) | 8 . . . |
+ *
+ */
+ uint32x4_t vecIn1 = vldrwq_u32((uint32_t const *) pDataSrc);
+ uint32x4_t vecIn2 = vldrwq_u32((uint32_t const *) &pDataSrc[4]);
+
+ vstrwq_scatter_shifted_offset_u32(pDataDest, vecOffs1, vecIn1);
+ vstrwq_scatter_shifted_offset_u32(pDataDest, vecOffs2, vecIn2);
+
+ pDataDest[8] = pDataSrc[8];
+
+ return (ARM_MATH_SUCCESS);
+}
+
+__STATIC_INLINE arm_status arm_mat_trans_32bit_4x4_mve(uint32_t * pDataSrc, uint32_t * pDataDest)
+{
+ /*
+ * 4x4 Matrix transposition
+ * is 4 x de-interleave operation
+ *
+ * 0 1 2 3 0 4 8 12
+ * 4 5 6 7 1 5 9 13
+ * 8 9 10 11 2 6 10 14
+ * 12 13 14 15 3 7 11 15
+ */
+
+ uint32x4x4_t vecIn;
+
+ vecIn = vld4q((uint32_t const *) pDataSrc);
+ vstrwq(pDataDest, vecIn.val[0]);
+ pDataDest += 4;
+ vstrwq(pDataDest, vecIn.val[1]);
+ pDataDest += 4;
+ vstrwq(pDataDest, vecIn.val[2]);
+ pDataDest += 4;
+ vstrwq(pDataDest, vecIn.val[3]);
+
+ return (ARM_MATH_SUCCESS);
+}
+
+
+__STATIC_INLINE arm_status arm_mat_trans_32bit_generic_mve(
+ uint16_t srcRows,
+ uint16_t srcCols,
+ uint32_t * pDataSrc,
+ uint32_t * pDataDest)
+{
+ uint32x4_t vecOffs;
+ uint32_t i;
+ uint32_t blkCnt;
+ uint32_t const *pDataC;
+ uint32_t *pDataDestR;
+ uint32x4_t vecIn;
+
+ vecOffs = vidupq_u32((uint32_t)0, 1);
+ vecOffs = vecOffs * srcCols;
+
+ i = srcCols;
+ do
+ {
+ pDataC = (uint32_t const *) pDataSrc;
+ pDataDestR = pDataDest;
+
+ blkCnt = srcRows >> 2;
+ while (blkCnt > 0U)
+ {
+ vecIn = vldrwq_gather_shifted_offset_u32(pDataC, vecOffs);
+ vstrwq(pDataDestR, vecIn);
+ pDataDestR += 4;
+ pDataC = pDataC + srcCols * 4;
+ /*
+ * Decrement the blockSize loop counter
+ */
+ blkCnt--;
+ }
+
+ /*
+ * tail
+ */
+ blkCnt = srcRows & 3;
+ if (blkCnt > 0U)
+ {
+ mve_pred16_t p0 = vctp32q(blkCnt);
+ vecIn = vldrwq_gather_shifted_offset_u32(pDataC, vecOffs);
+ vstrwq_p(pDataDestR, vecIn, p0);
+ }
+
+ pDataSrc += 1;
+ pDataDest += srcRows;
+ }
+ while (--i);
+
+ return (ARM_MATH_SUCCESS);
+}
+
+__STATIC_INLINE arm_status arm_mat_cmplx_trans_32bit(
+ uint16_t srcRows,
+ uint16_t srcCols,
+ uint32_t *pDataSrc,
+ uint16_t dstRows,
+ uint16_t dstCols,
+ uint32_t *pDataDest)
+{
+ uint32_t i;
+ uint32_t const *pDataC;
+ uint32_t *pDataRow;
+ uint32_t *pDataDestR, *pDataDestRow;
+ uint32x4_t vecOffsRef, vecOffsCur;
+ uint32_t blkCnt;
+ uint32x4_t vecIn;
+
+#ifdef ARM_MATH_MATRIX_CHECK
+ /*
+ * Check for matrix mismatch condition
+ */
+ if ((srcRows != dstCols) || (srcCols != dstRows))
+ {
+ /*
+ * Set status as ARM_MATH_SIZE_MISMATCH
+ */
+ return ARM_MATH_SIZE_MISMATCH;
+ }
+#else
+ (void)dstRows;
+ (void)dstCols;
+#endif
+
+ /* 2x2, 3x3 and 4x4 specialization to be added */
+
+ vecOffsRef[0] = 0;
+ vecOffsRef[1] = 1;
+ vecOffsRef[2] = srcCols << 1;
+ vecOffsRef[3] = (srcCols << 1) + 1;
+
+ pDataRow = pDataSrc;
+ pDataDestRow = pDataDest;
+ i = srcCols;
+ do
+ {
+ pDataC = (uint32_t const *) pDataRow;
+ pDataDestR = pDataDestRow;
+ vecOffsCur = vecOffsRef;
+
+ blkCnt = (srcRows * CMPLX_DIM) >> 2;
+ while (blkCnt > 0U)
+ {
+ vecIn = vldrwq_gather_shifted_offset(pDataC, vecOffsCur);
+ vstrwq(pDataDestR, vecIn);
+ pDataDestR += 4;
+ vecOffsCur = vaddq(vecOffsCur, (srcCols << 2));
+ /*
+ * Decrement the blockSize loop counter
+ */
+ blkCnt--;
+ }
+ /*
+ * tail
+ * (will be merged thru tail predication)
+ */
+ blkCnt = (srcRows * CMPLX_DIM) & 3;
+ if (blkCnt > 0U)
+ {
+ mve_pred16_t p0 = vctp32q(blkCnt);
+ vecIn = vldrwq_gather_shifted_offset(pDataC, vecOffsCur);
+ vstrwq_p(pDataDestR, vecIn, p0);
+ }
+
+ pDataRow += CMPLX_DIM;
+ pDataDestRow += (srcRows * CMPLX_DIM);
+ }
+ while (--i);
+
+ return (ARM_MATH_SUCCESS);
+}
+
+__STATIC_INLINE arm_status arm_mat_trans_16bit_2x2(uint16_t * pDataSrc, uint16_t * pDataDest)
+{
+ pDataDest[0] = pDataSrc[0];
+ pDataDest[3] = pDataSrc[3];
+ pDataDest[2] = pDataSrc[1];
+ pDataDest[1] = pDataSrc[2];
+
+ return (ARM_MATH_SUCCESS);
+}
+
+__STATIC_INLINE arm_status arm_mat_trans_16bit_3x3_mve(uint16_t * pDataSrc, uint16_t * pDataDest)
+{
+ static const uint16_t stridesTr33[8] = { 0, 3, 6, 1, 4, 7, 2, 5 };
+ uint16x8_t vecOffs1;
+ uint16x8_t vecIn1;
+ /*
+ *
+ * | 0 1 2 | | 0 3 6 | 8 x 16 flattened version | 0 3 6 1 4 7 2 5 |
+ * | 3 4 5 | => | 1 4 7 | => | 8 . . . . . . . |
+ * | 6 7 8 | | 2 5 8 | (row major)
+ *
+ */
+ vecOffs1 = vldrhq_u16((uint16_t const *) stridesTr33);
+ vecIn1 = vldrhq_u16((uint16_t const *) pDataSrc);
+
+ vstrhq_scatter_shifted_offset_u16(pDataDest, vecOffs1, vecIn1);
+
+ pDataDest[8] = pDataSrc[8];
+
+ return (ARM_MATH_SUCCESS);
+}
+
+
+__STATIC_INLINE arm_status arm_mat_trans_16bit_4x4_mve(uint16_t * pDataSrc, uint16_t * pDataDest)
+{
+ static const uint16_t stridesTr44_1[8] = { 0, 4, 8, 12, 1, 5, 9, 13 };
+ static const uint16_t stridesTr44_2[8] = { 2, 6, 10, 14, 3, 7, 11, 15 };
+ uint16x8_t vecOffs1, vecOffs2;
+ uint16x8_t vecIn1, vecIn2;
+ uint16_t const * pDataSrcVec = (uint16_t const *) pDataSrc;
+
+ /*
+ * 4x4 Matrix transposition
+ *
+ * | 0 1 2 3 | | 0 4 8 12 | 8 x 16 flattened version
+ * | 4 5 6 7 | => | 1 5 9 13 | => [0 4 8 12 1 5 9 13]
+ * | 8 9 10 11 | | 2 6 10 14 | [2 6 10 14 3 7 11 15]
+ * | 12 13 14 15 | | 3 7 11 15 |
+ */
+
+ vecOffs1 = vldrhq_u16((uint16_t const *) stridesTr44_1);
+ vecOffs2 = vldrhq_u16((uint16_t const *) stridesTr44_2);
+ vecIn1 = vldrhq_u16(pDataSrcVec);
+ pDataSrcVec += 8;
+ vecIn2 = vldrhq_u16(pDataSrcVec);
+
+ vstrhq_scatter_shifted_offset_u16(pDataDest, vecOffs1, vecIn1);
+ vstrhq_scatter_shifted_offset_u16(pDataDest, vecOffs2, vecIn2);
+
+
+ return (ARM_MATH_SUCCESS);
+}
+
+
+
+__STATIC_INLINE arm_status arm_mat_trans_16bit_generic(
+ uint16_t srcRows,
+ uint16_t srcCols,
+ uint16_t * pDataSrc,
+ uint16_t * pDataDest)
+{
+ uint16x8_t vecOffs;
+ uint32_t i;
+ uint32_t blkCnt;
+ uint16_t const *pDataC;
+ uint16_t *pDataDestR;
+ uint16x8_t vecIn;
+
+ vecOffs = vidupq_u16((uint32_t)0, 1);
+ vecOffs = vecOffs * srcCols;
+
+ i = srcCols;
+ while(i > 0U)
+ {
+ pDataC = (uint16_t const *) pDataSrc;
+ pDataDestR = pDataDest;
+
+ blkCnt = srcRows >> 3;
+ while (blkCnt > 0U)
+ {
+ vecIn = vldrhq_gather_shifted_offset_u16(pDataC, vecOffs);
+ vstrhq_u16(pDataDestR, vecIn);
+ pDataDestR += 8;
+ pDataC = pDataC + srcCols * 8;
+ /*
+ * Decrement the blockSize loop counter
+ */
+ blkCnt--;
+ }
+
+ /*
+ * tail
+ */
+ blkCnt = srcRows & 7;
+ if (blkCnt > 0U)
+ {
+ mve_pred16_t p0 = vctp16q(blkCnt);
+ vecIn = vldrhq_gather_shifted_offset_u16(pDataC, vecOffs);
+ vstrhq_p_u16(pDataDestR, vecIn, p0);
+ }
+ pDataSrc += 1;
+ pDataDest += srcRows;
+ i--;
+ }
+
+ return (ARM_MATH_SUCCESS);
+}
+
+
+__STATIC_INLINE arm_status arm_mat_cmplx_trans_16bit(
+ uint16_t srcRows,
+ uint16_t srcCols,
+ uint16_t *pDataSrc,
+ uint16_t dstRows,
+ uint16_t dstCols,
+ uint16_t *pDataDest)
+{
+ static const uint16_t loadCmplxCol[8] = { 0, 0, 1, 1, 2, 2, 3, 3 };
+ int i;
+ uint16x8_t vecOffsRef, vecOffsCur;
+ uint16_t const *pDataC;
+ uint16_t *pDataRow;
+ uint16_t *pDataDestR, *pDataDestRow;
+ uint32_t blkCnt;
+ uint16x8_t vecIn;
+
+#ifdef ARM_MATH_MATRIX_CHECK
+ /*
+ * Check for matrix mismatch condition
+ */
+ if ((srcRows != dstCols) || (srcCols != dstRows))
+ {
+ /*
+ * Set status as ARM_MATH_SIZE_MISMATCH
+ */
+ return ARM_MATH_SIZE_MISMATCH;
+ }
+#else
+ (void)dstRows;
+ (void)dstCols;
+#endif
+
+ /*
+ * 2x2, 3x3 and 4x4 specialization to be added
+ */
+
+
+ /*
+ * build [0, 1, 2xcol, 2xcol+1, 4xcol, 4xcol+1, 6xcol, 6xcol+1]
+ */
+ vecOffsRef = vldrhq_u16((uint16_t const *) loadCmplxCol);
+ vecOffsRef = vmulq(vecOffsRef, (uint16_t) (srcCols * CMPLX_DIM))
+ + viwdupq_u16((uint32_t)0, (uint16_t) 2, 1);
+
+ pDataRow = pDataSrc;
+ pDataDestRow = pDataDest;
+ i = srcCols;
+ do
+ {
+ pDataC = (uint16_t const *) pDataRow;
+ pDataDestR = pDataDestRow;
+ vecOffsCur = vecOffsRef;
+
+ blkCnt = (srcRows * CMPLX_DIM) >> 3;
+ while (blkCnt > 0U)
+ {
+ vecIn = vldrhq_gather_shifted_offset(pDataC, vecOffsCur);
+ vstrhq(pDataDestR, vecIn);
+ pDataDestR+= 8; // VEC_LANES_U16
+ vecOffsCur = vaddq(vecOffsCur, (srcCols << 3));
+ /*
+ * Decrement the blockSize loop counter
+ */
+ blkCnt--;
+ }
+ /*
+ * tail
+ * (will be merged thru tail predication)
+ */
+ blkCnt = (srcRows * CMPLX_DIM) & 0x7;
+ if (blkCnt > 0U)
+ {
+ mve_pred16_t p0 = vctp16q(blkCnt);
+ vecIn = vldrhq_gather_shifted_offset(pDataC, vecOffsCur);
+ vstrhq_p(pDataDestR, vecIn, p0);
+ }
+
+ pDataRow += CMPLX_DIM;
+ pDataDestRow += (srcRows * CMPLX_DIM);
+ }
+ while (--i);
+
+ return (ARM_MATH_SUCCESS);
+}
+#endif /* MVEF and MVEI */
+
+/***************************************
+
+Definitions available for MVEI only
+
+***************************************/
+#if (defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEI)) && !defined(ARM_MATH_AUTOVECTORIZE)
+
+#include "arm_common_tables.h"
+
+#define MVE_ASRL_SAT16(acc, shift) ((sqrshrl_sat48(acc, -(32-shift)) >> 32) & 0xffffffff)
+#define MVE_ASRL_SAT32(acc, shift) ((sqrshrl(acc, -(32-shift)) >> 32) & 0xffffffff)
+
+
+#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_FAST_SQRT_Q31_MVE)
+__STATIC_INLINE q31x4_t FAST_VSQRT_Q31(q31x4_t vecIn)
+{
+ q63x2_t vecTmpLL;
+ q31x4_t vecTmp0, vecTmp1;
+ q31_t scale;
+ q63_t tmp64;
+ q31x4_t vecNrm, vecDst, vecIdx, vecSignBits;
+
+
+ vecSignBits = vclsq(vecIn);
+ vecSignBits = vbicq_n_s32(vecSignBits, 1);
+ /*
+ * in = in << no_of_sign_bits;
+ */
+ vecNrm = vshlq(vecIn, vecSignBits);
+ /*
+ * index = in >> 24;
+ */
+ vecIdx = vecNrm >> 24;
+ vecIdx = vecIdx << 1;
+
+ vecTmp0 = vldrwq_gather_shifted_offset_s32(sqrtTable_Q31, (uint32x4_t)vecIdx);
+
+ vecIdx = vecIdx + 1;
+
+ vecTmp1 = vldrwq_gather_shifted_offset_s32(sqrtTable_Q31, (uint32x4_t)vecIdx);
+
+ vecTmp1 = vqrdmulhq(vecTmp1, vecNrm);
+ vecTmp0 = vecTmp0 - vecTmp1;
+ vecTmp1 = vqrdmulhq(vecTmp0, vecTmp0);
+ vecTmp1 = vqrdmulhq(vecNrm, vecTmp1);
+ vecTmp1 = vdupq_n_s32(0x18000000) - vecTmp1;
+ vecTmp0 = vqrdmulhq(vecTmp0, vecTmp1);
+ vecTmpLL = vmullbq_int(vecNrm, vecTmp0);
+
+ /*
+ * scale elements 0, 2
+ */
+ scale = 26 + (vecSignBits[0] >> 1);
+ tmp64 = asrl(vecTmpLL[0], scale);
+ vecDst[0] = (q31_t) tmp64;
+
+ scale = 26 + (vecSignBits[2] >> 1);
+ tmp64 = asrl(vecTmpLL[1], scale);
+ vecDst[2] = (q31_t) tmp64;
+
+ vecTmpLL = vmulltq_int(vecNrm, vecTmp0);
+
+ /*
+ * scale elements 1, 3
+ */
+ scale = 26 + (vecSignBits[1] >> 1);
+ tmp64 = asrl(vecTmpLL[0], scale);
+ vecDst[1] = (q31_t) tmp64;
+
+ scale = 26 + (vecSignBits[3] >> 1);
+ tmp64 = asrl(vecTmpLL[1], scale);
+ vecDst[3] = (q31_t) tmp64;
+ /*
+ * set negative values to 0
+ */
+ vecDst = vdupq_m(vecDst, 0, vcmpltq_n_s32(vecIn, 0));
+
+ return vecDst;
+}
+#endif
+
+#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_FAST_SQRT_Q15_MVE)
+__STATIC_INLINE q15x8_t FAST_VSQRT_Q15(q15x8_t vecIn)
+{
+ q31x4_t vecTmpLev, vecTmpLodd, vecSignL;
+ q15x8_t vecTmp0, vecTmp1;
+ q15x8_t vecNrm, vecDst, vecIdx, vecSignBits;
+
+ vecDst = vuninitializedq_s16();
+
+ vecSignBits = vclsq(vecIn);
+ vecSignBits = vbicq_n_s16(vecSignBits, 1);
+ /*
+ * in = in << no_of_sign_bits;
+ */
+ vecNrm = vshlq(vecIn, vecSignBits);
+
+ vecIdx = vecNrm >> 8;
+ vecIdx = vecIdx << 1;
+
+ vecTmp0 = vldrhq_gather_shifted_offset_s16(sqrtTable_Q15, (uint16x8_t)vecIdx);
+
+ vecIdx = vecIdx + 1;
+
+ vecTmp1 = vldrhq_gather_shifted_offset_s16(sqrtTable_Q15, (uint16x8_t)vecIdx);
+
+ vecTmp1 = vqrdmulhq(vecTmp1, vecNrm);
+ vecTmp0 = vecTmp0 - vecTmp1;
+ vecTmp1 = vqrdmulhq(vecTmp0, vecTmp0);
+ vecTmp1 = vqrdmulhq(vecNrm, vecTmp1);
+ vecTmp1 = vdupq_n_s16(0x1800) - vecTmp1;
+ vecTmp0 = vqrdmulhq(vecTmp0, vecTmp1);
+
+ vecSignBits = vecSignBits >> 1;
+
+ vecTmpLev = vmullbq_int(vecNrm, vecTmp0);
+ vecTmpLodd = vmulltq_int(vecNrm, vecTmp0);
+
+ vecTmp0 = vecSignBits + 10;
+ /*
+ * negate sign to apply register based vshl
+ */
+ vecTmp0 = -vecTmp0;
+
+ /*
+ * shift even elements
+ */
+ vecSignL = vmovlbq(vecTmp0);
+ vecTmpLev = vshlq(vecTmpLev, vecSignL);
+ /*
+ * shift odd elements
+ */
+ vecSignL = vmovltq(vecTmp0);
+ vecTmpLodd = vshlq(vecTmpLodd, vecSignL);
+ /*
+ * merge and narrow odd and even parts
+ */
+ vecDst = vmovnbq_s32(vecDst, vecTmpLev);
+ vecDst = vmovntq_s32(vecDst, vecTmpLodd);
+ /*
+ * set negative values to 0
+ */
+ vecDst = vdupq_m(vecDst, 0, vcmpltq_n_s16(vecIn, 0));
+
+ return vecDst;
+}
+#endif
+
+#endif /* defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEI) */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif
diff --git a/Drivers/CMSIS/DSP/Include/arm_math.h b/Drivers/CMSIS/DSP/Include/arm_math.h
new file mode 100644
index 0000000..300c5cf
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/arm_math.h
@@ -0,0 +1,236 @@
+/******************************************************************************
+ * @file arm_math.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/**
+ \mainpage CMSIS DSP Software Library
+ *
+ * \section intro Introduction
+ *
+ * This user manual describes the CMSIS DSP software library,
+ * a suite of common signal processing functions for use on Cortex-M and Cortex-A processor
+ * based devices.
+ *
+ * The library is divided into a number of functions each covering a specific category:
+ * - Basic math functions
+ * - Fast math functions
+ * - Complex math functions
+ * - Filtering functions
+ * - Matrix functions
+ * - Transform functions
+ * - Motor control functions
+ * - Statistical functions
+ * - Support functions
+ * - Interpolation functions
+ * - Support Vector Machine functions (SVM)
+ * - Bayes classifier functions
+ * - Distance functions
+ * - Quaternion functions
+ *
+ * The library has generally separate functions for operating on 8-bit integers, 16-bit integers,
+ * 32-bit integer and 32-bit floating-point values.
+ *
+ * The library is providing vectorized versions of most algorthms for Helium
+ * and of most f32 algorithms for Neon.
+ *
+ * When using a vectorized version, provide a little bit of padding after the end of
+ * a buffer (3 words) because the vectorized code may read a little bit after the end
+ * of a buffer. You don't have to modify your buffers but just ensure that the
+ * end of buffer + padding is not outside of a memory region.
+ *
+ * \section using Using the Library
+ *
+ * The library is released in source form. It is strongly advised to compile the library using -Ofast to
+ * have the best performances.
+ *
+ * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder.
+ * Simply include this file. If you don't want to include everything, you can also rely
+ * on headers in Include/dsp folder and use only what you need.
+ *
+ * \section example Examples
+ *
+ * The library ships with a number of examples which demonstrate how to use the library functions.
+ *
+ * \section toolchain Toolchain Support
+ *
+ * The library is now tested on Fast Models building with cmake.
+ * Core M0, M4, M7, M33, M55, A32 are tested.
+ *
+ *
+ * \section preprocessor Preprocessor Macros
+ *
+ * Each library project have different preprocessor macros.
+ *
+ * - ARM_MATH_BIG_ENDIAN:
+ *
+ * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
+ *
+ * - ARM_MATH_MATRIX_CHECK:
+ *
+ * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices
+ *
+ * - ARM_MATH_ROUNDING:
+ *
+ * Define macro ARM_MATH_ROUNDING for rounding on support functions
+ *
+ * - ARM_MATH_LOOPUNROLL:
+ *
+ * Define macro ARM_MATH_LOOPUNROLL to enable manual loop unrolling in DSP functions
+ *
+ * - ARM_MATH_NEON:
+ *
+ * Define macro ARM_MATH_NEON to enable Neon versions of the DSP functions.
+ * It is not enabled by default when Neon is available because performances are
+ * dependent on the compiler and target architecture.
+ *
+ * - ARM_MATH_NEON_EXPERIMENTAL:
+ *
+ * Define macro ARM_MATH_NEON_EXPERIMENTAL to enable experimental Neon versions of
+ * of some DSP functions. Experimental Neon versions currently do not have better
+ * performances than the scalar versions.
+ *
+ * - ARM_MATH_HELIUM:
+ *
+ * It implies the flags ARM_MATH_MVEF and ARM_MATH_MVEI and ARM_MATH_MVE_FLOAT16.
+ *
+ * - ARM_MATH_HELIUM_EXPERIMENTAL:
+ *
+ * Only taken into account when ARM_MATH_MVEF, ARM_MATH_MVEI or ARM_MATH_MVE_FLOAT16 are defined.
+ * Enable some vector versions which may have worse performance than scalar
+ * depending on the core / compiler configuration.
+ *
+ * - ARM_MATH_MVEF:
+ *
+ * Select Helium versions of the f32 algorithms.
+ * It implies ARM_MATH_FLOAT16 and ARM_MATH_MVEI.
+ *
+ * - ARM_MATH_MVEI:
+ *
+ * Select Helium versions of the int and fixed point algorithms.
+ *
+ * - ARM_MATH_MVE_FLOAT16:
+ *
+ * MVE Float16 implementations of some algorithms (Requires MVE extension).
+ *
+ * - DISABLEFLOAT16:
+ *
+ * Disable float16 algorithms when __fp16 is not supported for a
+ * specific compiler / core configuration.
+ * This is only valid for scalar. When vector architecture is
+ * supporting f16 then it can't be disabled.
+ *
+ * - ARM_MATH_AUTOVECTORIZE:
+ *
+ * With Helium or Neon, disable the use of vectorized code with C intrinsics
+ * and use pure C instead. The vectorization is then done by the compiler.
+ *
+ * <hr>
+ * \section pack CMSIS-DSP in ARM::CMSIS Pack
+ *
+ * The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories:
+ * |File/Folder |Content |
+ * |---------------------------------|------------------------------------------------------------------------|
+ * |\b CMSIS\\Documentation\\DSP | This documentation |
+ * |\b CMSIS\\DSP\\Examples | Example projects demonstrating the usage of the library functions |
+ * |\b CMSIS\\DSP\\Include | DSP_Lib include files for using and building the lib
+ * |\b CMSIS\\DSP\\PrivateInclude | DSP_Lib private include files for building the lib |
+ * |\b CMSIS\\DSP\\Lib | DSP_Lib binaries |
+ * |\b CMSIS\\DSP\\Source | DSP_Lib source files |
+ *
+ * <hr>
+ * \section rev Revision History of CMSIS-DSP
+ * Please refer to \ref ChangeLog_pg.
+ */
+
+
+
+
+
+
+
+
+
+
+
+/**
+ * @defgroup groupExamples Examples
+ */
+
+
+
+
+
+#ifndef _ARM_MATH_H
+#define _ARM_MATH_H
+
+
+#include "arm_math_types.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+#include "dsp/basic_math_functions.h"
+#include "dsp/interpolation_functions.h"
+#include "dsp/bayes_functions.h"
+#include "dsp/matrix_functions.h"
+#include "dsp/complex_math_functions.h"
+#include "dsp/statistics_functions.h"
+#include "dsp/controller_functions.h"
+#include "dsp/support_functions.h"
+#include "dsp/distance_functions.h"
+#include "dsp/svm_functions.h"
+#include "dsp/fast_math_functions.h"
+#include "dsp/transform_functions.h"
+#include "dsp/filtering_functions.h"
+#include "dsp/quaternion_math_functions.h"
+
+
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+
+
+
+//#define TABLE_SPACING_Q31 0x400000
+//#define TABLE_SPACING_Q15 0x80
+
+
+
+
+
+#ifdef __cplusplus
+}
+#endif
+
+
+#endif /* _ARM_MATH_H */
+
+/**
+ *
+ * End of file.
+ */
diff --git a/Drivers/CMSIS/DSP/Include/arm_math_f16.h b/Drivers/CMSIS/DSP/Include/arm_math_f16.h
new file mode 100644
index 0000000..daf0c53
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/arm_math_f16.h
@@ -0,0 +1,59 @@
+/******************************************************************************
+ * @file arm_math_f16.h
+ * @brief Public header file for f16 function of the CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef _ARM_MATH_F16_H
+#define _ARM_MATH_F16_H
+
+#include "arm_math.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#include "arm_math_types_f16.h"
+#include "dsp/none.h"
+#include "dsp/utils.h"
+#include "dsp/basic_math_functions_f16.h"
+#include "dsp/interpolation_functions_f16.h"
+#include "dsp/bayes_functions_f16.h"
+#include "dsp/matrix_functions_f16.h"
+#include "dsp/complex_math_functions_f16.h"
+#include "dsp/statistics_functions_f16.h"
+#include "dsp/controller_functions_f16.h"
+#include "dsp/support_functions_f16.h"
+#include "dsp/distance_functions_f16.h"
+#include "dsp/svm_functions_f16.h"
+#include "dsp/fast_math_functions_f16.h"
+#include "dsp/transform_functions_f16.h"
+#include "dsp/filtering_functions_f16.h"
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* _ARM_MATH_F16_H */
+
+
diff --git a/Drivers/CMSIS/DSP/Include/arm_math_memory.h b/Drivers/CMSIS/DSP/Include/arm_math_memory.h
new file mode 100644
index 0000000..7bd83dc
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/arm_math_memory.h
@@ -0,0 +1,206 @@
+/******************************************************************************
+ * @file arm_math_memory.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef _ARM_MATH_MEMORY_H_
+
+#define _ARM_MATH_MEMORY_H_
+
+#include "arm_math_types.h"
+
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+/**
+ @brief definition to read/write two 16 bit values.
+ @deprecated
+ */
+#if defined ( __CC_ARM )
+ #define __SIMD32_TYPE int32_t __packed
+#elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 )
+ #define __SIMD32_TYPE int32_t
+#elif defined ( __GNUC__ )
+ #define __SIMD32_TYPE int32_t
+#elif defined ( __ICCARM__ )
+ #define __SIMD32_TYPE int32_t __packed
+#elif defined ( __TI_ARM__ )
+ #define __SIMD32_TYPE int32_t
+#elif defined ( __CSMC__ )
+ #define __SIMD32_TYPE int32_t
+#elif defined ( __TASKING__ )
+ #define __SIMD32_TYPE __un(aligned) int32_t
+#elif defined(_MSC_VER )
+ #define __SIMD32_TYPE int32_t
+#else
+ #error Unknown compiler
+#endif
+
+#define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr))
+#define __SIMD32_CONST(addr) ( (__SIMD32_TYPE * ) (addr))
+#define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE * ) (addr))
+#define __SIMD64(addr) (*( int64_t **) & (addr))
+
+
+/* SIMD replacement */
+
+
+/**
+ @brief Read 2 Q15 from Q15 pointer.
+ @param[in] pQ15 points to input value
+ @return Q31 value
+ */
+__STATIC_FORCEINLINE q31_t read_q15x2 (
+ q15_t const * pQ15)
+{
+ q31_t val;
+
+#ifdef __ARM_FEATURE_UNALIGNED
+ memcpy (&val, pQ15, 4);
+#else
+ val = (pQ15[1] << 16) | (pQ15[0] & 0x0FFFF) ;
+#endif
+
+ return (val);
+}
+
+/**
+ @brief Read 2 Q15 from Q15 pointer and increment pointer afterwards.
+ @param[in] pQ15 points to input value
+ @return Q31 value
+ */
+#define read_q15x2_ia(pQ15) read_q15x2((*(pQ15) += 2) - 2)
+
+/**
+ @brief Read 2 Q15 from Q15 pointer and decrement pointer afterwards.
+ @param[in] pQ15 points to input value
+ @return Q31 value
+ */
+#define read_q15x2_da(pQ15) read_q15x2((*(pQ15) -= 2) + 2)
+
+/**
+ @brief Write 2 Q15 to Q15 pointer and increment pointer afterwards.
+ @param[in] pQ15 points to input value
+ @param[in] value Q31 value
+ @return none
+ */
+__STATIC_FORCEINLINE void write_q15x2_ia (
+ q15_t ** pQ15,
+ q31_t value)
+{
+ q31_t val = value;
+#ifdef __ARM_FEATURE_UNALIGNED
+ memcpy (*pQ15, &val, 4);
+#else
+ (*pQ15)[0] = (q15_t)(val & 0x0FFFF);
+ (*pQ15)[1] = (q15_t)((val >> 16) & 0x0FFFF);
+#endif
+
+ *pQ15 += 2;
+}
+
+/**
+ @brief Write 2 Q15 to Q15 pointer.
+ @param[in] pQ15 points to input value
+ @param[in] value Q31 value
+ @return none
+ */
+__STATIC_FORCEINLINE void write_q15x2 (
+ q15_t * pQ15,
+ q31_t value)
+{
+ q31_t val = value;
+
+#ifdef __ARM_FEATURE_UNALIGNED
+ memcpy (pQ15, &val, 4);
+#else
+ pQ15[0] = (q15_t)(val & 0x0FFFF);
+ pQ15[1] = (q15_t)(val >> 16);
+#endif
+}
+
+
+/**
+ @brief Read 4 Q7 from Q7 pointer
+ @param[in] pQ7 points to input value
+ @return Q31 value
+ */
+__STATIC_FORCEINLINE q31_t read_q7x4 (
+ q7_t const * pQ7)
+{
+ q31_t val;
+
+#ifdef __ARM_FEATURE_UNALIGNED
+ memcpy (&val, pQ7, 4);
+#else
+ val =((pQ7[3] & 0x0FF) << 24) | ((pQ7[2] & 0x0FF) << 16) | ((pQ7[1] & 0x0FF) << 8) | (pQ7[0] & 0x0FF);
+#endif
+ return (val);
+}
+
+/**
+ @brief Read 4 Q7 from Q7 pointer and increment pointer afterwards.
+ @param[in] pQ7 points to input value
+ @return Q31 value
+ */
+#define read_q7x4_ia(pQ7) read_q7x4((*(pQ7) += 4) - 4)
+
+/**
+ @brief Read 4 Q7 from Q7 pointer and decrement pointer afterwards.
+ @param[in] pQ7 points to input value
+ @return Q31 value
+ */
+#define read_q7x4_da(pQ7) read_q7x4((*(pQ7) -= 4) + 4)
+
+/**
+ @brief Write 4 Q7 to Q7 pointer and increment pointer afterwards.
+ @param[in] pQ7 points to input value
+ @param[in] value Q31 value
+ @return none
+ */
+__STATIC_FORCEINLINE void write_q7x4_ia (
+ q7_t ** pQ7,
+ q31_t value)
+{
+ q31_t val = value;
+#ifdef __ARM_FEATURE_UNALIGNED
+ memcpy (*pQ7, &val, 4);
+#else
+ (*pQ7)[0] = (q7_t)(val & 0x0FF);
+ (*pQ7)[1] = (q7_t)((val >> 8) & 0x0FF);
+ (*pQ7)[2] = (q7_t)((val >> 16) & 0x0FF);
+ (*pQ7)[3] = (q7_t)((val >> 24) & 0x0FF);
+
+#endif
+ *pQ7 += 4;
+}
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /*ifndef _ARM_MATH_MEMORY_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/arm_math_types.h b/Drivers/CMSIS/DSP/Include/arm_math_types.h
new file mode 100644
index 0000000..c615e66
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/arm_math_types.h
@@ -0,0 +1,616 @@
+/******************************************************************************
+ * @file arm_math_types.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef _ARM_MATH_TYPES_H_
+
+#define _ARM_MATH_TYPES_H_
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+/* Compiler specific diagnostic adjustment */
+#if defined ( __CC_ARM )
+
+#elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 )
+
+#elif defined ( __APPLE_CC__ )
+ #pragma GCC diagnostic ignored "-Wold-style-cast"
+
+#elif defined ( __GNUC__ )
+ #pragma GCC diagnostic push
+ #pragma GCC diagnostic ignored "-Wsign-conversion"
+ #pragma GCC diagnostic ignored "-Wconversion"
+ #pragma GCC diagnostic ignored "-Wunused-parameter"
+
+#elif defined ( __ICCARM__ )
+
+#elif defined ( __TI_ARM__ )
+
+#elif defined ( __CSMC__ )
+
+#elif defined ( __TASKING__ )
+
+#elif defined ( _MSC_VER )
+
+#else
+ #error Unknown compiler
+#endif
+
+
+/* Included for instrinsics definitions */
+#if defined (_MSC_VER )
+#include <stdint.h>
+#define __STATIC_FORCEINLINE static __forceinline
+#define __STATIC_INLINE static __inline
+#define __ALIGNED(x) __declspec(align(x))
+#elif defined ( __APPLE_CC__ )
+#include <stdint.h>
+#define __ALIGNED(x) __attribute__((aligned(x)))
+#define __STATIC_FORCEINLINE static inline __attribute__((always_inline))
+#define __STATIC_INLINE static inline
+#elif defined (__GNUC_PYTHON__)
+#include <stdint.h>
+#define __ALIGNED(x) __attribute__((aligned(x)))
+#define __STATIC_FORCEINLINE static inline __attribute__((always_inline))
+#define __STATIC_INLINE static inline
+
+#else
+#include "cmsis_compiler.h"
+#endif
+
+
+
+#include <string.h>
+#include <math.h>
+#include <float.h>
+#include <limits.h>
+
+/* evaluate ARM DSP feature */
+#if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1))
+ #define ARM_MATH_DSP 1
+#endif
+
+#if defined(ARM_MATH_NEON)
+ #if defined(_MSC_VER) && defined(_M_ARM64EC)
+ #include <arm64_neon.h>
+ #else
+ #include <arm_neon.h>
+ #endif
+ #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+ #if !defined(ARM_MATH_NEON_FLOAT16)
+ #define ARM_MATH_NEON_FLOAT16
+ #endif
+ #endif
+#endif
+
+#if !defined(ARM_MATH_AUTOVECTORIZE)
+
+
+#if defined(__ARM_FEATURE_MVE)
+#if __ARM_FEATURE_MVE
+ #if !defined(ARM_MATH_MVEI)
+ #define ARM_MATH_MVEI
+ #endif
+#endif
+
+#if (__ARM_FEATURE_MVE & 2)
+ #if !defined(ARM_MATH_MVEF)
+ #define ARM_MATH_MVEF
+ #endif
+ #if !defined(ARM_MATH_MVE_FLOAT16)
+ #define ARM_MATH_MVE_FLOAT16
+ #endif
+#endif
+
+#endif /*defined(__ARM_FEATURE_MVE)*/
+#endif /*!defined(ARM_MATH_AUTOVECTORIZE)*/
+
+
+#if defined (ARM_MATH_HELIUM)
+ #if !defined(ARM_MATH_MVEF)
+ #define ARM_MATH_MVEF
+ #endif
+
+ #if !defined(ARM_MATH_MVEI)
+ #define ARM_MATH_MVEI
+ #endif
+
+ #if !defined(ARM_MATH_MVE_FLOAT16)
+ #define ARM_MATH_MVE_FLOAT16
+ #endif
+#endif
+
+
+
+#if defined ( __CC_ARM )
+ /* Enter low optimization region - place directly above function definition */
+ #if defined( __ARM_ARCH_7EM__ )
+ #define LOW_OPTIMIZATION_ENTER \
+ _Pragma ("push") \
+ _Pragma ("O1")
+ #else
+ #define LOW_OPTIMIZATION_ENTER
+ #endif
+
+ /* Exit low optimization region - place directly after end of function definition */
+ #if defined ( __ARM_ARCH_7EM__ )
+ #define LOW_OPTIMIZATION_EXIT \
+ _Pragma ("pop")
+ #else
+ #define LOW_OPTIMIZATION_EXIT
+ #endif
+
+ /* Enter low optimization region - place directly above function definition */
+ #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
+
+ /* Exit low optimization region - place directly after end of function definition */
+ #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
+
+#elif defined (__ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 )
+ #define LOW_OPTIMIZATION_ENTER
+ #define LOW_OPTIMIZATION_EXIT
+ #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
+ #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
+
+#elif defined ( __APPLE_CC__ )
+ #define LOW_OPTIMIZATION_ENTER
+ #define LOW_OPTIMIZATION_EXIT
+ #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
+ #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
+
+#elif defined ( __GNUC__ )
+ #define LOW_OPTIMIZATION_ENTER \
+ __attribute__(( optimize("-O1") ))
+ #define LOW_OPTIMIZATION_EXIT
+ #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
+ #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
+
+#elif defined ( __ICCARM__ )
+ /* Enter low optimization region - place directly above function definition */
+ #if defined ( __ARM_ARCH_7EM__ )
+ #define LOW_OPTIMIZATION_ENTER \
+ _Pragma ("optimize=low")
+ #else
+ #define LOW_OPTIMIZATION_ENTER
+ #endif
+
+ /* Exit low optimization region - place directly after end of function definition */
+ #define LOW_OPTIMIZATION_EXIT
+
+ /* Enter low optimization region - place directly above function definition */
+ #if defined ( __ARM_ARCH_7EM__ )
+ #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \
+ _Pragma ("optimize=low")
+ #else
+ #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
+ #endif
+
+ /* Exit low optimization region - place directly after end of function definition */
+ #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
+
+#elif defined ( __TI_ARM__ )
+ #define LOW_OPTIMIZATION_ENTER
+ #define LOW_OPTIMIZATION_EXIT
+ #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
+ #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
+
+#elif defined ( __CSMC__ )
+ #define LOW_OPTIMIZATION_ENTER
+ #define LOW_OPTIMIZATION_EXIT
+ #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
+ #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
+
+#elif defined ( __TASKING__ )
+ #define LOW_OPTIMIZATION_ENTER
+ #define LOW_OPTIMIZATION_EXIT
+ #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
+ #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
+
+#elif defined ( _MSC_VER ) || defined(__GNUC_PYTHON__)
+ #define LOW_OPTIMIZATION_ENTER
+ #define LOW_OPTIMIZATION_EXIT
+ #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
+ #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
+#endif
+
+
+
+/* Compiler specific diagnostic adjustment */
+#if defined ( __CC_ARM )
+
+#elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 )
+
+#elif defined ( __APPLE_CC__ )
+
+#elif defined ( __GNUC__ )
+#pragma GCC diagnostic pop
+
+#elif defined ( __ICCARM__ )
+
+#elif defined ( __TI_ARM__ )
+
+#elif defined ( __CSMC__ )
+
+#elif defined ( __TASKING__ )
+
+#elif defined ( _MSC_VER )
+
+#else
+ #error Unknown compiler
+#endif
+
+#ifdef __cplusplus
+}
+#endif
+
+#if defined(__ARM_FEATURE_MVE) && __ARM_FEATURE_MVE
+#include <arm_mve.h>
+#endif
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+ /**
+ * @brief 8-bit fractional data type in 1.7 format.
+ */
+ typedef int8_t q7_t;
+
+ /**
+ * @brief 16-bit fractional data type in 1.15 format.
+ */
+ typedef int16_t q15_t;
+
+ /**
+ * @brief 32-bit fractional data type in 1.31 format.
+ */
+ typedef int32_t q31_t;
+
+ /**
+ * @brief 64-bit fractional data type in 1.63 format.
+ */
+ typedef int64_t q63_t;
+
+ /**
+ * @brief 32-bit floating-point type definition.
+ */
+#if !defined(__ICCARM__) || !(__ARM_FEATURE_MVE & 2)
+ typedef float float32_t;
+#endif
+
+ /**
+ * @brief 64-bit floating-point type definition.
+ */
+ typedef double float64_t;
+
+ /**
+ * @brief vector types
+ */
+#if defined(ARM_MATH_NEON) || (defined (ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE))
+ /**
+ * @brief 64-bit fractional 128-bit vector data type in 1.63 format
+ */
+ typedef int64x2_t q63x2_t;
+
+ /**
+ * @brief 32-bit fractional 128-bit vector data type in 1.31 format.
+ */
+ typedef int32x4_t q31x4_t;
+
+ /**
+ * @brief 16-bit fractional 128-bit vector data type with 16-bit alignment in 1.15 format.
+ */
+ typedef __ALIGNED(2) int16x8_t q15x8_t;
+
+ /**
+ * @brief 8-bit fractional 128-bit vector data type with 8-bit alignment in 1.7 format.
+ */
+ typedef __ALIGNED(1) int8x16_t q7x16_t;
+
+ /**
+ * @brief 32-bit fractional 128-bit vector pair data type in 1.31 format.
+ */
+ typedef int32x4x2_t q31x4x2_t;
+
+ /**
+ * @brief 32-bit fractional 128-bit vector quadruplet data type in 1.31 format.
+ */
+ typedef int32x4x4_t q31x4x4_t;
+
+ /**
+ * @brief 16-bit fractional 128-bit vector pair data type in 1.15 format.
+ */
+ typedef int16x8x2_t q15x8x2_t;
+
+ /**
+ * @brief 16-bit fractional 128-bit vector quadruplet data type in 1.15 format.
+ */
+ typedef int16x8x4_t q15x8x4_t;
+
+ /**
+ * @brief 8-bit fractional 128-bit vector pair data type in 1.7 format.
+ */
+ typedef int8x16x2_t q7x16x2_t;
+
+ /**
+ * @brief 8-bit fractional 128-bit vector quadruplet data type in 1.7 format.
+ */
+ typedef int8x16x4_t q7x16x4_t;
+
+ /**
+ * @brief 32-bit fractional data type in 9.23 format.
+ */
+ typedef int32_t q23_t;
+
+ /**
+ * @brief 32-bit fractional 128-bit vector data type in 9.23 format.
+ */
+ typedef int32x4_t q23x4_t;
+
+ /**
+ * @brief 64-bit status 128-bit vector data type.
+ */
+ typedef int64x2_t status64x2_t;
+
+ /**
+ * @brief 32-bit status 128-bit vector data type.
+ */
+ typedef int32x4_t status32x4_t;
+
+ /**
+ * @brief 16-bit status 128-bit vector data type.
+ */
+ typedef int16x8_t status16x8_t;
+
+ /**
+ * @brief 8-bit status 128-bit vector data type.
+ */
+ typedef int8x16_t status8x16_t;
+
+
+#endif
+
+#if defined(ARM_MATH_NEON) || (defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)) /* floating point vector*/
+ /**
+ * @brief 32-bit floating-point 128-bit vector type
+ */
+ typedef float32x4_t f32x4_t;
+
+ /**
+ * @brief 32-bit floating-point 128-bit vector pair data type
+ */
+ typedef float32x4x2_t f32x4x2_t;
+
+ /**
+ * @brief 32-bit floating-point 128-bit vector quadruplet data type
+ */
+ typedef float32x4x4_t f32x4x4_t;
+
+ /**
+ * @brief 32-bit ubiquitous 128-bit vector data type
+ */
+ typedef union _any32x4_t
+ {
+ float32x4_t f;
+ int32x4_t i;
+ } any32x4_t;
+
+#endif
+
+#if defined(ARM_MATH_NEON)
+ /**
+ * @brief 32-bit fractional 64-bit vector data type in 1.31 format.
+ */
+ typedef int32x2_t q31x2_t;
+
+ /**
+ * @brief 16-bit fractional 64-bit vector data type in 1.15 format.
+ */
+ typedef __ALIGNED(2) int16x4_t q15x4_t;
+
+ /**
+ * @brief 8-bit fractional 64-bit vector data type in 1.7 format.
+ */
+ typedef __ALIGNED(1) int8x8_t q7x8_t;
+
+ /**
+ * @brief 32-bit float 64-bit vector data type.
+ */
+ typedef float32x2_t f32x2_t;
+
+ /**
+ * @brief 32-bit floating-point 128-bit vector triplet data type
+ */
+ typedef float32x4x3_t f32x4x3_t;
+
+
+ /**
+ * @brief 32-bit fractional 128-bit vector triplet data type in 1.31 format
+ */
+ typedef int32x4x3_t q31x4x3_t;
+
+ /**
+ * @brief 16-bit fractional 128-bit vector triplet data type in 1.15 format
+ */
+ typedef int16x8x3_t q15x8x3_t;
+
+ /**
+ * @brief 8-bit fractional 128-bit vector triplet data type in 1.7 format
+ */
+ typedef int8x16x3_t q7x16x3_t;
+
+ /**
+ * @brief 32-bit floating-point 64-bit vector pair data type
+ */
+ typedef float32x2x2_t f32x2x2_t;
+
+ /**
+ * @brief 32-bit floating-point 64-bit vector triplet data type
+ */
+ typedef float32x2x3_t f32x2x3_t;
+
+ /**
+ * @brief 32-bit floating-point 64-bit vector quadruplet data type
+ */
+ typedef float32x2x4_t f32x2x4_t;
+
+
+ /**
+ * @brief 32-bit fractional 64-bit vector pair data type in 1.31 format
+ */
+ typedef int32x2x2_t q31x2x2_t;
+
+ /**
+ * @brief 32-bit fractional 64-bit vector triplet data type in 1.31 format
+ */
+ typedef int32x2x3_t q31x2x3_t;
+
+ /**
+ * @brief 32-bit fractional 64-bit vector quadruplet data type in 1.31 format
+ */
+ typedef int32x4x3_t q31x2x4_t;
+
+ /**
+ * @brief 16-bit fractional 64-bit vector pair data type in 1.15 format
+ */
+ typedef int16x4x2_t q15x4x2_t;
+
+ /**
+ * @brief 16-bit fractional 64-bit vector triplet data type in 1.15 format
+ */
+ typedef int16x4x2_t q15x4x3_t;
+
+ /**
+ * @brief 16-bit fractional 64-bit vector quadruplet data type in 1.15 format
+ */
+ typedef int16x4x3_t q15x4x4_t;
+
+ /**
+ * @brief 8-bit fractional 64-bit vector pair data type in 1.7 format
+ */
+ typedef int8x8x2_t q7x8x2_t;
+
+ /**
+ * @brief 8-bit fractional 64-bit vector triplet data type in 1.7 format
+ */
+ typedef int8x8x3_t q7x8x3_t;
+
+ /**
+ * @brief 8-bit fractional 64-bit vector quadruplet data type in 1.7 format
+ */
+ typedef int8x8x4_t q7x8x4_t;
+
+ /**
+ * @brief 32-bit ubiquitous 64-bit vector data type
+ */
+ typedef union _any32x2_t
+ {
+ float32x2_t f;
+ int32x2_t i;
+ } any32x2_t;
+
+
+ /**
+ * @brief 32-bit status 64-bit vector data type.
+ */
+ typedef int32x4_t status32x2_t;
+
+ /**
+ * @brief 16-bit status 64-bit vector data type.
+ */
+ typedef int16x8_t status16x4_t;
+
+ /**
+ * @brief 8-bit status 64-bit vector data type.
+ */
+ typedef int8x16_t status8x8_t;
+
+#endif
+
+
+
+
+
+#define F64_MAX ((float64_t)DBL_MAX)
+#define F32_MAX ((float32_t)FLT_MAX)
+
+
+
+#define F64_MIN (-DBL_MAX)
+#define F32_MIN (-FLT_MAX)
+
+
+
+#define F64_ABSMAX ((float64_t)DBL_MAX)
+#define F32_ABSMAX ((float32_t)FLT_MAX)
+
+
+
+#define F64_ABSMIN ((float64_t)0.0)
+#define F32_ABSMIN ((float32_t)0.0)
+
+
+#define Q31_MAX ((q31_t)(0x7FFFFFFFL))
+#define Q15_MAX ((q15_t)(0x7FFF))
+#define Q7_MAX ((q7_t)(0x7F))
+#define Q31_MIN ((q31_t)(0x80000000L))
+#define Q15_MIN ((q15_t)(0x8000))
+#define Q7_MIN ((q7_t)(0x80))
+
+#define Q31_ABSMAX ((q31_t)(0x7FFFFFFFL))
+#define Q15_ABSMAX ((q15_t)(0x7FFF))
+#define Q7_ABSMAX ((q7_t)(0x7F))
+#define Q31_ABSMIN ((q31_t)0)
+#define Q15_ABSMIN ((q15_t)0)
+#define Q7_ABSMIN ((q7_t)0)
+
+ /* Dimension C vector space */
+ #define CMPLX_DIM 2
+
+ /**
+ * @brief Error status returned by some functions in the library.
+ */
+
+ typedef enum
+ {
+ ARM_MATH_SUCCESS = 0, /**< No error */
+ ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */
+ ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */
+ ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation */
+ ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */
+ ARM_MATH_SINGULAR = -5, /**< Input matrix is singular and cannot be inverted */
+ ARM_MATH_TEST_FAILURE = -6, /**< Test Failed */
+ ARM_MATH_DECOMPOSITION_FAILURE = -7 /**< Decomposition Failed */
+ } arm_status;
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /*ifndef _ARM_MATH_TYPES_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/arm_math_types_f16.h b/Drivers/CMSIS/DSP/Include/arm_math_types_f16.h
new file mode 100644
index 0000000..744dc38
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/arm_math_types_f16.h
@@ -0,0 +1,163 @@
+/******************************************************************************
+ * @file arm_math_types_f16.h
+ * @brief Public header file for f16 function of the CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef _ARM_MATH_TYPES_F16_H
+#define _ARM_MATH_TYPES_F16_H
+
+#include "arm_math_types.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#if !defined( __CC_ARM )
+
+/**
+ * @brief 16-bit floating-point type definition.
+ * This is already defined in arm_mve.h
+ *
+ * This is not fully supported on ARM AC5.
+ */
+
+/*
+
+Check if the type __fp16 is available.
+If it is not available, f16 version of the kernels
+won't be built.
+
+*/
+#if !(__ARM_FEATURE_MVE & 2)
+ #if !defined(DISABLEFLOAT16)
+ #if defined(__ARM_FP16_FORMAT_IEEE) || defined(__ARM_FP16_FORMAT_ALTERNATIVE)
+ typedef __fp16 float16_t;
+ #define ARM_FLOAT16_SUPPORTED
+ #endif
+ #endif
+#else
+ /* When Vector float16, this flag is always defined and can't be disabled */
+ #define ARM_FLOAT16_SUPPORTED
+#endif
+
+#if defined(ARM_MATH_NEON) || (defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)) /* floating point vector*/
+
+#if defined(ARM_MATH_MVE_FLOAT16) || defined(ARM_MATH_NEON_FLOAT16)
+
+ /**
+ * @brief 16-bit floating-point 128-bit vector data type
+ */
+ typedef __ALIGNED(2) float16x8_t f16x8_t;
+
+ /**
+ * @brief 16-bit floating-point 128-bit vector pair data type
+ */
+ typedef float16x8x2_t f16x8x2_t;
+
+ /**
+ * @brief 16-bit floating-point 128-bit vector quadruplet data type
+ */
+ typedef float16x8x4_t f16x8x4_t;
+
+ /**
+ * @brief 16-bit ubiquitous 128-bit vector data type
+ */
+ typedef union _any16x8_t
+ {
+ float16x8_t f;
+ int16x8_t i;
+ } any16x8_t;
+#endif
+
+#endif
+
+#if defined(ARM_MATH_NEON)
+
+
+#if defined(ARM_MATH_NEON_FLOAT16)
+ /**
+ * @brief 16-bit float 64-bit vector data type.
+ */
+ typedef __ALIGNED(2) float16x4_t f16x4_t;
+
+ /**
+ * @brief 16-bit floating-point 128-bit vector triplet data type
+ */
+ typedef float16x8x3_t f16x8x3_t;
+
+ /**
+ * @brief 16-bit floating-point 64-bit vector pair data type
+ */
+ typedef float16x4x2_t f16x4x2_t;
+
+ /**
+ * @brief 16-bit floating-point 64-bit vector triplet data type
+ */
+ typedef float16x4x3_t f16x4x3_t;
+
+ /**
+ * @brief 16-bit floating-point 64-bit vector quadruplet data type
+ */
+ typedef float16x4x4_t f16x4x4_t;
+
+ /**
+ * @brief 16-bit ubiquitous 64-bit vector data type
+ */
+ typedef union _any16x4_t
+ {
+ float16x4_t f;
+ int16x4_t i;
+ } any16x4_t;
+#endif
+
+#endif
+
+
+
+#if defined(ARM_FLOAT16_SUPPORTED)
+
+#if defined(__ICCARM__)
+
+#define F16INFINITY ((float16_t) INFINITY)
+
+#else
+
+#define F16INFINITY ((float16_t)__builtin_inf())
+
+#endif
+
+#define F16_MAX ((float16_t)__FLT16_MAX__)
+#define F16_MIN (-(_Float16)__FLT16_MAX__)
+
+#define F16_ABSMAX ((float16_t)__FLT16_MAX__)
+#define F16_ABSMIN ((float16_t)0.0f16)
+
+#endif /* ARM_FLOAT16_SUPPORTED*/
+#endif /* !defined( __CC_ARM ) */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* _ARM_MATH_F16_H */
diff --git a/Drivers/CMSIS/DSP/Include/arm_mve_tables.h b/Drivers/CMSIS/DSP/Include/arm_mve_tables.h
new file mode 100644
index 0000000..c4f8bf0
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/arm_mve_tables.h
@@ -0,0 +1,231 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_mve_tables.h
+ * Description: common tables like fft twiddle factors, Bitreverse, reciprocal etc
+ * used for MVE implementation only
+ *
+ * @version V1.10.0
+ * @date 04 October 2021
+ *
+ * Target Processor: Cortex-M and Cortex-A cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+ #ifndef _ARM_MVE_TABLES_H
+ #define _ARM_MVE_TABLES_H
+
+#include "arm_math_types.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+
+
+
+#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
+
+#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES)
+
+#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_16) || defined(ARM_TABLE_TWIDDLECOEF_F32_32)
+
+extern uint32_t rearranged_twiddle_tab_stride1_arr_16_f32[2];
+extern uint32_t rearranged_twiddle_tab_stride2_arr_16_f32[2];
+extern uint32_t rearranged_twiddle_tab_stride3_arr_16_f32[2];
+extern float32_t rearranged_twiddle_stride1_16_f32[8];
+extern float32_t rearranged_twiddle_stride2_16_f32[8];
+extern float32_t rearranged_twiddle_stride3_16_f32[8];
+#endif
+
+#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_64) || defined(ARM_TABLE_TWIDDLECOEF_F32_128)
+
+extern uint32_t rearranged_twiddle_tab_stride1_arr_64_f32[3];
+extern uint32_t rearranged_twiddle_tab_stride2_arr_64_f32[3];
+extern uint32_t rearranged_twiddle_tab_stride3_arr_64_f32[3];
+extern float32_t rearranged_twiddle_stride1_64_f32[40];
+extern float32_t rearranged_twiddle_stride2_64_f32[40];
+extern float32_t rearranged_twiddle_stride3_64_f32[40];
+#endif
+
+#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_256) || defined(ARM_TABLE_TWIDDLECOEF_F32_512)
+
+extern uint32_t rearranged_twiddle_tab_stride1_arr_256_f32[4];
+extern uint32_t rearranged_twiddle_tab_stride2_arr_256_f32[4];
+extern uint32_t rearranged_twiddle_tab_stride3_arr_256_f32[4];
+extern float32_t rearranged_twiddle_stride1_256_f32[168];
+extern float32_t rearranged_twiddle_stride2_256_f32[168];
+extern float32_t rearranged_twiddle_stride3_256_f32[168];
+#endif
+
+#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_1024) || defined(ARM_TABLE_TWIDDLECOEF_F32_2048)
+
+extern uint32_t rearranged_twiddle_tab_stride1_arr_1024_f32[5];
+extern uint32_t rearranged_twiddle_tab_stride2_arr_1024_f32[5];
+extern uint32_t rearranged_twiddle_tab_stride3_arr_1024_f32[5];
+extern float32_t rearranged_twiddle_stride1_1024_f32[680];
+extern float32_t rearranged_twiddle_stride2_1024_f32[680];
+extern float32_t rearranged_twiddle_stride3_1024_f32[680];
+#endif
+
+#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_4096) || defined(ARM_TABLE_TWIDDLECOEF_F32_8192)
+
+extern uint32_t rearranged_twiddle_tab_stride1_arr_4096_f32[6];
+extern uint32_t rearranged_twiddle_tab_stride2_arr_4096_f32[6];
+extern uint32_t rearranged_twiddle_tab_stride3_arr_4096_f32[6];
+extern float32_t rearranged_twiddle_stride1_4096_f32[2728];
+extern float32_t rearranged_twiddle_stride2_4096_f32[2728];
+extern float32_t rearranged_twiddle_stride3_4096_f32[2728];
+#endif
+
+
+#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES) */
+
+#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
+
+
+
+#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
+
+#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES)
+
+#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_16) || defined(ARM_TABLE_TWIDDLECOEF_Q31_32)
+
+extern uint32_t rearranged_twiddle_tab_stride1_arr_16_q31[2];
+extern uint32_t rearranged_twiddle_tab_stride2_arr_16_q31[2];
+extern uint32_t rearranged_twiddle_tab_stride3_arr_16_q31[2];
+extern q31_t rearranged_twiddle_stride1_16_q31[8];
+extern q31_t rearranged_twiddle_stride2_16_q31[8];
+extern q31_t rearranged_twiddle_stride3_16_q31[8];
+#endif
+
+#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_64) || defined(ARM_TABLE_TWIDDLECOEF_Q31_128)
+
+extern uint32_t rearranged_twiddle_tab_stride1_arr_64_q31[3];
+extern uint32_t rearranged_twiddle_tab_stride2_arr_64_q31[3];
+extern uint32_t rearranged_twiddle_tab_stride3_arr_64_q31[3];
+extern q31_t rearranged_twiddle_stride1_64_q31[40];
+extern q31_t rearranged_twiddle_stride2_64_q31[40];
+extern q31_t rearranged_twiddle_stride3_64_q31[40];
+#endif
+
+#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_256) || defined(ARM_TABLE_TWIDDLECOEF_Q31_512)
+
+extern uint32_t rearranged_twiddle_tab_stride1_arr_256_q31[4];
+extern uint32_t rearranged_twiddle_tab_stride2_arr_256_q31[4];
+extern uint32_t rearranged_twiddle_tab_stride3_arr_256_q31[4];
+extern q31_t rearranged_twiddle_stride1_256_q31[168];
+extern q31_t rearranged_twiddle_stride2_256_q31[168];
+extern q31_t rearranged_twiddle_stride3_256_q31[168];
+#endif
+
+#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_1024) || defined(ARM_TABLE_TWIDDLECOEF_Q31_2048)
+
+extern uint32_t rearranged_twiddle_tab_stride1_arr_1024_q31[5];
+extern uint32_t rearranged_twiddle_tab_stride2_arr_1024_q31[5];
+extern uint32_t rearranged_twiddle_tab_stride3_arr_1024_q31[5];
+extern q31_t rearranged_twiddle_stride1_1024_q31[680];
+extern q31_t rearranged_twiddle_stride2_1024_q31[680];
+extern q31_t rearranged_twiddle_stride3_1024_q31[680];
+#endif
+
+#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_4096) || defined(ARM_TABLE_TWIDDLECOEF_Q31_8192)
+
+extern uint32_t rearranged_twiddle_tab_stride1_arr_4096_q31[6];
+extern uint32_t rearranged_twiddle_tab_stride2_arr_4096_q31[6];
+extern uint32_t rearranged_twiddle_tab_stride3_arr_4096_q31[6];
+extern q31_t rearranged_twiddle_stride1_4096_q31[2728];
+extern q31_t rearranged_twiddle_stride2_4096_q31[2728];
+extern q31_t rearranged_twiddle_stride3_4096_q31[2728];
+#endif
+
+
+#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES) */
+
+#endif /* defined(ARM_MATH_MVEI) */
+
+
+
+#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
+
+#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES)
+
+#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_16) || defined(ARM_TABLE_TWIDDLECOEF_Q15_32)
+
+extern uint32_t rearranged_twiddle_tab_stride1_arr_16_q15[2];
+extern uint32_t rearranged_twiddle_tab_stride2_arr_16_q15[2];
+extern uint32_t rearranged_twiddle_tab_stride3_arr_16_q15[2];
+extern q15_t rearranged_twiddle_stride1_16_q15[8];
+extern q15_t rearranged_twiddle_stride2_16_q15[8];
+extern q15_t rearranged_twiddle_stride3_16_q15[8];
+#endif
+
+#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_64) || defined(ARM_TABLE_TWIDDLECOEF_Q15_128)
+
+extern uint32_t rearranged_twiddle_tab_stride1_arr_64_q15[3];
+extern uint32_t rearranged_twiddle_tab_stride2_arr_64_q15[3];
+extern uint32_t rearranged_twiddle_tab_stride3_arr_64_q15[3];
+extern q15_t rearranged_twiddle_stride1_64_q15[40];
+extern q15_t rearranged_twiddle_stride2_64_q15[40];
+extern q15_t rearranged_twiddle_stride3_64_q15[40];
+#endif
+
+#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_256) || defined(ARM_TABLE_TWIDDLECOEF_Q15_512)
+
+extern uint32_t rearranged_twiddle_tab_stride1_arr_256_q15[4];
+extern uint32_t rearranged_twiddle_tab_stride2_arr_256_q15[4];
+extern uint32_t rearranged_twiddle_tab_stride3_arr_256_q15[4];
+extern q15_t rearranged_twiddle_stride1_256_q15[168];
+extern q15_t rearranged_twiddle_stride2_256_q15[168];
+extern q15_t rearranged_twiddle_stride3_256_q15[168];
+#endif
+
+#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_1024) || defined(ARM_TABLE_TWIDDLECOEF_Q15_2048)
+
+extern uint32_t rearranged_twiddle_tab_stride1_arr_1024_q15[5];
+extern uint32_t rearranged_twiddle_tab_stride2_arr_1024_q15[5];
+extern uint32_t rearranged_twiddle_tab_stride3_arr_1024_q15[5];
+extern q15_t rearranged_twiddle_stride1_1024_q15[680];
+extern q15_t rearranged_twiddle_stride2_1024_q15[680];
+extern q15_t rearranged_twiddle_stride3_1024_q15[680];
+#endif
+
+#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_4096) || defined(ARM_TABLE_TWIDDLECOEF_Q15_8192)
+
+extern uint32_t rearranged_twiddle_tab_stride1_arr_4096_q15[6];
+extern uint32_t rearranged_twiddle_tab_stride2_arr_4096_q15[6];
+extern uint32_t rearranged_twiddle_tab_stride3_arr_4096_q15[6];
+extern q15_t rearranged_twiddle_stride1_4096_q15[2728];
+extern q15_t rearranged_twiddle_stride2_4096_q15[2728];
+extern q15_t rearranged_twiddle_stride3_4096_q15[2728];
+#endif
+
+
+#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES) */
+
+#endif /* defined(ARM_MATH_MVEI) */
+
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /*_ARM_MVE_TABLES_H*/
+
diff --git a/Drivers/CMSIS/DSP/Include/arm_mve_tables_f16.h b/Drivers/CMSIS/DSP/Include/arm_mve_tables_f16.h
new file mode 100644
index 0000000..dc95203
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/arm_mve_tables_f16.h
@@ -0,0 +1,109 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_mve_tables_f16.h
+ * Description: common tables like fft twiddle factors, Bitreverse, reciprocal etc
+ * used for MVE implementation only
+ *
+ * @version V1.10.0
+ * @date 04 October 2021
+ *
+ * Target Processor: Cortex-M and Cortex-A cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+ #ifndef _ARM_MVE_TABLES_F16_H
+ #define _ARM_MVE_TABLES_F16_H
+
+#include "arm_math_types_f16.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+
+
+
+#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
+
+#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES)
+
+#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_16) || defined(ARM_TABLE_TWIDDLECOEF_F16_32)
+
+extern uint32_t rearranged_twiddle_tab_stride1_arr_16_f16[2];
+extern uint32_t rearranged_twiddle_tab_stride2_arr_16_f16[2];
+extern uint32_t rearranged_twiddle_tab_stride3_arr_16_f16[2];
+extern float16_t rearranged_twiddle_stride1_16_f16[8];
+extern float16_t rearranged_twiddle_stride2_16_f16[8];
+extern float16_t rearranged_twiddle_stride3_16_f16[8];
+#endif
+
+#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_64) || defined(ARM_TABLE_TWIDDLECOEF_F16_128)
+
+extern uint32_t rearranged_twiddle_tab_stride1_arr_64_f16[3];
+extern uint32_t rearranged_twiddle_tab_stride2_arr_64_f16[3];
+extern uint32_t rearranged_twiddle_tab_stride3_arr_64_f16[3];
+extern float16_t rearranged_twiddle_stride1_64_f16[40];
+extern float16_t rearranged_twiddle_stride2_64_f16[40];
+extern float16_t rearranged_twiddle_stride3_64_f16[40];
+#endif
+
+#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_256) || defined(ARM_TABLE_TWIDDLECOEF_F16_512)
+
+extern uint32_t rearranged_twiddle_tab_stride1_arr_256_f16[4];
+extern uint32_t rearranged_twiddle_tab_stride2_arr_256_f16[4];
+extern uint32_t rearranged_twiddle_tab_stride3_arr_256_f16[4];
+extern float16_t rearranged_twiddle_stride1_256_f16[168];
+extern float16_t rearranged_twiddle_stride2_256_f16[168];
+extern float16_t rearranged_twiddle_stride3_256_f16[168];
+#endif
+
+#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_1024) || defined(ARM_TABLE_TWIDDLECOEF_F16_2048)
+
+extern uint32_t rearranged_twiddle_tab_stride1_arr_1024_f16[5];
+extern uint32_t rearranged_twiddle_tab_stride2_arr_1024_f16[5];
+extern uint32_t rearranged_twiddle_tab_stride3_arr_1024_f16[5];
+extern float16_t rearranged_twiddle_stride1_1024_f16[680];
+extern float16_t rearranged_twiddle_stride2_1024_f16[680];
+extern float16_t rearranged_twiddle_stride3_1024_f16[680];
+#endif
+
+#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_4096) || defined(ARM_TABLE_TWIDDLECOEF_F16_8192)
+
+extern uint32_t rearranged_twiddle_tab_stride1_arr_4096_f16[6];
+extern uint32_t rearranged_twiddle_tab_stride2_arr_4096_f16[6];
+extern uint32_t rearranged_twiddle_tab_stride3_arr_4096_f16[6];
+extern float16_t rearranged_twiddle_stride1_4096_f16[2728];
+extern float16_t rearranged_twiddle_stride2_4096_f16[2728];
+extern float16_t rearranged_twiddle_stride3_4096_f16[2728];
+#endif
+
+
+#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES) */
+
+#endif /* defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE) */
+
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /*_ARM_MVE_TABLES_F16_H*/
+
diff --git a/Drivers/CMSIS/DSP/Include/arm_vec_math.h b/Drivers/CMSIS/DSP/Include/arm_vec_math.h
new file mode 100644
index 0000000..d9134c5
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/arm_vec_math.h
@@ -0,0 +1,373 @@
+/******************************************************************************
+ * @file arm_vec_math.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef _ARM_VEC_MATH_H
+#define _ARM_VEC_MATH_H
+
+#include "arm_math_types.h"
+#include "arm_common_tables.h"
+#include "arm_helium_utils.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#if (defined(ARM_MATH_MVEF) || defined(ARM_MATH_HELIUM)) && !defined(ARM_MATH_AUTOVECTORIZE)
+
+#define INV_NEWTON_INIT_F32 0x7EF127EA
+
+static const float32_t __logf_rng_f32=0.693147180f;
+
+
+/* fast inverse approximation (3x newton) */
+__STATIC_INLINE f32x4_t vrecip_medprec_f32(
+ f32x4_t x)
+{
+ q31x4_t m;
+ f32x4_t b;
+ any32x4_t xinv;
+ f32x4_t ax = vabsq(x);
+
+ xinv.f = ax;
+ m = 0x3F800000 - (xinv.i & 0x7F800000);
+ xinv.i = xinv.i + m;
+ xinv.f = 1.41176471f - 0.47058824f * xinv.f;
+ xinv.i = xinv.i + m;
+
+ b = 2.0f - xinv.f * ax;
+ xinv.f = xinv.f * b;
+
+ b = 2.0f - xinv.f * ax;
+ xinv.f = xinv.f * b;
+
+ b = 2.0f - xinv.f * ax;
+ xinv.f = xinv.f * b;
+
+ xinv.f = vdupq_m(xinv.f, INFINITY, vcmpeqq(x, 0.0f));
+ /*
+ * restore sign
+ */
+ xinv.f = vnegq_m(xinv.f, xinv.f, vcmpltq(x, 0.0f));
+
+ return xinv.f;
+}
+
+/* fast inverse approximation (4x newton) */
+__STATIC_INLINE f32x4_t vrecip_hiprec_f32(
+ f32x4_t x)
+{
+ q31x4_t m;
+ f32x4_t b;
+ any32x4_t xinv;
+ f32x4_t ax = vabsq(x);
+
+ xinv.f = ax;
+
+ m = 0x3F800000 - (xinv.i & 0x7F800000);
+ xinv.i = xinv.i + m;
+ xinv.f = 1.41176471f - 0.47058824f * xinv.f;
+ xinv.i = xinv.i + m;
+
+ b = 2.0f - xinv.f * ax;
+ xinv.f = xinv.f * b;
+
+ b = 2.0f - xinv.f * ax;
+ xinv.f = xinv.f * b;
+
+ b = 2.0f - xinv.f * ax;
+ xinv.f = xinv.f * b;
+
+ b = 2.0f - xinv.f * ax;
+ xinv.f = xinv.f * b;
+
+ xinv.f = vdupq_m(xinv.f, INFINITY, vcmpeqq(x, 0.0f));
+ /*
+ * restore sign
+ */
+ xinv.f = vnegq_m(xinv.f, xinv.f, vcmpltq(x, 0.0f));
+
+ return xinv.f;
+}
+
+__STATIC_INLINE f32x4_t vdiv_f32(
+ f32x4_t num, f32x4_t den)
+{
+ return vmulq(num, vrecip_hiprec_f32(den));
+}
+
+/**
+ @brief Single-precision taylor dev.
+ @param[in] x f32 quad vector input
+ @param[in] coeffs f32 quad vector coeffs
+ @return destination f32 quad vector
+ */
+
+__STATIC_INLINE f32x4_t vtaylor_polyq_f32(
+ f32x4_t x,
+ const float32_t * coeffs)
+{
+ f32x4_t A = vfmasq(vdupq_n_f32(coeffs[4]), x, coeffs[0]);
+ f32x4_t B = vfmasq(vdupq_n_f32(coeffs[6]), x, coeffs[2]);
+ f32x4_t C = vfmasq(vdupq_n_f32(coeffs[5]), x, coeffs[1]);
+ f32x4_t D = vfmasq(vdupq_n_f32(coeffs[7]), x, coeffs[3]);
+ f32x4_t x2 = vmulq(x, x);
+ f32x4_t x4 = vmulq(x2, x2);
+ f32x4_t res = vfmaq(vfmaq_f32(A, B, x2), vfmaq_f32(C, D, x2), x4);
+
+ return res;
+}
+
+__STATIC_INLINE f32x4_t vmant_exp_f32(
+ f32x4_t x,
+ int32x4_t * e)
+{
+ any32x4_t r;
+ int32x4_t n;
+
+ r.f = x;
+ n = r.i >> 23;
+ n = n - 127;
+ r.i = r.i - (n << 23);
+
+ *e = n;
+ return r.f;
+}
+
+
+__STATIC_INLINE f32x4_t vlogq_f32(f32x4_t vecIn)
+{
+ q31x4_t vecExpUnBiased;
+ f32x4_t vecTmpFlt0, vecTmpFlt1;
+ f32x4_t vecAcc0, vecAcc1, vecAcc2, vecAcc3;
+ f32x4_t vecExpUnBiasedFlt;
+
+ /*
+ * extract exponent
+ */
+ vecTmpFlt1 = vmant_exp_f32(vecIn, &vecExpUnBiased);
+
+ vecTmpFlt0 = vecTmpFlt1 * vecTmpFlt1;
+ /*
+ * a = (__logf_lut_f32[4] * r.f) + (__logf_lut_f32[0]);
+ */
+ vecAcc0 = vdupq_n_f32(__logf_lut_f32[0]);
+ vecAcc0 = vfmaq(vecAcc0, vecTmpFlt1, __logf_lut_f32[4]);
+ /*
+ * b = (__logf_lut_f32[6] * r.f) + (__logf_lut_f32[2]);
+ */
+ vecAcc1 = vdupq_n_f32(__logf_lut_f32[2]);
+ vecAcc1 = vfmaq(vecAcc1, vecTmpFlt1, __logf_lut_f32[6]);
+ /*
+ * c = (__logf_lut_f32[5] * r.f) + (__logf_lut_f32[1]);
+ */
+ vecAcc2 = vdupq_n_f32(__logf_lut_f32[1]);
+ vecAcc2 = vfmaq(vecAcc2, vecTmpFlt1, __logf_lut_f32[5]);
+ /*
+ * d = (__logf_lut_f32[7] * r.f) + (__logf_lut_f32[3]);
+ */
+ vecAcc3 = vdupq_n_f32(__logf_lut_f32[3]);
+ vecAcc3 = vfmaq(vecAcc3, vecTmpFlt1, __logf_lut_f32[7]);
+ /*
+ * a = a + b * xx;
+ */
+ vecAcc0 = vfmaq(vecAcc0, vecAcc1, vecTmpFlt0);
+ /*
+ * c = c + d * xx;
+ */
+ vecAcc2 = vfmaq(vecAcc2, vecAcc3, vecTmpFlt0);
+ /*
+ * xx = xx * xx;
+ */
+ vecTmpFlt0 = vecTmpFlt0 * vecTmpFlt0;
+ vecExpUnBiasedFlt = vcvtq_f32_s32(vecExpUnBiased);
+ /*
+ * r.f = a + c * xx;
+ */
+ vecAcc0 = vfmaq(vecAcc0, vecAcc2, vecTmpFlt0);
+ /*
+ * add exponent
+ * r.f = r.f + ((float32_t) m) * __logf_rng_f32;
+ */
+ vecAcc0 = vfmaq(vecAcc0, vecExpUnBiasedFlt, __logf_rng_f32);
+ // set log0 down to -inf
+ vecAcc0 = vdupq_m(vecAcc0, -INFINITY, vcmpeqq(vecIn, 0.0f));
+ return vecAcc0;
+}
+
+__STATIC_INLINE f32x4_t vexpq_f32(
+ f32x4_t x)
+{
+ // Perform range reduction [-log(2),log(2)]
+ int32x4_t m = vcvtq_s32_f32(vmulq_n_f32(x, 1.4426950408f));
+ f32x4_t val = vfmsq_f32(x, vcvtq_f32_s32(m), vdupq_n_f32(0.6931471805f));
+
+ // Polynomial Approximation
+ f32x4_t poly = vtaylor_polyq_f32(val, exp_tab);
+
+ // Reconstruct
+ poly = (f32x4_t) (vqaddq_s32((q31x4_t) (poly), vqshlq_n_s32(m, 23)));
+
+ poly = vdupq_m(poly, 0.0f, vcmpltq_n_s32(m, -126));
+ return poly;
+}
+
+__STATIC_INLINE f32x4_t arm_vec_exponent_f32(f32x4_t x, int32_t nb)
+{
+ f32x4_t r = x;
+ nb--;
+ while (nb > 0) {
+ r = vmulq(r, x);
+ nb--;
+ }
+ return (r);
+}
+
+__STATIC_INLINE f32x4_t vrecip_f32(f32x4_t vecIn)
+{
+ f32x4_t vecSx, vecW, vecTmp;
+ any32x4_t v;
+
+ vecSx = vabsq(vecIn);
+
+ v.f = vecIn;
+ v.i = vsubq(vdupq_n_s32(INV_NEWTON_INIT_F32), v.i);
+
+ vecW = vmulq(vecSx, v.f);
+
+ // v.f = v.f * (8 + w * (-28 + w * (56 + w * (-70 + w *(56 + w * (-28 + w * (8 - w)))))));
+ vecTmp = vsubq(vdupq_n_f32(8.0f), vecW);
+ vecTmp = vfmasq(vecW, vecTmp, -28.0f);
+ vecTmp = vfmasq(vecW, vecTmp, 56.0f);
+ vecTmp = vfmasq(vecW, vecTmp, -70.0f);
+ vecTmp = vfmasq(vecW, vecTmp, 56.0f);
+ vecTmp = vfmasq(vecW, vecTmp, -28.0f);
+ vecTmp = vfmasq(vecW, vecTmp, 8.0f);
+ v.f = vmulq(v.f, vecTmp);
+
+ v.f = vdupq_m(v.f, INFINITY, vcmpeqq(vecIn, 0.0f));
+ /*
+ * restore sign
+ */
+ v.f = vnegq_m(v.f, v.f, vcmpltq(vecIn, 0.0f));
+ return v.f;
+}
+
+__STATIC_INLINE f32x4_t vtanhq_f32(
+ f32x4_t val)
+{
+ f32x4_t x =
+ vminnmq_f32(vmaxnmq_f32(val, vdupq_n_f32(-10.f)), vdupq_n_f32(10.0f));
+ f32x4_t exp2x = vexpq_f32(vmulq_n_f32(x, 2.f));
+ f32x4_t num = vsubq_n_f32(exp2x, 1.f);
+ f32x4_t den = vaddq_n_f32(exp2x, 1.f);
+ f32x4_t tanh = vmulq_f32(num, vrecip_f32(den));
+ return tanh;
+}
+
+__STATIC_INLINE f32x4_t vpowq_f32(
+ f32x4_t val,
+ f32x4_t n)
+{
+ return vexpq_f32(vmulq_f32(n, vlogq_f32(val)));
+}
+
+#endif /* (defined(ARM_MATH_MVEF) || defined(ARM_MATH_HELIUM)) && !defined(ARM_MATH_AUTOVECTORIZE)*/
+
+#if (defined(ARM_MATH_MVEI) || defined(ARM_MATH_HELIUM)) && !defined(ARM_MATH_AUTOVECTORIZE)
+#endif /* (defined(ARM_MATH_MVEI) || defined(ARM_MATH_HELIUM)) */
+
+#if (defined(ARM_MATH_NEON) || defined(ARM_MATH_NEON_EXPERIMENTAL)) && !defined(ARM_MATH_AUTOVECTORIZE)
+
+#include "NEMath.h"
+/**
+ * @brief Vectorized integer exponentiation
+ * @param[in] x value
+ * @param[in] nb integer exponent >= 1
+ * @return x^nb
+ *
+ */
+__STATIC_INLINE float32x4_t arm_vec_exponent_f32(float32x4_t x, int32_t nb)
+{
+ float32x4_t r = x;
+ nb --;
+ while(nb > 0)
+ {
+ r = vmulq_f32(r , x);
+ nb--;
+ }
+ return(r);
+}
+
+
+__STATIC_INLINE float32x4_t __arm_vec_sqrt_f32_neon(float32x4_t x)
+{
+ float32x4_t x1 = vmaxq_f32(x, vdupq_n_f32(FLT_MIN));
+ float32x4_t e = vrsqrteq_f32(x1);
+ e = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x1, e), e), e);
+ e = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x1, e), e), e);
+ return vmulq_f32(x, e);
+}
+
+__STATIC_INLINE int16x8_t __arm_vec_sqrt_q15_neon(int16x8_t vec)
+{
+ float32x4_t tempF;
+ int32x4_t tempHI,tempLO;
+
+ tempLO = vmovl_s16(vget_low_s16(vec));
+ tempF = vcvtq_n_f32_s32(tempLO,15);
+ tempF = __arm_vec_sqrt_f32_neon(tempF);
+ tempLO = vcvtq_n_s32_f32(tempF,15);
+
+ tempHI = vmovl_s16(vget_high_s16(vec));
+ tempF = vcvtq_n_f32_s32(tempHI,15);
+ tempF = __arm_vec_sqrt_f32_neon(tempF);
+ tempHI = vcvtq_n_s32_f32(tempF,15);
+
+ return(vcombine_s16(vqmovn_s32(tempLO),vqmovn_s32(tempHI)));
+}
+
+__STATIC_INLINE int32x4_t __arm_vec_sqrt_q31_neon(int32x4_t vec)
+{
+ float32x4_t temp;
+
+ temp = vcvtq_n_f32_s32(vec,31);
+ temp = __arm_vec_sqrt_f32_neon(temp);
+ return(vcvtq_n_s32_f32(temp,31));
+}
+
+#endif /* (defined(ARM_MATH_NEON) || defined(ARM_MATH_NEON_EXPERIMENTAL)) && !defined(ARM_MATH_AUTOVECTORIZE) */
+
+#ifdef __cplusplus
+}
+#endif
+
+
+#endif /* _ARM_VEC_MATH_H */
+
+/**
+ *
+ * End of file.
+ */
diff --git a/Drivers/CMSIS/DSP/Include/arm_vec_math_f16.h b/Drivers/CMSIS/DSP/Include/arm_vec_math_f16.h
new file mode 100644
index 0000000..91bd28a
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/arm_vec_math_f16.h
@@ -0,0 +1,312 @@
+/******************************************************************************
+ * @file arm_vec_math_f16.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef _ARM_VEC_MATH_F16_H
+#define _ARM_VEC_MATH_F16_H
+
+#include "arm_math_types_f16.h"
+#include "arm_common_tables_f16.h"
+#include "arm_helium_utils.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#if defined(ARM_FLOAT16_SUPPORTED)
+
+
+#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
+
+
+static const float16_t __logf_rng_f16=0.693147180f16;
+
+/* fast inverse approximation (3x newton) */
+__STATIC_INLINE f16x8_t vrecip_medprec_f16(
+ f16x8_t x)
+{
+ q15x8_t m;
+ f16x8_t b;
+ any16x8_t xinv;
+ f16x8_t ax = vabsq(x);
+
+ xinv.f = ax;
+
+ m = 0x03c00 - (xinv.i & 0x07c00);
+ xinv.i = xinv.i + m;
+ xinv.f = 1.41176471f16 - 0.47058824f16 * xinv.f;
+ xinv.i = xinv.i + m;
+
+ b = 2.0f16 - xinv.f * ax;
+ xinv.f = xinv.f * b;
+
+ b = 2.0f16 - xinv.f * ax;
+ xinv.f = xinv.f * b;
+
+ b = 2.0f16 - xinv.f * ax;
+ xinv.f = xinv.f * b;
+
+ xinv.f = vdupq_m_n_f16(xinv.f, F16INFINITY, vcmpeqq_n_f16(x, 0.0f));
+ /*
+ * restore sign
+ */
+ xinv.f = vnegq_m(xinv.f, xinv.f, vcmpltq_n_f16(x, 0.0f));
+
+ return xinv.f;
+}
+
+/* fast inverse approximation (4x newton) */
+__STATIC_INLINE f16x8_t vrecip_hiprec_f16(
+ f16x8_t x)
+{
+ q15x8_t m;
+ f16x8_t b;
+ any16x8_t xinv;
+ f16x8_t ax = vabsq(x);
+
+ xinv.f = ax;
+
+ m = 0x03c00 - (xinv.i & 0x07c00);
+ xinv.i = xinv.i + m;
+ xinv.f = 1.41176471f16 - 0.47058824f16 * xinv.f;
+ xinv.i = xinv.i + m;
+
+ b = 2.0f16 - xinv.f * ax;
+ xinv.f = xinv.f * b;
+
+ b = 2.0f16 - xinv.f * ax;
+ xinv.f = xinv.f * b;
+
+ b = 2.0f16 - xinv.f * ax;
+ xinv.f = xinv.f * b;
+
+ b = 2.0f16 - xinv.f * ax;
+ xinv.f = xinv.f * b;
+
+ xinv.f = vdupq_m_n_f16(xinv.f, F16INFINITY, vcmpeqq_n_f16(x, 0.0f));
+ /*
+ * restore sign
+ */
+ xinv.f = vnegq_m(xinv.f, xinv.f, vcmpltq_n_f16(x, 0.0f));
+
+ return xinv.f;
+}
+
+__STATIC_INLINE f16x8_t vdiv_f16(
+ f16x8_t num, f16x8_t den)
+{
+ return vmulq(num, vrecip_hiprec_f16(den));
+}
+
+
+/**
+ @brief Single-precision taylor dev.
+ @param[in] x f16 vector input
+ @param[in] coeffs f16 vector coeffs
+ @return destination f16 vector
+ */
+
+__STATIC_INLINE float16x8_t vtaylor_polyq_f16(
+ float16x8_t x,
+ const float16_t * coeffs)
+{
+ float16x8_t A = vfmasq(vdupq_n_f16(coeffs[4]), x, coeffs[0]);
+ float16x8_t B = vfmasq(vdupq_n_f16(coeffs[6]), x, coeffs[2]);
+ float16x8_t C = vfmasq(vdupq_n_f16(coeffs[5]), x, coeffs[1]);
+ float16x8_t D = vfmasq(vdupq_n_f16(coeffs[7]), x, coeffs[3]);
+ float16x8_t x2 = vmulq(x, x);
+ float16x8_t x4 = vmulq(x2, x2);
+ float16x8_t res = vfmaq(vfmaq_f16(A, B, x2), vfmaq_f16(C, D, x2), x4);
+
+ return res;
+}
+
+#define VMANT_EXP_F16(x) \
+ any16x8_t r; \
+ int16x8_t n; \
+ \
+ r.f = x; \
+ n = r.i >> 10; \
+ n = n - 15; \
+ r.i = r.i - (n << 10);\
+ \
+ vecExpUnBiased = n; \
+ vecTmpFlt1 = r.f;
+
+__STATIC_INLINE float16x8_t vlogq_f16(float16x8_t vecIn)
+{
+ q15x8_t vecExpUnBiased;
+ float16x8_t vecTmpFlt0, vecTmpFlt1;
+ float16x8_t vecAcc0, vecAcc1, vecAcc2, vecAcc3;
+ float16x8_t vecExpUnBiasedFlt;
+
+ /*
+ * extract exponent
+ */
+ VMANT_EXP_F16(vecIn);
+
+ vecTmpFlt0 = vecTmpFlt1 * vecTmpFlt1;
+ /*
+ * a = (__logf_lut_f16[4] * r.f) + (__logf_lut_f16[0]);
+ */
+ vecAcc0 = vdupq_n_f16(__logf_lut_f16[0]);
+ vecAcc0 = vfmaq(vecAcc0, vecTmpFlt1, __logf_lut_f16[4]);
+ /*
+ * b = (__logf_lut_f16[6] * r.f) + (__logf_lut_f16[2]);
+ */
+ vecAcc1 = vdupq_n_f16(__logf_lut_f16[2]);
+ vecAcc1 = vfmaq(vecAcc1, vecTmpFlt1, __logf_lut_f16[6]);
+ /*
+ * c = (__logf_lut_f16[5] * r.f) + (__logf_lut_f16[1]);
+ */
+ vecAcc2 = vdupq_n_f16(__logf_lut_f16[1]);
+ vecAcc2 = vfmaq(vecAcc2, vecTmpFlt1, __logf_lut_f16[5]);
+ /*
+ * d = (__logf_lut_f16[7] * r.f) + (__logf_lut_f16[3]);
+ */
+ vecAcc3 = vdupq_n_f16(__logf_lut_f16[3]);
+ vecAcc3 = vfmaq(vecAcc3, vecTmpFlt1, __logf_lut_f16[7]);
+ /*
+ * a = a + b * xx;
+ */
+ vecAcc0 = vfmaq(vecAcc0, vecAcc1, vecTmpFlt0);
+ /*
+ * c = c + d * xx;
+ */
+ vecAcc2 = vfmaq(vecAcc2, vecAcc3, vecTmpFlt0);
+ /*
+ * xx = xx * xx;
+ */
+ vecTmpFlt0 = vecTmpFlt0 * vecTmpFlt0;
+ vecExpUnBiasedFlt = vcvtq_f16_s16(vecExpUnBiased);
+ /*
+ * r.f = a + c * xx;
+ */
+ vecAcc0 = vfmaq(vecAcc0, vecAcc2, vecTmpFlt0);
+ /*
+ * add exponent
+ * r.f = r.f + ((float32_t) m) * __logf_rng_f16;
+ */
+ vecAcc0 = vfmaq(vecAcc0, vecExpUnBiasedFlt, __logf_rng_f16);
+ // set log0 down to -inf
+ vecAcc0 = vdupq_m_n_f16(vecAcc0, -(_Float16)F16INFINITY, vcmpeqq_n_f16(vecIn, 0.0f));
+ return vecAcc0;
+}
+
+__STATIC_INLINE float16x8_t vexpq_f16(
+ float16x8_t x)
+{
+ // Perform range reduction [-log(2),log(2)]
+ int16x8_t m = vcvtq_s16_f16(vmulq_n_f16(x, 1.4426950408f16));
+ float16x8_t val = vfmsq_f16(x, vcvtq_f16_s16(m), vdupq_n_f16(0.6931471805f16));
+
+ // Polynomial Approximation
+ float16x8_t poly = vtaylor_polyq_f16(val, exp_tab_f16);
+
+ // Reconstruct
+ poly = (float16x8_t) (vqaddq_s16((int16x8_t) (poly), vqshlq_n_s16(m, 10)));
+
+ poly = vdupq_m_n_f16(poly, 0.0f16, vcmpltq_n_s16(m, -14));
+ return poly;
+}
+
+__STATIC_INLINE float16x8_t arm_vec_exponent_f16(float16x8_t x, int16_t nb)
+{
+ float16x8_t r = x;
+ nb--;
+ while (nb > 0) {
+ r = vmulq(r, x);
+ nb--;
+ }
+ return (r);
+}
+
+__STATIC_INLINE f16x8_t vpowq_f16(
+ f16x8_t val,
+ f16x8_t n)
+{
+ return vexpq_f16(vmulq_f16(n, vlogq_f16(val)));
+}
+
+#define INV_NEWTON_INIT_F16 0x7773
+
+__STATIC_INLINE f16x8_t vrecip_f16(f16x8_t vecIn)
+{
+ f16x8_t vecSx, vecW, vecTmp;
+ any16x8_t v;
+
+ vecSx = vabsq(vecIn);
+
+ v.f = vecIn;
+ v.i = vsubq(vdupq_n_s16(INV_NEWTON_INIT_F16), v.i);
+
+ vecW = vmulq(vecSx, v.f);
+
+ // v.f = v.f * (8 + w * (-28 + w * (56 + w * (-70 + w *(56 + w * (-28 + w * (8 - w)))))));
+ vecTmp = vsubq(vdupq_n_f16(8.0f16), vecW);
+ vecTmp = vfmasq_n_f16(vecW, vecTmp, -28.0f16);
+ vecTmp = vfmasq_n_f16(vecW, vecTmp, 56.0f16);
+ vecTmp = vfmasq_n_f16(vecW, vecTmp, -70.0f16);
+ vecTmp = vfmasq_n_f16(vecW, vecTmp, 56.0f16);
+ vecTmp = vfmasq_n_f16(vecW, vecTmp, -28.0f16);
+ vecTmp = vfmasq_n_f16(vecW, vecTmp, 8.0f16);
+ v.f = vmulq(v.f, vecTmp);
+
+ v.f = vdupq_m_n_f16(v.f, F16INFINITY, vcmpeqq_n_f16(vecIn, 0.0f));
+ /*
+ * restore sign
+ */
+ v.f = vnegq_m(v.f, v.f, vcmpltq_n_f16(vecIn, 0.0f));
+ return v.f;
+}
+
+__STATIC_INLINE f16x8_t vtanhq_f16(
+ f16x8_t val)
+{
+ f16x8_t x =
+ vminnmq_f16(vmaxnmq_f16(val, vdupq_n_f16(-10.f16)), vdupq_n_f16(10.0f16));
+ f16x8_t exp2x = vexpq_f16(vmulq_n_f16(x, 2.f16));
+ f16x8_t num = vsubq_n_f16(exp2x, 1.f16);
+ f16x8_t den = vaddq_n_f16(exp2x, 1.f16);
+ f16x8_t tanh = vmulq_f16(num, vrecip_f16(den));
+ return tanh;
+}
+
+#endif /* defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)*/
+
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ARM FLOAT16 SUPPORTED */
+
+#endif /* _ARM_VEC_MATH_F16_H */
+
+/**
+ *
+ * End of file.
+ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/basic_math_functions.h b/Drivers/CMSIS/DSP/Include/dsp/basic_math_functions.h
new file mode 100644
index 0000000..dcc1f2a
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/basic_math_functions.h
@@ -0,0 +1,880 @@
+/******************************************************************************
+ * @file basic_math_functions.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _BASIC_MATH_FUNCTIONS_H_
+#define _BASIC_MATH_FUNCTIONS_H_
+
+#include "arm_math_types.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+/**
+ * @defgroup groupMath Basic Math Functions
+ */
+
+ /**
+ * @brief Q7 vector multiplication.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_mult_q7(
+ const q7_t * pSrcA,
+ const q7_t * pSrcB,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q15 vector multiplication.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_mult_q15(
+ const q15_t * pSrcA,
+ const q15_t * pSrcB,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q31 vector multiplication.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_mult_q31(
+ const q31_t * pSrcA,
+ const q31_t * pSrcB,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Floating-point vector multiplication.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_mult_f32(
+ const float32_t * pSrcA,
+ const float32_t * pSrcB,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+
+/**
+ * @brief Floating-point vector multiplication.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+void arm_mult_f64(
+const float64_t * pSrcA,
+const float64_t * pSrcB,
+ float64_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @brief Floating-point vector addition.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_add_f32(
+ const float32_t * pSrcA,
+ const float32_t * pSrcB,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+
+/**
+ * @brief Floating-point vector addition.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_add_f64(
+ const float64_t * pSrcA,
+ const float64_t * pSrcB,
+ float64_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @brief Q7 vector addition.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_add_q7(
+ const q7_t * pSrcA,
+ const q7_t * pSrcB,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q15 vector addition.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_add_q15(
+ const q15_t * pSrcA,
+ const q15_t * pSrcB,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q31 vector addition.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_add_q31(
+ const q31_t * pSrcA,
+ const q31_t * pSrcB,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Floating-point vector subtraction.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_sub_f32(
+ const float32_t * pSrcA,
+ const float32_t * pSrcB,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @brief Floating-point vector subtraction.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_sub_f64(
+ const float64_t * pSrcA,
+ const float64_t * pSrcB,
+ float64_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @brief Q7 vector subtraction.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_sub_q7(
+ const q7_t * pSrcA,
+ const q7_t * pSrcB,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q15 vector subtraction.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_sub_q15(
+ const q15_t * pSrcA,
+ const q15_t * pSrcB,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q31 vector subtraction.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_sub_q31(
+ const q31_t * pSrcA,
+ const q31_t * pSrcB,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Multiplies a floating-point vector by a scalar.
+ * @param[in] pSrc points to the input vector
+ * @param[in] scale scale factor to be applied
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_scale_f32(
+ const float32_t * pSrc,
+ float32_t scale,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @brief Multiplies a floating-point vector by a scalar.
+ * @param[in] pSrc points to the input vector
+ * @param[in] scale scale factor to be applied
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_scale_f64(
+ const float64_t * pSrc,
+ float64_t scale,
+ float64_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @brief Multiplies a Q7 vector by a scalar.
+ * @param[in] pSrc points to the input vector
+ * @param[in] scaleFract fractional portion of the scale value
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_scale_q7(
+ const q7_t * pSrc,
+ q7_t scaleFract,
+ int8_t shift,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Multiplies a Q15 vector by a scalar.
+ * @param[in] pSrc points to the input vector
+ * @param[in] scaleFract fractional portion of the scale value
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_scale_q15(
+ const q15_t * pSrc,
+ q15_t scaleFract,
+ int8_t shift,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Multiplies a Q31 vector by a scalar.
+ * @param[in] pSrc points to the input vector
+ * @param[in] scaleFract fractional portion of the scale value
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_scale_q31(
+ const q31_t * pSrc,
+ q31_t scaleFract,
+ int8_t shift,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q7 vector absolute value.
+ * @param[in] pSrc points to the input buffer
+ * @param[out] pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_abs_q7(
+ const q7_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Floating-point vector absolute value.
+ * @param[in] pSrc points to the input buffer
+ * @param[out] pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_abs_f32(
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+
+/**
+ * @brief Floating-point vector absolute value.
+ * @param[in] pSrc points to the input buffer
+ * @param[out] pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ */
+void arm_abs_f64(
+const float64_t * pSrc,
+ float64_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @brief Q15 vector absolute value.
+ * @param[in] pSrc points to the input buffer
+ * @param[out] pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_abs_q15(
+ const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q31 vector absolute value.
+ * @param[in] pSrc points to the input buffer
+ * @param[out] pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_abs_q31(
+ const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Dot product of floating-point vectors.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] result output result returned here
+ */
+ void arm_dot_prod_f32(
+ const float32_t * pSrcA,
+ const float32_t * pSrcB,
+ uint32_t blockSize,
+ float32_t * result);
+
+
+
+/**
+ * @brief Dot product of floating-point vectors.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] result output result returned here
+ */
+void arm_dot_prod_f64(
+const float64_t * pSrcA,
+const float64_t * pSrcB,
+ uint32_t blockSize,
+ float64_t * result);
+
+
+
+ /**
+ * @brief Dot product of Q7 vectors.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] result output result returned here
+ */
+ void arm_dot_prod_q7(
+ const q7_t * pSrcA,
+ const q7_t * pSrcB,
+ uint32_t blockSize,
+ q31_t * result);
+
+
+ /**
+ * @brief Dot product of Q15 vectors.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] result output result returned here
+ */
+ void arm_dot_prod_q15(
+ const q15_t * pSrcA,
+ const q15_t * pSrcB,
+ uint32_t blockSize,
+ q63_t * result);
+
+
+ /**
+ * @brief Dot product of Q31 vectors.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] result output result returned here
+ */
+ void arm_dot_prod_q31(
+ const q31_t * pSrcA,
+ const q31_t * pSrcB,
+ uint32_t blockSize,
+ q63_t * result);
+
+
+ /**
+ * @brief Shifts the elements of a Q7 vector a specified number of bits.
+ * @param[in] pSrc points to the input vector
+ * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_shift_q7(
+ const q7_t * pSrc,
+ int8_t shiftBits,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Shifts the elements of a Q15 vector a specified number of bits.
+ * @param[in] pSrc points to the input vector
+ * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_shift_q15(
+ const q15_t * pSrc,
+ int8_t shiftBits,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Shifts the elements of a Q31 vector a specified number of bits.
+ * @param[in] pSrc points to the input vector
+ * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_shift_q31(
+ const q31_t * pSrc,
+ int8_t shiftBits,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+/**
+ * @brief Adds a constant offset to a floating-point vector.
+ * @param[in] pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+void arm_offset_f64(
+const float64_t * pSrc,
+ float64_t offset,
+ float64_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @brief Adds a constant offset to a floating-point vector.
+ * @param[in] pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_offset_f32(
+ const float32_t * pSrc,
+ float32_t offset,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @brief Adds a constant offset to a Q7 vector.
+ * @param[in] pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_offset_q7(
+ const q7_t * pSrc,
+ q7_t offset,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Adds a constant offset to a Q15 vector.
+ * @param[in] pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_offset_q15(
+ const q15_t * pSrc,
+ q15_t offset,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Adds a constant offset to a Q31 vector.
+ * @param[in] pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_offset_q31(
+ const q31_t * pSrc,
+ q31_t offset,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Negates the elements of a floating-point vector.
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_negate_f32(
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+
+/**
+ * @brief Negates the elements of a floating-point vector.
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+void arm_negate_f64(
+const float64_t * pSrc,
+ float64_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @brief Negates the elements of a Q7 vector.
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_negate_q7(
+ const q7_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Negates the elements of a Q15 vector.
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_negate_q15(
+ const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Negates the elements of a Q31 vector.
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_negate_q31(
+ const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+/**
+ * @brief Compute the logical bitwise AND of two fixed-point vectors.
+ * @param[in] pSrcA points to input vector A
+ * @param[in] pSrcB points to input vector B
+ * @param[out] pDst points to output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none
+ */
+ void arm_and_u16(
+ const uint16_t * pSrcA,
+ const uint16_t * pSrcB,
+ uint16_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Compute the logical bitwise AND of two fixed-point vectors.
+ * @param[in] pSrcA points to input vector A
+ * @param[in] pSrcB points to input vector B
+ * @param[out] pDst points to output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none
+ */
+ void arm_and_u32(
+ const uint32_t * pSrcA,
+ const uint32_t * pSrcB,
+ uint32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Compute the logical bitwise AND of two fixed-point vectors.
+ * @param[in] pSrcA points to input vector A
+ * @param[in] pSrcB points to input vector B
+ * @param[out] pDst points to output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none
+ */
+ void arm_and_u8(
+ const uint8_t * pSrcA,
+ const uint8_t * pSrcB,
+ uint8_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Compute the logical bitwise OR of two fixed-point vectors.
+ * @param[in] pSrcA points to input vector A
+ * @param[in] pSrcB points to input vector B
+ * @param[out] pDst points to output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none
+ */
+ void arm_or_u16(
+ const uint16_t * pSrcA,
+ const uint16_t * pSrcB,
+ uint16_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Compute the logical bitwise OR of two fixed-point vectors.
+ * @param[in] pSrcA points to input vector A
+ * @param[in] pSrcB points to input vector B
+ * @param[out] pDst points to output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none
+ */
+ void arm_or_u32(
+ const uint32_t * pSrcA,
+ const uint32_t * pSrcB,
+ uint32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Compute the logical bitwise OR of two fixed-point vectors.
+ * @param[in] pSrcA points to input vector A
+ * @param[in] pSrcB points to input vector B
+ * @param[out] pDst points to output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none
+ */
+ void arm_or_u8(
+ const uint8_t * pSrcA,
+ const uint8_t * pSrcB,
+ uint8_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Compute the logical bitwise NOT of a fixed-point vector.
+ * @param[in] pSrc points to input vector
+ * @param[out] pDst points to output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none
+ */
+ void arm_not_u16(
+ const uint16_t * pSrc,
+ uint16_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Compute the logical bitwise NOT of a fixed-point vector.
+ * @param[in] pSrc points to input vector
+ * @param[out] pDst points to output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none
+ */
+ void arm_not_u32(
+ const uint32_t * pSrc,
+ uint32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Compute the logical bitwise NOT of a fixed-point vector.
+ * @param[in] pSrc points to input vector
+ * @param[out] pDst points to output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none
+ */
+ void arm_not_u8(
+ const uint8_t * pSrc,
+ uint8_t * pDst,
+ uint32_t blockSize);
+
+/**
+ * @brief Compute the logical bitwise XOR of two fixed-point vectors.
+ * @param[in] pSrcA points to input vector A
+ * @param[in] pSrcB points to input vector B
+ * @param[out] pDst points to output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none
+ */
+ void arm_xor_u16(
+ const uint16_t * pSrcA,
+ const uint16_t * pSrcB,
+ uint16_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Compute the logical bitwise XOR of two fixed-point vectors.
+ * @param[in] pSrcA points to input vector A
+ * @param[in] pSrcB points to input vector B
+ * @param[out] pDst points to output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none
+ */
+ void arm_xor_u32(
+ const uint32_t * pSrcA,
+ const uint32_t * pSrcB,
+ uint32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Compute the logical bitwise XOR of two fixed-point vectors.
+ * @param[in] pSrcA points to input vector A
+ * @param[in] pSrcB points to input vector B
+ * @param[out] pDst points to output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none
+ */
+ void arm_xor_u8(
+ const uint8_t * pSrcA,
+ const uint8_t * pSrcB,
+ uint8_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ @brief Elementwise floating-point clipping
+ @param[in] pSrc points to input values
+ @param[out] pDst points to output clipped values
+ @param[in] low lower bound
+ @param[in] high higher bound
+ @param[in] numSamples number of samples to clip
+ @return none
+ */
+
+void arm_clip_f32(const float32_t * pSrc,
+ float32_t * pDst,
+ float32_t low,
+ float32_t high,
+ uint32_t numSamples);
+
+ /**
+ @brief Elementwise fixed-point clipping
+ @param[in] pSrc points to input values
+ @param[out] pDst points to output clipped values
+ @param[in] low lower bound
+ @param[in] high higher bound
+ @param[in] numSamples number of samples to clip
+ @return none
+ */
+
+void arm_clip_q31(const q31_t * pSrc,
+ q31_t * pDst,
+ q31_t low,
+ q31_t high,
+ uint32_t numSamples);
+
+ /**
+ @brief Elementwise fixed-point clipping
+ @param[in] pSrc points to input values
+ @param[out] pDst points to output clipped values
+ @param[in] low lower bound
+ @param[in] high higher bound
+ @param[in] numSamples number of samples to clip
+ @return none
+ */
+
+void arm_clip_q15(const q15_t * pSrc,
+ q15_t * pDst,
+ q15_t low,
+ q15_t high,
+ uint32_t numSamples);
+
+ /**
+ @brief Elementwise fixed-point clipping
+ @param[in] pSrc points to input values
+ @param[out] pDst points to output clipped values
+ @param[in] low lower bound
+ @param[in] high higher bound
+ @param[in] numSamples number of samples to clip
+ @return none
+ */
+
+void arm_clip_q7(const q7_t * pSrc,
+ q7_t * pDst,
+ q7_t low,
+ q7_t high,
+ uint32_t numSamples);
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _BASIC_MATH_FUNCTIONS_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/basic_math_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/basic_math_functions_f16.h
new file mode 100644
index 0000000..de9f58b
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/basic_math_functions_f16.h
@@ -0,0 +1,168 @@
+/******************************************************************************
+ * @file basic_math_functions_f16.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _BASIC_MATH_FUNCTIONS_F16_H_
+#define _BASIC_MATH_FUNCTIONS_F16_H_
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#include "arm_math_types_f16.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+
+#if defined(ARM_FLOAT16_SUPPORTED)
+
+
+ /**
+ * @brief Floating-point vector addition.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_add_f16(
+ const float16_t * pSrcA,
+ const float16_t * pSrcB,
+ float16_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Floating-point vector subtraction.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_sub_f16(
+ const float16_t * pSrcA,
+ const float16_t * pSrcB,
+ float16_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Multiplies a floating-point vector by a scalar.
+ * @param[in] pSrc points to the input vector
+ * @param[in] scale scale factor to be applied
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_scale_f16(
+ const float16_t * pSrc,
+ float16_t scale,
+ float16_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Floating-point vector absolute value.
+ * @param[in] pSrc points to the input buffer
+ * @param[out] pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_abs_f16(
+ const float16_t * pSrc,
+ float16_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Adds a constant offset to a floating-point vector.
+ * @param[in] pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_offset_f16(
+ const float16_t * pSrc,
+ float16_t offset,
+ float16_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Dot product of floating-point vectors.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] result output result returned here
+ */
+ void arm_dot_prod_f16(
+ const float16_t * pSrcA,
+ const float16_t * pSrcB,
+ uint32_t blockSize,
+ float16_t * result);
+
+ /**
+ * @brief Floating-point vector multiplication.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_mult_f16(
+ const float16_t * pSrcA,
+ const float16_t * pSrcB,
+ float16_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Negates the elements of a floating-point vector.
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_negate_f16(
+ const float16_t * pSrc,
+ float16_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ @brief Elementwise floating-point clipping
+ @param[in] pSrc points to input values
+ @param[out] pDst points to output clipped values
+ @param[in] low lower bound
+ @param[in] high higher bound
+ @param[in] numSamples number of samples to clip
+ @return none
+ */
+
+void arm_clip_f16(const float16_t * pSrc,
+ float16_t * pDst,
+ float16_t low,
+ float16_t high,
+ uint32_t numSamples);
+
+#endif /* defined(ARM_FLOAT16_SUPPORTED)*/
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _BASIC_MATH_FUNCTIONS_F16_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/bayes_functions.h b/Drivers/CMSIS/DSP/Include/dsp/bayes_functions.h
new file mode 100644
index 0000000..824c50e
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/bayes_functions.h
@@ -0,0 +1,89 @@
+/******************************************************************************
+ * @file bayes_functions.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _BAYES_FUNCTIONS_H_
+#define _BAYES_FUNCTIONS_H_
+
+#include "arm_math_types.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+#include "dsp/statistics_functions.h"
+
+/**
+ * @defgroup groupBayes Bayesian estimators
+ *
+ * Implement the naive gaussian Bayes estimator.
+ * The training must be done from scikit-learn.
+ *
+ * The parameters can be easily
+ * generated from the scikit-learn object. Some examples are given in
+ * DSP/Testing/PatternGeneration/Bayes.py
+ */
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+/**
+ * @brief Instance structure for Naive Gaussian Bayesian estimator.
+ */
+typedef struct
+{
+ uint32_t vectorDimension; /**< Dimension of vector space */
+ uint32_t numberOfClasses; /**< Number of different classes */
+ const float32_t *theta; /**< Mean values for the Gaussians */
+ const float32_t *sigma; /**< Variances for the Gaussians */
+ const float32_t *classPriors; /**< Class prior probabilities */
+ float32_t epsilon; /**< Additive value to variances */
+} arm_gaussian_naive_bayes_instance_f32;
+
+/**
+ * @brief Naive Gaussian Bayesian Estimator
+ *
+ * @param[in] S points to a naive bayes instance structure
+ * @param[in] in points to the elements of the input vector.
+ * @param[out] *pOutputProbabilities points to a buffer of length numberOfClasses containing estimated probabilities
+ * @param[out] *pBufferB points to a temporary buffer of length numberOfClasses
+ * @return The predicted class
+ *
+ */
+
+
+uint32_t arm_gaussian_naive_bayes_predict_f32(const arm_gaussian_naive_bayes_instance_f32 *S,
+ const float32_t * in,
+ float32_t *pOutputProbabilities,
+ float32_t *pBufferB);
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _BAYES_FUNCTIONS_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/bayes_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/bayes_functions_f16.h
new file mode 100644
index 0000000..5c4ae42
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/bayes_functions_f16.h
@@ -0,0 +1,80 @@
+/******************************************************************************
+ * @file bayes_functions_f16.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _BAYES_FUNCTIONS_F16_H_
+#define _BAYES_FUNCTIONS_F16_H_
+
+#include "arm_math_types_f16.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+#include "dsp/statistics_functions_f16.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#if defined(ARM_FLOAT16_SUPPORTED)
+
+/**
+ * @brief Instance structure for Naive Gaussian Bayesian estimator.
+ */
+typedef struct
+{
+ uint32_t vectorDimension; /**< Dimension of vector space */
+ uint32_t numberOfClasses; /**< Number of different classes */
+ const float16_t *theta; /**< Mean values for the Gaussians */
+ const float16_t *sigma; /**< Variances for the Gaussians */
+ const float16_t *classPriors; /**< Class prior probabilities */
+ float16_t epsilon; /**< Additive value to variances */
+} arm_gaussian_naive_bayes_instance_f16;
+
+/**
+ * @brief Naive Gaussian Bayesian Estimator
+ *
+ * @param[in] S points to a naive bayes instance structure
+ * @param[in] in points to the elements of the input vector.
+ * @param[out] *pOutputProbabilities points to a buffer of length numberOfClasses containing estimated probabilities
+ * @param[out] *pBufferB points to a temporary buffer of length numberOfClasses
+ * @return The predicted class
+ *
+ */
+
+
+uint32_t arm_gaussian_naive_bayes_predict_f16(const arm_gaussian_naive_bayes_instance_f16 *S,
+ const float16_t * in,
+ float16_t *pOutputProbabilities,
+ float16_t *pBufferB);
+
+#endif /*defined(ARM_FLOAT16_SUPPORTED)*/
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _BAYES_FUNCTIONS_F16_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/complex_math_functions.h b/Drivers/CMSIS/DSP/Include/dsp/complex_math_functions.h
new file mode 100644
index 0000000..1339eba
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/complex_math_functions.h
@@ -0,0 +1,345 @@
+/******************************************************************************
+ * @file complex_math_functions.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _COMPLEX_MATH_FUNCTIONS_H_
+#define _COMPLEX_MATH_FUNCTIONS_H_
+
+#include "arm_math_types.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+#include "dsp/fast_math_functions.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+/**
+ * @defgroup groupCmplxMath Complex Math Functions
+ * This set of functions operates on complex data vectors.
+ * The data in the complex arrays is stored in an interleaved fashion
+ * (real, imag, real, imag, ...).
+ * In the API functions, the number of samples in a complex array refers
+ * to the number of complex values; the array contains twice this number of
+ * real values.
+ */
+
+ /**
+ * @brief Floating-point complex conjugate.
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
+ void arm_cmplx_conj_f32(
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q31 complex conjugate.
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
+ void arm_cmplx_conj_q31(
+ const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Q15 complex conjugate.
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
+ void arm_cmplx_conj_q15(
+ const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Floating-point complex magnitude squared
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
+ void arm_cmplx_mag_squared_f32(
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Floating-point complex magnitude squared
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
+ void arm_cmplx_mag_squared_f64(
+ const float64_t * pSrc,
+ float64_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Q31 complex magnitude squared
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
+ void arm_cmplx_mag_squared_q31(
+ const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Q15 complex magnitude squared
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
+ void arm_cmplx_mag_squared_q15(
+ const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t numSamples);
+
+
+/**
+ * @brief Floating-point complex magnitude
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
+ void arm_cmplx_mag_f32(
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t numSamples);
+
+
+/**
+ * @brief Floating-point complex magnitude
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
+ void arm_cmplx_mag_f64(
+ const float64_t * pSrc,
+ float64_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Q31 complex magnitude
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
+ void arm_cmplx_mag_q31(
+ const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Q15 complex magnitude
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
+ void arm_cmplx_mag_q15(
+ const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q15 complex magnitude
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
+ void arm_cmplx_mag_fast_q15(
+ const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Q15 complex dot product
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @param[out] realResult real part of the result returned here
+ * @param[out] imagResult imaginary part of the result returned here
+ */
+ void arm_cmplx_dot_prod_q15(
+ const q15_t * pSrcA,
+ const q15_t * pSrcB,
+ uint32_t numSamples,
+ q31_t * realResult,
+ q31_t * imagResult);
+
+
+ /**
+ * @brief Q31 complex dot product
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @param[out] realResult real part of the result returned here
+ * @param[out] imagResult imaginary part of the result returned here
+ */
+ void arm_cmplx_dot_prod_q31(
+ const q31_t * pSrcA,
+ const q31_t * pSrcB,
+ uint32_t numSamples,
+ q63_t * realResult,
+ q63_t * imagResult);
+
+
+ /**
+ * @brief Floating-point complex dot product
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @param[out] realResult real part of the result returned here
+ * @param[out] imagResult imaginary part of the result returned here
+ */
+ void arm_cmplx_dot_prod_f32(
+ const float32_t * pSrcA,
+ const float32_t * pSrcB,
+ uint32_t numSamples,
+ float32_t * realResult,
+ float32_t * imagResult);
+
+
+ /**
+ * @brief Q15 complex-by-real multiplication
+ * @param[in] pSrcCmplx points to the complex input vector
+ * @param[in] pSrcReal points to the real input vector
+ * @param[out] pCmplxDst points to the complex output vector
+ * @param[in] numSamples number of samples in each vector
+ */
+ void arm_cmplx_mult_real_q15(
+ const q15_t * pSrcCmplx,
+ const q15_t * pSrcReal,
+ q15_t * pCmplxDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Q31 complex-by-real multiplication
+ * @param[in] pSrcCmplx points to the complex input vector
+ * @param[in] pSrcReal points to the real input vector
+ * @param[out] pCmplxDst points to the complex output vector
+ * @param[in] numSamples number of samples in each vector
+ */
+ void arm_cmplx_mult_real_q31(
+ const q31_t * pSrcCmplx,
+ const q31_t * pSrcReal,
+ q31_t * pCmplxDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Floating-point complex-by-real multiplication
+ * @param[in] pSrcCmplx points to the complex input vector
+ * @param[in] pSrcReal points to the real input vector
+ * @param[out] pCmplxDst points to the complex output vector
+ * @param[in] numSamples number of samples in each vector
+ */
+ void arm_cmplx_mult_real_f32(
+ const float32_t * pSrcCmplx,
+ const float32_t * pSrcReal,
+ float32_t * pCmplxDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q15 complex-by-complex multiplication
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
+ void arm_cmplx_mult_cmplx_q15(
+ const q15_t * pSrcA,
+ const q15_t * pSrcB,
+ q15_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Q31 complex-by-complex multiplication
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
+ void arm_cmplx_mult_cmplx_q31(
+ const q31_t * pSrcA,
+ const q31_t * pSrcB,
+ q31_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Floating-point complex-by-complex multiplication
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
+ void arm_cmplx_mult_cmplx_f32(
+ const float32_t * pSrcA,
+ const float32_t * pSrcB,
+ float32_t * pDst,
+ uint32_t numSamples);
+
+
+
+/**
+ * @brief Floating-point complex-by-complex multiplication
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
+void arm_cmplx_mult_cmplx_f64(
+const float64_t * pSrcA,
+const float64_t * pSrcB,
+ float64_t * pDst,
+ uint32_t numSamples);
+
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _COMPLEX_MATH_FUNCTIONS_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/complex_math_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/complex_math_functions_f16.h
new file mode 100644
index 0000000..b17f931
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/complex_math_functions_f16.h
@@ -0,0 +1,123 @@
+/******************************************************************************
+ * @file complex_math_functions_f16.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _COMPLEX_MATH_FUNCTIONS_F16_H_
+#define _COMPLEX_MATH_FUNCTIONS_F16_H_
+
+#include "arm_math_types_f16.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+#include "dsp/fast_math_functions_f16.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#if defined(ARM_FLOAT16_SUPPORTED)
+
+ /**
+ * @brief Floating-point complex conjugate.
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
+ void arm_cmplx_conj_f16(
+ const float16_t * pSrc,
+ float16_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Floating-point complex magnitude squared
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
+ void arm_cmplx_mag_squared_f16(
+ const float16_t * pSrc,
+ float16_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Floating-point complex magnitude
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
+ void arm_cmplx_mag_f16(
+ const float16_t * pSrc,
+ float16_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Floating-point complex dot product
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @param[out] realResult real part of the result returned here
+ * @param[out] imagResult imaginary part of the result returned here
+ */
+ void arm_cmplx_dot_prod_f16(
+ const float16_t * pSrcA,
+ const float16_t * pSrcB,
+ uint32_t numSamples,
+ float16_t * realResult,
+ float16_t * imagResult);
+
+ /**
+ * @brief Floating-point complex-by-real multiplication
+ * @param[in] pSrcCmplx points to the complex input vector
+ * @param[in] pSrcReal points to the real input vector
+ * @param[out] pCmplxDst points to the complex output vector
+ * @param[in] numSamples number of samples in each vector
+ */
+ void arm_cmplx_mult_real_f16(
+ const float16_t * pSrcCmplx,
+ const float16_t * pSrcReal,
+ float16_t * pCmplxDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Floating-point complex-by-complex multiplication
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
+ void arm_cmplx_mult_cmplx_f16(
+ const float16_t * pSrcA,
+ const float16_t * pSrcB,
+ float16_t * pDst,
+ uint32_t numSamples);
+
+#endif /*defined(ARM_FLOAT16_SUPPORTED)*/
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _COMPLEX_MATH_FUNCTIONS_F16_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/controller_functions.h b/Drivers/CMSIS/DSP/Include/dsp/controller_functions.h
new file mode 100644
index 0000000..7c08c24
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/controller_functions.h
@@ -0,0 +1,791 @@
+/******************************************************************************
+ * @file controller_functions.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _CONTROLLER_FUNCTIONS_H_
+#define _CONTROLLER_FUNCTIONS_H_
+
+#include "arm_math_types.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+ /**
+ * @brief Macros required for SINE and COSINE Controller functions
+ */
+
+#define CONTROLLER_Q31_SHIFT (32 - 9)
+ /* 1.31(q31) Fixed value of 2/360 */
+ /* -1 to +1 is divided into 360 values so total spacing is (2/360) */
+#define INPUT_SPACING 0xB60B61
+
+/**
+ * @defgroup groupController Controller Functions
+ */
+
+
+ /**
+ * @ingroup groupController
+ */
+
+ /**
+ * @addtogroup SinCos
+ * @{
+ */
+
+/**
+ * @brief Floating-point sin_cos function.
+ * @param[in] theta input value in degrees
+ * @param[out] pSinVal points to the processed sine output.
+ * @param[out] pCosVal points to the processed cos output.
+ */
+ void arm_sin_cos_f32(
+ float32_t theta,
+ float32_t * pSinVal,
+ float32_t * pCosVal);
+
+
+ /**
+ * @brief Q31 sin_cos function.
+ * @param[in] theta scaled input value in degrees
+ * @param[out] pSinVal points to the processed sine output.
+ * @param[out] pCosVal points to the processed cosine output.
+ */
+ void arm_sin_cos_q31(
+ q31_t theta,
+ q31_t * pSinVal,
+ q31_t * pCosVal);
+
+ /**
+ * @} end of SinCos group
+ */
+
+ /**
+ * @ingroup groupController
+ */
+
+/**
+ * @defgroup PID PID Motor Control
+ *
+ * A Proportional Integral Derivative (PID) controller is a generic feedback control
+ * loop mechanism widely used in industrial control systems.
+ * A PID controller is the most commonly used type of feedback controller.
+ *
+ * This set of functions implements (PID) controllers
+ * for Q15, Q31, and floating-point data types. The functions operate on a single sample
+ * of data and each call to the function returns a single processed value.
+ * <code>S</code> points to an instance of the PID control data structure. <code>in</code>
+ * is the input sample value. The functions return the output value.
+ *
+ * \par Algorithm:
+ * <pre>
+ * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]
+ * A0 = Kp + Ki + Kd
+ * A1 = (-Kp ) - (2 * Kd )
+ * A2 = Kd
+ * </pre>
+ *
+ * \par
+ * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant
+ *
+ * \par
+ * \image html PID.gif "Proportional Integral Derivative Controller"
+ *
+ * \par
+ * The PID controller calculates an "error" value as the difference between
+ * the measured output and the reference input.
+ * The controller attempts to minimize the error by adjusting the process control inputs.
+ * The proportional value determines the reaction to the current error,
+ * the integral value determines the reaction based on the sum of recent errors,
+ * and the derivative value determines the reaction based on the rate at which the error has been changing.
+ *
+ * \par Instance Structure
+ * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure.
+ * A separate instance structure must be defined for each PID Controller.
+ * There are separate instance structure declarations for each of the 3 supported data types.
+ *
+ * \par Reset Functions
+ * There is also an associated reset function for each data type which clears the state array.
+ *
+ * \par Initialization Functions
+ * There is also an associated initialization function for each data type.
+ * The initialization function performs the following operations:
+ * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains.
+ * - Zeros out the values in the state buffer.
+ *
+ * \par
+ * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function.
+ *
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the fixed-point versions of the PID Controller functions.
+ * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+
+ /**
+ * @brief Instance structure for the Q15 PID Control.
+ */
+ typedef struct
+ {
+ q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
+#if !defined (ARM_MATH_DSP)
+ q15_t A1; /**< The derived gain A1 = -Kp - 2Kd */
+ q15_t A2; /**< The derived gain A1 = Kd. */
+#else
+ q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
+#endif
+ q15_t state[3]; /**< The state array of length 3. */
+ q15_t Kp; /**< The proportional gain. */
+ q15_t Ki; /**< The integral gain. */
+ q15_t Kd; /**< The derivative gain. */
+ } arm_pid_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 PID Control.
+ */
+ typedef struct
+ {
+ q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
+ q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
+ q31_t A2; /**< The derived gain, A2 = Kd . */
+ q31_t state[3]; /**< The state array of length 3. */
+ q31_t Kp; /**< The proportional gain. */
+ q31_t Ki; /**< The integral gain. */
+ q31_t Kd; /**< The derivative gain. */
+ } arm_pid_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point PID Control.
+ */
+ typedef struct
+ {
+ float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
+ float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
+ float32_t A2; /**< The derived gain, A2 = Kd . */
+ float32_t state[3]; /**< The state array of length 3. */
+ float32_t Kp; /**< The proportional gain. */
+ float32_t Ki; /**< The integral gain. */
+ float32_t Kd; /**< The derivative gain. */
+ } arm_pid_instance_f32;
+
+
+
+ /**
+ * @brief Initialization function for the floating-point PID Control.
+ * @param[in,out] S points to an instance of the PID structure.
+ * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
+ */
+ void arm_pid_init_f32(
+ arm_pid_instance_f32 * S,
+ int32_t resetStateFlag);
+
+
+ /**
+ * @brief Reset function for the floating-point PID Control.
+ * @param[in,out] S is an instance of the floating-point PID Control structure
+ */
+ void arm_pid_reset_f32(
+ arm_pid_instance_f32 * S);
+
+
+ /**
+ * @brief Initialization function for the Q31 PID Control.
+ * @param[in,out] S points to an instance of the Q15 PID structure.
+ * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
+ */
+ void arm_pid_init_q31(
+ arm_pid_instance_q31 * S,
+ int32_t resetStateFlag);
+
+
+ /**
+ * @brief Reset function for the Q31 PID Control.
+ * @param[in,out] S points to an instance of the Q31 PID Control structure
+ */
+
+ void arm_pid_reset_q31(
+ arm_pid_instance_q31 * S);
+
+
+ /**
+ * @brief Initialization function for the Q15 PID Control.
+ * @param[in,out] S points to an instance of the Q15 PID structure.
+ * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
+ */
+ void arm_pid_init_q15(
+ arm_pid_instance_q15 * S,
+ int32_t resetStateFlag);
+
+
+ /**
+ * @brief Reset function for the Q15 PID Control.
+ * @param[in,out] S points to an instance of the q15 PID Control structure
+ */
+ void arm_pid_reset_q15(
+ arm_pid_instance_q15 * S);
+
+
+
+ /**
+ * @addtogroup PID
+ * @{
+ */
+
+ /**
+ * @brief Process function for the floating-point PID Control.
+ * @param[in,out] S is an instance of the floating-point PID Control structure
+ * @param[in] in input sample to process
+ * @return processed output sample.
+ */
+ __STATIC_FORCEINLINE float32_t arm_pid_f32(
+ arm_pid_instance_f32 * S,
+ float32_t in)
+ {
+ float32_t out;
+
+ /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */
+ out = (S->A0 * in) +
+ (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]);
+
+ /* Update state */
+ S->state[1] = S->state[0];
+ S->state[0] = in;
+ S->state[2] = out;
+
+ /* return to application */
+ return (out);
+
+ }
+
+/**
+ @brief Process function for the Q31 PID Control.
+ @param[in,out] S points to an instance of the Q31 PID Control structure
+ @param[in] in input sample to process
+ @return processed output sample.
+
+ \par Scaling and Overflow Behavior
+ The function is implemented using an internal 64-bit accumulator.
+ The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
+ Thus, if the accumulator result overflows it wraps around rather than clip.
+ In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions.
+ After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
+ */
+__STATIC_FORCEINLINE q31_t arm_pid_q31(
+ arm_pid_instance_q31 * S,
+ q31_t in)
+ {
+ q63_t acc;
+ q31_t out;
+
+ /* acc = A0 * x[n] */
+ acc = (q63_t) S->A0 * in;
+
+ /* acc += A1 * x[n-1] */
+ acc += (q63_t) S->A1 * S->state[0];
+
+ /* acc += A2 * x[n-2] */
+ acc += (q63_t) S->A2 * S->state[1];
+
+ /* convert output to 1.31 format to add y[n-1] */
+ out = (q31_t) (acc >> 31U);
+
+ /* out += y[n-1] */
+ out += S->state[2];
+
+ /* Update state */
+ S->state[1] = S->state[0];
+ S->state[0] = in;
+ S->state[2] = out;
+
+ /* return to application */
+ return (out);
+ }
+
+
+/**
+ @brief Process function for the Q15 PID Control.
+ @param[in,out] S points to an instance of the Q15 PID Control structure
+ @param[in] in input sample to process
+ @return processed output sample.
+
+ \par Scaling and Overflow Behavior
+ The function is implemented using a 64-bit internal accumulator.
+ Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
+ The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
+ There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
+ After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
+ Lastly, the accumulator is saturated to yield a result in 1.15 format.
+ */
+__STATIC_FORCEINLINE q15_t arm_pid_q15(
+ arm_pid_instance_q15 * S,
+ q15_t in)
+ {
+ q63_t acc;
+ q15_t out;
+
+#if defined (ARM_MATH_DSP)
+ /* Implementation of PID controller */
+
+ /* acc = A0 * x[n] */
+ acc = (q31_t) __SMUAD((uint32_t)S->A0, (uint32_t)in);
+
+ /* acc += A1 * x[n-1] + A2 * x[n-2] */
+ acc = (q63_t)__SMLALD((uint32_t)S->A1, (uint32_t)read_q15x2 (S->state), (uint64_t)acc);
+#else
+ /* acc = A0 * x[n] */
+ acc = ((q31_t) S->A0) * in;
+
+ /* acc += A1 * x[n-1] + A2 * x[n-2] */
+ acc += (q31_t) S->A1 * S->state[0];
+ acc += (q31_t) S->A2 * S->state[1];
+#endif
+
+ /* acc += y[n-1] */
+ acc += (q31_t) S->state[2] << 15;
+
+ /* saturate the output */
+ out = (q15_t) (__SSAT((q31_t)(acc >> 15), 16));
+
+ /* Update state */
+ S->state[1] = S->state[0];
+ S->state[0] = in;
+ S->state[2] = out;
+
+ /* return to application */
+ return (out);
+ }
+
+ /**
+ * @} end of PID group
+ */
+
+ /**
+ * @ingroup groupController
+ */
+
+ /**
+ * @defgroup park Vector Park Transform
+ *
+ * Forward Park transform converts the input two-coordinate vector to flux and torque components.
+ * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents
+ * from the stationary to the moving reference frame and control the spatial relationship between
+ * the stator vector current and rotor flux vector.
+ * If we consider the d axis aligned with the rotor flux, the diagram below shows the
+ * current vector and the relationship from the two reference frames:
+ * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"
+ *
+ * The function operates on a single sample of data and each call to the function returns the processed output.
+ * The library provides separate functions for Q31 and floating-point data types.
+ * \par Algorithm
+ * \image html parkFormula.gif
+ * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components,
+ * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
+ * cosine and sine values of theta (rotor flux position).
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the Q31 version of the Park transform.
+ * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup park
+ * @{
+ */
+
+ /**
+ * @brief Floating-point Park transform
+ * @param[in] Ialpha input two-phase vector coordinate alpha
+ * @param[in] Ibeta input two-phase vector coordinate beta
+ * @param[out] pId points to output rotor reference frame d
+ * @param[out] pIq points to output rotor reference frame q
+ * @param[in] sinVal sine value of rotation angle theta
+ * @param[in] cosVal cosine value of rotation angle theta
+ * @return none
+ *
+ * The function implements the forward Park transform.
+ *
+ */
+ __STATIC_FORCEINLINE void arm_park_f32(
+ float32_t Ialpha,
+ float32_t Ibeta,
+ float32_t * pId,
+ float32_t * pIq,
+ float32_t sinVal,
+ float32_t cosVal)
+ {
+ /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
+ *pId = Ialpha * cosVal + Ibeta * sinVal;
+
+ /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
+ *pIq = -Ialpha * sinVal + Ibeta * cosVal;
+ }
+
+
+/**
+ @brief Park transform for Q31 version
+ @param[in] Ialpha input two-phase vector coordinate alpha
+ @param[in] Ibeta input two-phase vector coordinate beta
+ @param[out] pId points to output rotor reference frame d
+ @param[out] pIq points to output rotor reference frame q
+ @param[in] sinVal sine value of rotation angle theta
+ @param[in] cosVal cosine value of rotation angle theta
+ @return none
+
+ \par Scaling and Overflow Behavior
+ The function is implemented using an internal 32-bit accumulator.
+ The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+ There is saturation on the addition and subtraction, hence there is no risk of overflow.
+ */
+__STATIC_FORCEINLINE void arm_park_q31(
+ q31_t Ialpha,
+ q31_t Ibeta,
+ q31_t * pId,
+ q31_t * pIq,
+ q31_t sinVal,
+ q31_t cosVal)
+ {
+ q31_t product1, product2; /* Temporary variables used to store intermediate results */
+ q31_t product3, product4; /* Temporary variables used to store intermediate results */
+
+ /* Intermediate product is calculated by (Ialpha * cosVal) */
+ product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31);
+
+ /* Intermediate product is calculated by (Ibeta * sinVal) */
+ product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31);
+
+
+ /* Intermediate product is calculated by (Ialpha * sinVal) */
+ product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31);
+
+ /* Intermediate product is calculated by (Ibeta * cosVal) */
+ product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31);
+
+ /* Calculate pId by adding the two intermediate products 1 and 2 */
+ *pId = __QADD(product1, product2);
+
+ /* Calculate pIq by subtracting the two intermediate products 3 from 4 */
+ *pIq = __QSUB(product4, product3);
+ }
+
+ /**
+ * @} end of park group
+ */
+
+
+ /**
+ * @ingroup groupController
+ */
+
+ /**
+ * @defgroup inv_park Vector Inverse Park transform
+ * Inverse Park transform converts the input flux and torque components to two-coordinate vector.
+ *
+ * The function operates on a single sample of data and each call to the function returns the processed output.
+ * The library provides separate functions for Q31 and floating-point data types.
+ * \par Algorithm
+ * \image html parkInvFormula.gif
+ * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components,
+ * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
+ * cosine and sine values of theta (rotor flux position).
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the Q31 version of the Park transform.
+ * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup inv_park
+ * @{
+ */
+
+ /**
+ * @brief Floating-point Inverse Park transform
+ * @param[in] Id input coordinate of rotor reference frame d
+ * @param[in] Iq input coordinate of rotor reference frame q
+ * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
+ * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
+ * @param[in] sinVal sine value of rotation angle theta
+ * @param[in] cosVal cosine value of rotation angle theta
+ * @return none
+ */
+ __STATIC_FORCEINLINE void arm_inv_park_f32(
+ float32_t Id,
+ float32_t Iq,
+ float32_t * pIalpha,
+ float32_t * pIbeta,
+ float32_t sinVal,
+ float32_t cosVal)
+ {
+ /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
+ *pIalpha = Id * cosVal - Iq * sinVal;
+
+ /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
+ *pIbeta = Id * sinVal + Iq * cosVal;
+ }
+
+
+/**
+ @brief Inverse Park transform for Q31 version
+ @param[in] Id input coordinate of rotor reference frame d
+ @param[in] Iq input coordinate of rotor reference frame q
+ @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
+ @param[out] pIbeta points to output two-phase orthogonal vector axis beta
+ @param[in] sinVal sine value of rotation angle theta
+ @param[in] cosVal cosine value of rotation angle theta
+ @return none
+
+ @par Scaling and Overflow Behavior
+ The function is implemented using an internal 32-bit accumulator.
+ The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+ There is saturation on the addition, hence there is no risk of overflow.
+ */
+__STATIC_FORCEINLINE void arm_inv_park_q31(
+ q31_t Id,
+ q31_t Iq,
+ q31_t * pIalpha,
+ q31_t * pIbeta,
+ q31_t sinVal,
+ q31_t cosVal)
+ {
+ q31_t product1, product2; /* Temporary variables used to store intermediate results */
+ q31_t product3, product4; /* Temporary variables used to store intermediate results */
+
+ /* Intermediate product is calculated by (Id * cosVal) */
+ product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31);
+
+ /* Intermediate product is calculated by (Iq * sinVal) */
+ product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31);
+
+
+ /* Intermediate product is calculated by (Id * sinVal) */
+ product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31);
+
+ /* Intermediate product is calculated by (Iq * cosVal) */
+ product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31);
+
+ /* Calculate pIalpha by using the two intermediate products 1 and 2 */
+ *pIalpha = __QSUB(product1, product2);
+
+ /* Calculate pIbeta by using the two intermediate products 3 and 4 */
+ *pIbeta = __QADD(product4, product3);
+ }
+
+ /**
+ * @} end of Inverse park group
+ */
+
+/**
+ * @ingroup groupController
+ */
+
+ /**
+ * @defgroup clarke Vector Clarke Transform
+ * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector.
+ * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents
+ * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>.
+ * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below
+ * \image html clarke.gif Stator current space vector and its components in (a,b).
+ * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code>
+ * can be calculated using only <code>Ia</code> and <code>Ib</code>.
+ *
+ * The function operates on a single sample of data and each call to the function returns the processed output.
+ * The library provides separate functions for Q31 and floating-point data types.
+ * \par Algorithm
+ * \image html clarkeFormula.gif
+ * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and
+ * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector.
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the Q31 version of the Clarke transform.
+ * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup clarke
+ * @{
+ */
+
+ /**
+ *
+ * @brief Floating-point Clarke transform
+ * @param[in] Ia input three-phase coordinate <code>a</code>
+ * @param[in] Ib input three-phase coordinate <code>b</code>
+ * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
+ * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
+ * @return none
+ */
+ __STATIC_FORCEINLINE void arm_clarke_f32(
+ float32_t Ia,
+ float32_t Ib,
+ float32_t * pIalpha,
+ float32_t * pIbeta)
+ {
+ /* Calculate pIalpha using the equation, pIalpha = Ia */
+ *pIalpha = Ia;
+
+ /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
+ *pIbeta = (0.57735026919f * Ia + 1.15470053838f * Ib);
+ }
+
+
+/**
+ @brief Clarke transform for Q31 version
+ @param[in] Ia input three-phase coordinate <code>a</code>
+ @param[in] Ib input three-phase coordinate <code>b</code>
+ @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
+ @param[out] pIbeta points to output two-phase orthogonal vector axis beta
+ @return none
+
+ \par Scaling and Overflow Behavior
+ The function is implemented using an internal 32-bit accumulator.
+ The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+ There is saturation on the addition, hence there is no risk of overflow.
+ */
+__STATIC_FORCEINLINE void arm_clarke_q31(
+ q31_t Ia,
+ q31_t Ib,
+ q31_t * pIalpha,
+ q31_t * pIbeta)
+ {
+ q31_t product1, product2; /* Temporary variables used to store intermediate results */
+
+ /* Calculating pIalpha from Ia by equation pIalpha = Ia */
+ *pIalpha = Ia;
+
+ /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
+ product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);
+
+ /* Intermediate product is calculated by (2/sqrt(3) * Ib) */
+ product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);
+
+ /* pIbeta is calculated by adding the intermediate products */
+ *pIbeta = __QADD(product1, product2);
+ }
+
+ /**
+ * @} end of clarke group
+ */
+
+
+ /**
+ * @ingroup groupController
+ */
+
+ /**
+ * @defgroup inv_clarke Vector Inverse Clarke Transform
+ * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.
+ *
+ * The function operates on a single sample of data and each call to the function returns the processed output.
+ * The library provides separate functions for Q31 and floating-point data types.
+ * \par Algorithm
+ * \image html clarkeInvFormula.gif
+ * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and
+ * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector.
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the Q31 version of the Clarke transform.
+ * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup inv_clarke
+ * @{
+ */
+
+ /**
+ * @brief Floating-point Inverse Clarke transform
+ * @param[in] Ialpha input two-phase orthogonal vector axis alpha
+ * @param[in] Ibeta input two-phase orthogonal vector axis beta
+ * @param[out] pIa points to output three-phase coordinate <code>a</code>
+ * @param[out] pIb points to output three-phase coordinate <code>b</code>
+ * @return none
+ */
+ __STATIC_FORCEINLINE void arm_inv_clarke_f32(
+ float32_t Ialpha,
+ float32_t Ibeta,
+ float32_t * pIa,
+ float32_t * pIb)
+ {
+ /* Calculating pIa from Ialpha by equation pIa = Ialpha */
+ *pIa = Ialpha;
+
+ /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
+ *pIb = -0.5f * Ialpha + 0.8660254039f * Ibeta;
+ }
+
+
+/**
+ @brief Inverse Clarke transform for Q31 version
+ @param[in] Ialpha input two-phase orthogonal vector axis alpha
+ @param[in] Ibeta input two-phase orthogonal vector axis beta
+ @param[out] pIa points to output three-phase coordinate <code>a</code>
+ @param[out] pIb points to output three-phase coordinate <code>b</code>
+ @return none
+
+ \par Scaling and Overflow Behavior
+ The function is implemented using an internal 32-bit accumulator.
+ The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+ There is saturation on the subtraction, hence there is no risk of overflow.
+ */
+__STATIC_FORCEINLINE void arm_inv_clarke_q31(
+ q31_t Ialpha,
+ q31_t Ibeta,
+ q31_t * pIa,
+ q31_t * pIb)
+ {
+ q31_t product1, product2; /* Temporary variables used to store intermediate results */
+
+ /* Calculating pIa from Ialpha by equation pIa = Ialpha */
+ *pIa = Ialpha;
+
+ /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
+ product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);
+
+ /* Intermediate product is calculated by (1/sqrt(3) * pIb) */
+ product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);
+
+ /* pIb is calculated by subtracting the products */
+ *pIb = __QSUB(product2, product1);
+ }
+
+ /**
+ * @} end of inv_clarke group
+ */
+
+
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _CONTROLLER_FUNCTIONS_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/controller_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/controller_functions_f16.h
new file mode 100644
index 0000000..8fae483
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/controller_functions_f16.h
@@ -0,0 +1,41 @@
+/******************************************************************************
+ * @file controller_functions_f16.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _CONTROLLER_FUNCTIONS_F16_H_
+#define _CONTROLLER_FUNCTIONS_F16_H_
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#if defined(ARM_FLOAT16_SUPPORTED)
+#endif /*defined(ARM_FLOAT16_SUPPORTED)*/
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _CONTROLLER_FUNCTIONS_F16_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/distance_functions.h b/Drivers/CMSIS/DSP/Include/dsp/distance_functions.h
new file mode 100644
index 0000000..3123fc3
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/distance_functions.h
@@ -0,0 +1,341 @@
+/******************************************************************************
+ * @file distance_functions.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _DISTANCE_FUNCTIONS_H_
+#define _DISTANCE_FUNCTIONS_H_
+
+#include "arm_math_types.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+#include "dsp/statistics_functions.h"
+#include "dsp/basic_math_functions.h"
+#include "dsp/fast_math_functions.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+
+/**
+ * @defgroup groupDistance Distance functions
+ *
+ * Distance functions for use with clustering algorithms.
+ * There are distance functions for float vectors and boolean vectors.
+ *
+ */
+
+/* 6.14 bug */
+#if defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6100100) && (__ARMCC_VERSION < 6150001)
+
+__attribute__((weak)) float __powisf2(float a, int b);
+
+#endif
+
+/**
+ * @brief Euclidean distance between two vectors
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+
+float32_t arm_euclidean_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize);
+
+/**
+ * @brief Euclidean distance between two vectors
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+
+float64_t arm_euclidean_distance_f64(const float64_t *pA,const float64_t *pB, uint32_t blockSize);
+
+/**
+ * @brief Bray-Curtis distance between two vectors
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+float32_t arm_braycurtis_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize);
+
+/**
+ * @brief Canberra distance between two vectors
+ *
+ * This function may divide by zero when samples pA[i] and pB[i] are both zero.
+ * The result of the computation will be correct. So the division per zero may be
+ * ignored.
+ *
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+float32_t arm_canberra_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize);
+
+
+/**
+ * @brief Chebyshev distance between two vectors
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+float32_t arm_chebyshev_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize);
+
+
+/**
+ * @brief Chebyshev distance between two vectors
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+float64_t arm_chebyshev_distance_f64(const float64_t *pA,const float64_t *pB, uint32_t blockSize);
+
+
+/**
+ * @brief Cityblock (Manhattan) distance between two vectors
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+float32_t arm_cityblock_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize);
+
+/**
+ * @brief Cityblock (Manhattan) distance between two vectors
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+float64_t arm_cityblock_distance_f64(const float64_t *pA,const float64_t *pB, uint32_t blockSize);
+
+/**
+ * @brief Correlation distance between two vectors
+ *
+ * The input vectors are modified in place !
+ *
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+float32_t arm_correlation_distance_f32(float32_t *pA,float32_t *pB, uint32_t blockSize);
+
+/**
+ * @brief Cosine distance between two vectors
+ *
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+
+float32_t arm_cosine_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize);
+
+/**
+ * @brief Cosine distance between two vectors
+ *
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+
+float64_t arm_cosine_distance_f64(const float64_t *pA,const float64_t *pB, uint32_t blockSize);
+
+/**
+ * @brief Jensen-Shannon distance between two vectors
+ *
+ * This function is assuming that elements of second vector are > 0
+ * and 0 only when the corresponding element of first vector is 0.
+ * Otherwise the result of the computation does not make sense
+ * and for speed reasons, the cases returning NaN or Infinity are not
+ * managed.
+ *
+ * When the function is computing x log (x / y) with x 0 and y 0,
+ * it will compute the right value (0) but a division per zero will occur
+ * and shoudl be ignored in client code.
+ *
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+
+float32_t arm_jensenshannon_distance_f32(const float32_t *pA,const float32_t *pB,uint32_t blockSize);
+
+/**
+ * @brief Minkowski distance between two vectors
+ *
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] n Norm order (>= 2)
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+
+
+
+float32_t arm_minkowski_distance_f32(const float32_t *pA,const float32_t *pB, int32_t order, uint32_t blockSize);
+
+/**
+ * @brief Dice distance between two vectors
+ *
+ * @param[in] pA First vector of packed booleans
+ * @param[in] pB Second vector of packed booleans
+ * @param[in] order Distance order
+ * @param[in] blockSize Number of samples
+ * @return distance
+ *
+ */
+
+
+float32_t arm_dice_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);
+
+/**
+ * @brief Hamming distance between two vectors
+ *
+ * @param[in] pA First vector of packed booleans
+ * @param[in] pB Second vector of packed booleans
+ * @param[in] numberOfBools Number of booleans
+ * @return distance
+ *
+ */
+
+float32_t arm_hamming_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);
+
+/**
+ * @brief Jaccard distance between two vectors
+ *
+ * @param[in] pA First vector of packed booleans
+ * @param[in] pB Second vector of packed booleans
+ * @param[in] numberOfBools Number of booleans
+ * @return distance
+ *
+ */
+
+float32_t arm_jaccard_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);
+
+/**
+ * @brief Kulsinski distance between two vectors
+ *
+ * @param[in] pA First vector of packed booleans
+ * @param[in] pB Second vector of packed booleans
+ * @param[in] numberOfBools Number of booleans
+ * @return distance
+ *
+ */
+
+float32_t arm_kulsinski_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);
+
+/**
+ * @brief Roger Stanimoto distance between two vectors
+ *
+ * @param[in] pA First vector of packed booleans
+ * @param[in] pB Second vector of packed booleans
+ * @param[in] numberOfBools Number of booleans
+ * @return distance
+ *
+ */
+
+float32_t arm_rogerstanimoto_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);
+
+/**
+ * @brief Russell-Rao distance between two vectors
+ *
+ * @param[in] pA First vector of packed booleans
+ * @param[in] pB Second vector of packed booleans
+ * @param[in] numberOfBools Number of booleans
+ * @return distance
+ *
+ */
+
+float32_t arm_russellrao_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);
+
+/**
+ * @brief Sokal-Michener distance between two vectors
+ *
+ * @param[in] pA First vector of packed booleans
+ * @param[in] pB Second vector of packed booleans
+ * @param[in] numberOfBools Number of booleans
+ * @return distance
+ *
+ */
+
+float32_t arm_sokalmichener_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);
+
+/**
+ * @brief Sokal-Sneath distance between two vectors
+ *
+ * @param[in] pA First vector of packed booleans
+ * @param[in] pB Second vector of packed booleans
+ * @param[in] numberOfBools Number of booleans
+ * @return distance
+ *
+ */
+
+float32_t arm_sokalsneath_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);
+
+/**
+ * @brief Yule distance between two vectors
+ *
+ * @param[in] pA First vector of packed booleans
+ * @param[in] pB Second vector of packed booleans
+ * @param[in] numberOfBools Number of booleans
+ * @return distance
+ *
+ */
+
+float32_t arm_yule_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);
+
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _DISTANCE_FUNCTIONS_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/distance_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/distance_functions_f16.h
new file mode 100644
index 0000000..a7ceb3c
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/distance_functions_f16.h
@@ -0,0 +1,180 @@
+/******************************************************************************
+ * @file distance_functions_f16.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _DISTANCE_FUNCTIONS_F16_H_
+#define _DISTANCE_FUNCTIONS_F16_H_
+
+#include "arm_math_types_f16.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+/* 6.14 bug */
+#if defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6100100) && (__ARMCC_VERSION < 6150001)
+/* Defined in minkowski_f32 */
+__attribute__((weak)) float __powisf2(float a, int b);
+#endif
+
+#include "dsp/statistics_functions_f16.h"
+#include "dsp/basic_math_functions_f16.h"
+
+#include "dsp/fast_math_functions_f16.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#if defined(ARM_FLOAT16_SUPPORTED)
+
+/**
+ * @brief Euclidean distance between two vectors
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+
+float16_t arm_euclidean_distance_f16(const float16_t *pA,const float16_t *pB, uint32_t blockSize);
+
+/**
+ * @brief Bray-Curtis distance between two vectors
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+float16_t arm_braycurtis_distance_f16(const float16_t *pA,const float16_t *pB, uint32_t blockSize);
+
+/**
+ * @brief Canberra distance between two vectors
+ *
+ * This function may divide by zero when samples pA[i] and pB[i] are both zero.
+ * The result of the computation will be correct. So the division per zero may be
+ * ignored.
+ *
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+float16_t arm_canberra_distance_f16(const float16_t *pA,const float16_t *pB, uint32_t blockSize);
+
+
+/**
+ * @brief Chebyshev distance between two vectors
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+float16_t arm_chebyshev_distance_f16(const float16_t *pA,const float16_t *pB, uint32_t blockSize);
+
+
+/**
+ * @brief Cityblock (Manhattan) distance between two vectors
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+float16_t arm_cityblock_distance_f16(const float16_t *pA,const float16_t *pB, uint32_t blockSize);
+
+/**
+ * @brief Correlation distance between two vectors
+ *
+ * The input vectors are modified in place !
+ *
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+float16_t arm_correlation_distance_f16(float16_t *pA,float16_t *pB, uint32_t blockSize);
+
+/**
+ * @brief Cosine distance between two vectors
+ *
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+
+float16_t arm_cosine_distance_f16(const float16_t *pA,const float16_t *pB, uint32_t blockSize);
+
+/**
+ * @brief Jensen-Shannon distance between two vectors
+ *
+ * This function is assuming that elements of second vector are > 0
+ * and 0 only when the corresponding element of first vector is 0.
+ * Otherwise the result of the computation does not make sense
+ * and for speed reasons, the cases returning NaN or Infinity are not
+ * managed.
+ *
+ * When the function is computing x log (x / y) with x 0 and y 0,
+ * it will compute the right value (0) but a division per zero will occur
+ * and shoudl be ignored in client code.
+ *
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+
+float16_t arm_jensenshannon_distance_f16(const float16_t *pA,const float16_t *pB,uint32_t blockSize);
+
+/**
+ * @brief Minkowski distance between two vectors
+ *
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] n Norm order (>= 2)
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+
+
+
+float16_t arm_minkowski_distance_f16(const float16_t *pA,const float16_t *pB, int32_t order, uint32_t blockSize);
+
+
+#endif /*defined(ARM_FLOAT16_SUPPORTED)*/
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _DISTANCE_FUNCTIONS_F16_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/fast_math_functions.h b/Drivers/CMSIS/DSP/Include/dsp/fast_math_functions.h
new file mode 100644
index 0000000..489f214
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/fast_math_functions.h
@@ -0,0 +1,389 @@
+/******************************************************************************
+ * @file fast_math_functions.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _FAST_MATH_FUNCTIONS_H_
+#define _FAST_MATH_FUNCTIONS_H_
+
+#include "arm_math_types.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+#include "dsp/basic_math_functions.h"
+
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+ /**
+ * @brief Macros required for SINE and COSINE Fast math approximations
+ */
+
+#define FAST_MATH_TABLE_SIZE 512
+#define FAST_MATH_Q31_SHIFT (32 - 10)
+#define FAST_MATH_Q15_SHIFT (16 - 10)
+
+#ifndef PI
+ #define PI 3.14159265358979f
+#endif
+
+
+/**
+ * @defgroup groupFastMath Fast Math Functions
+ * This set of functions provides a fast approximation to sine, cosine, and square root.
+ * As compared to most of the other functions in the CMSIS math library, the fast math functions
+ * operate on individual values and not arrays.
+ * There are separate functions for Q15, Q31, and floating-point data.
+ *
+ */
+
+ /**
+ * @ingroup groupFastMath
+ */
+
+
+/**
+ @addtogroup sin
+ @{
+ */
+
+/**
+ * @brief Fast approximation to the trigonometric sine function for floating-point data.
+ * @param[in] x input value in radians.
+ * @return sin(x).
+ */
+ float32_t arm_sin_f32(
+ float32_t x);
+
+
+ /**
+ * @brief Fast approximation to the trigonometric sine function for Q31 data.
+ * @param[in] x Scaled input value in radians.
+ * @return sin(x).
+ */
+ q31_t arm_sin_q31(
+ q31_t x);
+
+
+ /**
+ * @brief Fast approximation to the trigonometric sine function for Q15 data.
+ * @param[in] x Scaled input value in radians.
+ * @return sin(x).
+ */
+ q15_t arm_sin_q15(
+ q15_t x);
+
+/**
+ @} end of sin group
+ */
+
+/**
+ @addtogroup cos
+ @{
+ */
+
+ /**
+ * @brief Fast approximation to the trigonometric cosine function for floating-point data.
+ * @param[in] x input value in radians.
+ * @return cos(x).
+ */
+ float32_t arm_cos_f32(
+ float32_t x);
+
+
+ /**
+ * @brief Fast approximation to the trigonometric cosine function for Q31 data.
+ * @param[in] x Scaled input value in radians.
+ * @return cos(x).
+ */
+ q31_t arm_cos_q31(
+ q31_t x);
+
+
+ /**
+ * @brief Fast approximation to the trigonometric cosine function for Q15 data.
+ * @param[in] x Scaled input value in radians.
+ * @return cos(x).
+ */
+ q15_t arm_cos_q15(
+ q15_t x);
+
+/**
+ @} end of cos group
+ */
+
+
+/**
+ @brief Floating-point vector of log values.
+ @param[in] pSrc points to the input vector
+ @param[out] pDst points to the output vector
+ @param[in] blockSize number of samples in each vector
+ @return none
+ */
+ void arm_vlog_f32(
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+
+/**
+ @brief Floating-point vector of log values.
+ @param[in] pSrc points to the input vector
+ @param[out] pDst points to the output vector
+ @param[in] blockSize number of samples in each vector
+ @return none
+ */
+ void arm_vlog_f64(
+ const float64_t * pSrc,
+ float64_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @brief q31 vector of log values.
+ * @param[in] pSrc points to the input vector in q31
+ * @param[out] pDst points to the output vector in q5.26
+ * @param[in] blockSize number of samples in each vector
+ * @return none
+ */
+ void arm_vlog_q31(const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief q15 vector of log values.
+ * @param[in] pSrc points to the input vector in q15
+ * @param[out] pDst points to the output vector in q4.11
+ * @param[in] blockSize number of samples in each vector
+ * @return none
+ */
+ void arm_vlog_q15(const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+
+/**
+ @brief Floating-point vector of exp values.
+ @param[in] pSrc points to the input vector
+ @param[out] pDst points to the output vector
+ @param[in] blockSize number of samples in each vector
+ @return none
+ */
+ void arm_vexp_f32(
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+
+/**
+ @brief Floating-point vector of exp values.
+ @param[in] pSrc points to the input vector
+ @param[out] pDst points to the output vector
+ @param[in] blockSize number of samples in each vector
+ @return none
+ */
+ void arm_vexp_f64(
+ const float64_t * pSrc,
+ float64_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @defgroup SQRT Square Root
+ *
+ * Computes the square root of a number.
+ * There are separate functions for Q15, Q31, and floating-point data types.
+ * The square root function is computed using the Newton-Raphson algorithm.
+ * This is an iterative algorithm of the form:
+ * <pre>
+ * x1 = x0 - f(x0)/f'(x0)
+ * </pre>
+ * where <code>x1</code> is the current estimate,
+ * <code>x0</code> is the previous estimate, and
+ * <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>.
+ * For the square root function, the algorithm reduces to:
+ * <pre>
+ * x0 = in/2 [initial guess]
+ * x1 = 1/2 * ( x0 + in / x0) [each iteration]
+ * </pre>
+ */
+
+
+ /**
+ * @addtogroup SQRT
+ * @{
+ */
+
+/**
+ @brief Floating-point square root function.
+ @param[in] in input value
+ @param[out] pOut square root of input value
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : input value is positive
+ - \ref ARM_MATH_ARGUMENT_ERROR : input value is negative; *pOut is set to 0
+ */
+__STATIC_FORCEINLINE arm_status arm_sqrt_f32(
+ const float32_t in,
+ float32_t * pOut)
+ {
+ if (in >= 0.0f)
+ {
+#if defined ( __CC_ARM )
+ #if defined __TARGET_FPU_VFP
+ *pOut = __sqrtf(in);
+ #else
+ *pOut = sqrtf(in);
+ #endif
+
+#elif defined ( __ICCARM__ )
+ #if defined __ARMVFP__
+ __ASM("VSQRT.F32 %0,%1" : "=t"(*pOut) : "t"(in));
+ #else
+ *pOut = sqrtf(in);
+ #endif
+
+#else
+ *pOut = sqrtf(in);
+#endif
+
+ return (ARM_MATH_SUCCESS);
+ }
+ else
+ {
+ *pOut = 0.0f;
+ return (ARM_MATH_ARGUMENT_ERROR);
+ }
+ }
+
+
+/**
+ @brief Q31 square root function.
+ @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF
+ @param[out] pOut points to square root of input value
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : input value is positive
+ - \ref ARM_MATH_ARGUMENT_ERROR : input value is negative; *pOut is set to 0
+ */
+arm_status arm_sqrt_q31(
+ q31_t in,
+ q31_t * pOut);
+
+
+/**
+ @brief Q15 square root function.
+ @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF
+ @param[out] pOut points to square root of input value
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : input value is positive
+ - \ref ARM_MATH_ARGUMENT_ERROR : input value is negative; *pOut is set to 0
+ */
+arm_status arm_sqrt_q15(
+ q15_t in,
+ q15_t * pOut);
+
+
+
+ /**
+ * @} end of SQRT group
+ */
+
+ /**
+ @brief Fixed point division
+ @param[in] numerator Numerator
+ @param[in] denominator Denominator
+ @param[out] quotient Quotient value normalized between -1.0 and 1.0
+ @param[out] shift Shift left value to get the unnormalized quotient
+ @return error status
+
+ When dividing by 0, an error ARM_MATH_NANINF is returned. And the quotient is forced
+ to the saturated negative or positive value.
+ */
+
+arm_status arm_divide_q15(q15_t numerator,
+ q15_t denominator,
+ q15_t *quotient,
+ int16_t *shift);
+
+ /**
+ @brief Fixed point division
+ @param[in] numerator Numerator
+ @param[in] denominator Denominator
+ @param[out] quotient Quotient value normalized between -1.0 and 1.0
+ @param[out] shift Shift left value to get the unnormalized quotient
+ @return error status
+
+ When dividing by 0, an error ARM_MATH_NANINF is returned. And the quotient is forced
+ to the saturated negative or positive value.
+ */
+
+arm_status arm_divide_q31(q31_t numerator,
+ q31_t denominator,
+ q31_t *quotient,
+ int16_t *shift);
+
+
+
+ /**
+ @brief Arc tangent in radian of y/x using sign of x and y to determine right quadrant.
+ @param[in] y y coordinate
+ @param[in] x x coordinate
+ @param[out] result Result
+ @return error status.
+ */
+ arm_status arm_atan2_f32(float32_t y,float32_t x,float32_t *result);
+
+
+ /**
+ @brief Arc tangent in radian of y/x using sign of x and y to determine right quadrant.
+ @param[in] y y coordinate
+ @param[in] x x coordinate
+ @param[out] result Result in Q2.29
+ @return error status.
+ */
+ arm_status arm_atan2_q31(q31_t y,q31_t x,q31_t *result);
+
+ /**
+ @brief Arc tangent in radian of y/x using sign of x and y to determine right quadrant.
+ @param[in] y y coordinate
+ @param[in] x x coordinate
+ @param[out] result Result in Q2.13
+ @return error status.
+ */
+ arm_status arm_atan2_q15(q15_t y,q15_t x,q15_t *result);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _FAST_MATH_FUNCTIONS_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/fast_math_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/fast_math_functions_f16.h
new file mode 100644
index 0000000..46ae06d
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/fast_math_functions_f16.h
@@ -0,0 +1,125 @@
+/******************************************************************************
+ * @file fast_math_functions_f16.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _FAST_MATH_FUNCTIONS_F16_H_
+#define _FAST_MATH_FUNCTIONS_F16_H_
+
+#include "arm_math_types_f16.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+/* For sqrt_f32 */
+#include "dsp/fast_math_functions.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#if defined(ARM_FLOAT16_SUPPORTED)
+
+ /**
+ * @addtogroup SQRT
+ * @{
+ */
+
+/**
+ @brief Floating-point square root function.
+ @param[in] in input value
+ @param[out] pOut square root of input value
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : input value is positive
+ - \ref ARM_MATH_ARGUMENT_ERROR : input value is negative; *pOut is set to 0
+ */
+__STATIC_FORCEINLINE arm_status arm_sqrt_f16(
+ float16_t in,
+ float16_t * pOut)
+ {
+ float32_t r;
+ arm_status status;
+ status=arm_sqrt_f32((float32_t)in,&r);
+ *pOut=(float16_t)r;
+ return(status);
+ }
+
+
+/**
+ @} end of SQRT group
+ */
+
+/**
+ @brief Floating-point vector of log values.
+ @param[in] pSrc points to the input vector
+ @param[out] pDst points to the output vector
+ @param[in] blockSize number of samples in each vector
+ @return none
+ */
+ void arm_vlog_f16(
+ const float16_t * pSrc,
+ float16_t * pDst,
+ uint32_t blockSize);
+
+/**
+ @brief Floating-point vector of exp values.
+ @param[in] pSrc points to the input vector
+ @param[out] pDst points to the output vector
+ @param[in] blockSize number of samples in each vector
+ @return none
+ */
+ void arm_vexp_f16(
+ const float16_t * pSrc,
+ float16_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ @brief Floating-point vector of inverse values.
+ @param[in] pSrc points to the input vector
+ @param[out] pDst points to the output vector
+ @param[in] blockSize number of samples in each vector
+ @return none
+ */
+ void arm_vinverse_f16(
+ const float16_t * pSrc,
+ float16_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ @brief Arc tangent in radian of y/x using sign of x and y to determine right quadrant.
+ @param[in] y y coordinate
+ @param[in] x x coordinate
+ @param[out] result Result
+ @return error status.
+ */
+ arm_status arm_atan2_f16(float16_t y,float16_t x,float16_t *result);
+
+#endif /*defined(ARM_FLOAT16_SUPPORTED)*/
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _FAST_MATH_FUNCTIONS_F16_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/filtering_functions.h b/Drivers/CMSIS/DSP/Include/dsp/filtering_functions.h
new file mode 100644
index 0000000..28a9568
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/filtering_functions.h
@@ -0,0 +1,2529 @@
+/******************************************************************************
+ * @file filtering_functions.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _FILTERING_FUNCTIONS_H_
+#define _FILTERING_FUNCTIONS_H_
+
+#include "arm_math_types.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+#include "dsp/support_functions.h"
+#include "dsp/fast_math_functions.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+
+
+#define DELTA_Q31 ((q31_t)(0x100))
+#define DELTA_Q15 ((q15_t)0x5)
+
+/**
+ * @defgroup groupFilters Filtering Functions
+ */
+
+ /**
+ * @brief Instance structure for the Q7 FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ const q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ } arm_fir_instance_q7;
+
+ /**
+ * @brief Instance structure for the Q15 FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ const q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ } arm_fir_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ const q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ } arm_fir_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ const float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ } arm_fir_instance_f32;
+
+ /**
+ * @brief Instance structure for the floating-point FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ float64_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ const float64_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ } arm_fir_instance_f64;
+
+ /**
+ * @brief Processing function for the Q7 FIR filter.
+ * @param[in] S points to an instance of the Q7 FIR filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_q7(
+ const arm_fir_instance_q7 * S,
+ const q7_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q7 FIR filter.
+ * @param[in,out] S points to an instance of the Q7 FIR structure.
+ * @param[in] numTaps Number of filter coefficients in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed.
+ *
+ * For the MVE version, the coefficient length must be a multiple of 16.
+ * You can pad with zeros if you have less coefficients.
+ */
+ void arm_fir_init_q7(
+ arm_fir_instance_q7 * S,
+ uint16_t numTaps,
+ const q7_t * pCoeffs,
+ q7_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q15 FIR filter.
+ * @param[in] S points to an instance of the Q15 FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_q15(
+ const arm_fir_instance_q15 * S,
+ const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the fast Q15 FIR filter (fast version).
+ * @param[in] S points to an instance of the Q15 FIR filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_fast_q15(
+ const arm_fir_instance_q15 * S,
+ const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q15 FIR filter.
+ * @param[in,out] S points to an instance of the Q15 FIR filter structure.
+ * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed at a time.
+ * @return The function returns either
+ * <code>ARM_MATH_SUCCESS</code> if initialization was successful or
+ * <code>ARM_MATH_ARGUMENT_ERROR</code> if <code>numTaps</code> is not a supported value.
+ *
+ * For the MVE version, the coefficient length must be a multiple of 8.
+ * You can pad with zeros if you have less coefficients.
+ *
+ */
+ arm_status arm_fir_init_q15(
+ arm_fir_instance_q15 * S,
+ uint16_t numTaps,
+ const q15_t * pCoeffs,
+ q15_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q31 FIR filter.
+ * @param[in] S points to an instance of the Q31 FIR filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_q31(
+ const arm_fir_instance_q31 * S,
+ const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the fast Q31 FIR filter (fast version).
+ * @param[in] S points to an instance of the Q31 FIR filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_fast_q31(
+ const arm_fir_instance_q31 * S,
+ const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q31 FIR filter.
+ * @param[in,out] S points to an instance of the Q31 FIR structure.
+ * @param[in] numTaps Number of filter coefficients in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed at a time.
+ *
+ * For the MVE version, the coefficient length must be a multiple of 4.
+ * You can pad with zeros if you have less coefficients.
+ */
+ void arm_fir_init_q31(
+ arm_fir_instance_q31 * S,
+ uint16_t numTaps,
+ const q31_t * pCoeffs,
+ q31_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the floating-point FIR filter.
+ * @param[in] S points to an instance of the floating-point FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_f32(
+ const arm_fir_instance_f32 * S,
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the floating-point FIR filter.
+ * @param[in] S points to an instance of the floating-point FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_f64(
+ const arm_fir_instance_f64 * S,
+ const float64_t * pSrc,
+ float64_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the floating-point FIR filter.
+ * @param[in,out] S points to an instance of the floating-point FIR filter structure.
+ * @param[in] numTaps Number of filter coefficients in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed at a time.
+ */
+ void arm_fir_init_f32(
+ arm_fir_instance_f32 * S,
+ uint16_t numTaps,
+ const float32_t * pCoeffs,
+ float32_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the floating-point FIR filter.
+ * @param[in,out] S points to an instance of the floating-point FIR filter structure.
+ * @param[in] numTaps Number of filter coefficients in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed at a time.
+ */
+ void arm_fir_init_f64(
+ arm_fir_instance_f64 * S,
+ uint16_t numTaps,
+ const float64_t * pCoeffs,
+ float64_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Instance structure for the Q15 Biquad cascade filter.
+ */
+ typedef struct
+ {
+ int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
+ const q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
+ int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
+ } arm_biquad_casd_df1_inst_q15;
+
+ /**
+ * @brief Instance structure for the Q31 Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
+ const q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
+ uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
+ } arm_biquad_casd_df1_inst_q31;
+
+ /**
+ * @brief Instance structure for the floating-point Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
+ const float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
+ } arm_biquad_casd_df1_inst_f32;
+
+#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
+ /**
+ * @brief Instance structure for the modified Biquad coefs required by vectorized code.
+ */
+ typedef struct
+ {
+ float32_t coeffs[8][4]; /**< Points to the array of modified coefficients. The array is of length 32. There is one per stage */
+ } arm_biquad_mod_coef_f32;
+#endif
+
+ /**
+ * @brief Processing function for the Q15 Biquad cascade filter.
+ * @param[in] S points to an instance of the Q15 Biquad cascade structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_df1_q15(
+ const arm_biquad_casd_df1_inst_q15 * S,
+ const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q15 Biquad cascade filter.
+ * @param[in,out] S points to an instance of the Q15 Biquad cascade structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
+ */
+ void arm_biquad_cascade_df1_init_q15(
+ arm_biquad_casd_df1_inst_q15 * S,
+ uint8_t numStages,
+ const q15_t * pCoeffs,
+ q15_t * pState,
+ int8_t postShift);
+
+ /**
+ * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
+ * @param[in] S points to an instance of the Q15 Biquad cascade structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_df1_fast_q15(
+ const arm_biquad_casd_df1_inst_q15 * S,
+ const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q31 Biquad cascade filter
+ * @param[in] S points to an instance of the Q31 Biquad cascade structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_df1_q31(
+ const arm_biquad_casd_df1_inst_q31 * S,
+ const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
+ * @param[in] S points to an instance of the Q31 Biquad cascade structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_df1_fast_q31(
+ const arm_biquad_casd_df1_inst_q31 * S,
+ const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q31 Biquad cascade filter.
+ * @param[in,out] S points to an instance of the Q31 Biquad cascade structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
+ */
+ void arm_biquad_cascade_df1_init_q31(
+ arm_biquad_casd_df1_inst_q31 * S,
+ uint8_t numStages,
+ const q31_t * pCoeffs,
+ q31_t * pState,
+ int8_t postShift);
+
+ /**
+ * @brief Processing function for the floating-point Biquad cascade filter.
+ * @param[in] S points to an instance of the floating-point Biquad cascade structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_df1_f32(
+ const arm_biquad_casd_df1_inst_f32 * S,
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the floating-point Biquad cascade filter.
+ * @param[in,out] S points to an instance of the floating-point Biquad cascade structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pCoeffsMod points to the modified filter coefficients (only MVE version).
+ * @param[in] pState points to the state buffer.
+ */
+#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
+ void arm_biquad_cascade_df1_mve_init_f32(
+ arm_biquad_casd_df1_inst_f32 * S,
+ uint8_t numStages,
+ const float32_t * pCoeffs,
+ arm_biquad_mod_coef_f32 * pCoeffsMod,
+ float32_t * pState);
+#endif
+
+ void arm_biquad_cascade_df1_init_f32(
+ arm_biquad_casd_df1_inst_f32 * S,
+ uint8_t numStages,
+ const float32_t * pCoeffs,
+ float32_t * pState);
+
+
+/**
+ * @brief Convolution of floating-point sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
+ */
+ void arm_conv_f32(
+ const float32_t * pSrcA,
+ uint32_t srcALen,
+ const float32_t * pSrcB,
+ uint32_t srcBLen,
+ float32_t * pDst);
+
+
+ /**
+ * @brief Convolution of Q15 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
+ */
+ void arm_conv_opt_q15(
+ const q15_t * pSrcA,
+ uint32_t srcALen,
+ const q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+/**
+ * @brief Convolution of Q15 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
+ */
+ void arm_conv_q15(
+ const q15_t * pSrcA,
+ uint32_t srcALen,
+ const q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst);
+
+
+ /**
+ * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ */
+ void arm_conv_fast_q15(
+ const q15_t * pSrcA,
+ uint32_t srcALen,
+ const q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst);
+
+
+ /**
+ * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
+ */
+ void arm_conv_fast_opt_q15(
+ const q15_t * pSrcA,
+ uint32_t srcALen,
+ const q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+ /**
+ * @brief Convolution of Q31 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ */
+ void arm_conv_q31(
+ const q31_t * pSrcA,
+ uint32_t srcALen,
+ const q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst);
+
+
+ /**
+ * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ */
+ void arm_conv_fast_q31(
+ const q31_t * pSrcA,
+ uint32_t srcALen,
+ const q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst);
+
+
+ /**
+ * @brief Convolution of Q7 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
+ */
+ void arm_conv_opt_q7(
+ const q7_t * pSrcA,
+ uint32_t srcALen,
+ const q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+ /**
+ * @brief Convolution of Q7 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ */
+ void arm_conv_q7(
+ const q7_t * pSrcA,
+ uint32_t srcALen,
+ const q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst);
+
+
+ /**
+ * @brief Partial convolution of floating-point sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_f32(
+ const float32_t * pSrcA,
+ uint32_t srcALen,
+ const float32_t * pSrcB,
+ uint32_t srcBLen,
+ float32_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+ /**
+ * @brief Partial convolution of Q15 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_opt_q15(
+ const q15_t * pSrcA,
+ uint32_t srcALen,
+ const q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+ /**
+ * @brief Partial convolution of Q15 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_q15(
+ const q15_t * pSrcA,
+ uint32_t srcALen,
+ const q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+ /**
+ * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_fast_q15(
+ const q15_t * pSrcA,
+ uint32_t srcALen,
+ const q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+ /**
+ * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_fast_opt_q15(
+ const q15_t * pSrcA,
+ uint32_t srcALen,
+ const q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+ /**
+ * @brief Partial convolution of Q31 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_q31(
+ const q31_t * pSrcA,
+ uint32_t srcALen,
+ const q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+ /**
+ * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_fast_q31(
+ const q31_t * pSrcA,
+ uint32_t srcALen,
+ const q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+ /**
+ * @brief Partial convolution of Q7 sequences
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_opt_q7(
+ const q7_t * pSrcA,
+ uint32_t srcALen,
+ const q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+/**
+ * @brief Partial convolution of Q7 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_q7(
+ const q7_t * pSrcA,
+ uint32_t srcALen,
+ const q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+ /**
+ * @brief Instance structure for the Q15 FIR decimator.
+ */
+ typedef struct
+ {
+ uint8_t M; /**< decimation factor. */
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ const q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ } arm_fir_decimate_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 FIR decimator.
+ */
+ typedef struct
+ {
+ uint8_t M; /**< decimation factor. */
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ const q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ } arm_fir_decimate_instance_q31;
+
+/**
+ @brief Instance structure for floating-point FIR decimator.
+ */
+typedef struct
+ {
+ uint8_t M; /**< decimation factor. */
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ const float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ } arm_fir_decimate_instance_f32;
+
+
+/**
+ @brief Processing function for floating-point FIR decimator.
+ @param[in] S points to an instance of the floating-point FIR decimator structure
+ @param[in] pSrc points to the block of input data
+ @param[out] pDst points to the block of output data
+ @param[in] blockSize number of samples to process
+ */
+void arm_fir_decimate_f32(
+ const arm_fir_decimate_instance_f32 * S,
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+/**
+ @brief Initialization function for the floating-point FIR decimator.
+ @param[in,out] S points to an instance of the floating-point FIR decimator structure
+ @param[in] numTaps number of coefficients in the filter
+ @param[in] M decimation factor
+ @param[in] pCoeffs points to the filter coefficients
+ @param[in] pState points to the state buffer
+ @param[in] blockSize number of input samples to process per call
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : Operation successful
+ - \ref ARM_MATH_LENGTH_ERROR : <code>blockSize</code> is not a multiple of <code>M</code>
+ */
+arm_status arm_fir_decimate_init_f32(
+ arm_fir_decimate_instance_f32 * S,
+ uint16_t numTaps,
+ uint8_t M,
+ const float32_t * pCoeffs,
+ float32_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q15 FIR decimator.
+ * @param[in] S points to an instance of the Q15 FIR decimator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_decimate_q15(
+ const arm_fir_decimate_instance_q15 * S,
+ const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
+ * @param[in] S points to an instance of the Q15 FIR decimator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_decimate_fast_q15(
+ const arm_fir_decimate_instance_q15 * S,
+ const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q15 FIR decimator.
+ * @param[in,out] S points to an instance of the Q15 FIR decimator structure.
+ * @param[in] numTaps number of coefficients in the filter.
+ * @param[in] M decimation factor.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * <code>blockSize</code> is not a multiple of <code>M</code>.
+ */
+ arm_status arm_fir_decimate_init_q15(
+ arm_fir_decimate_instance_q15 * S,
+ uint16_t numTaps,
+ uint8_t M,
+ const q15_t * pCoeffs,
+ q15_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q31 FIR decimator.
+ * @param[in] S points to an instance of the Q31 FIR decimator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_decimate_q31(
+ const arm_fir_decimate_instance_q31 * S,
+ const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
+ * @param[in] S points to an instance of the Q31 FIR decimator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_decimate_fast_q31(
+ const arm_fir_decimate_instance_q31 * S,
+ const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q31 FIR decimator.
+ * @param[in,out] S points to an instance of the Q31 FIR decimator structure.
+ * @param[in] numTaps number of coefficients in the filter.
+ * @param[in] M decimation factor.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * <code>blockSize</code> is not a multiple of <code>M</code>.
+ */
+ arm_status arm_fir_decimate_init_q31(
+ arm_fir_decimate_instance_q31 * S,
+ uint16_t numTaps,
+ uint8_t M,
+ const q31_t * pCoeffs,
+ q31_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q15 FIR interpolator.
+ */
+ typedef struct
+ {
+ uint8_t L; /**< upsample factor. */
+ uint16_t phaseLength; /**< length of each polyphase filter component. */
+ const q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
+ q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
+ } arm_fir_interpolate_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 FIR interpolator.
+ */
+ typedef struct
+ {
+ uint8_t L; /**< upsample factor. */
+ uint16_t phaseLength; /**< length of each polyphase filter component. */
+ const q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
+ q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
+ } arm_fir_interpolate_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point FIR interpolator.
+ */
+ typedef struct
+ {
+ uint8_t L; /**< upsample factor. */
+ uint16_t phaseLength; /**< length of each polyphase filter component. */
+ const float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
+ float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
+ } arm_fir_interpolate_instance_f32;
+
+
+ /**
+ * @brief Processing function for the Q15 FIR interpolator.
+ * @param[in] S points to an instance of the Q15 FIR interpolator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_interpolate_q15(
+ const arm_fir_interpolate_instance_q15 * S,
+ const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q15 FIR interpolator.
+ * @param[in,out] S points to an instance of the Q15 FIR interpolator structure.
+ * @param[in] L upsample factor.
+ * @param[in] numTaps number of filter coefficients in the filter.
+ * @param[in] pCoeffs points to the filter coefficient buffer.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
+ */
+ arm_status arm_fir_interpolate_init_q15(
+ arm_fir_interpolate_instance_q15 * S,
+ uint8_t L,
+ uint16_t numTaps,
+ const q15_t * pCoeffs,
+ q15_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q31 FIR interpolator.
+ * @param[in] S points to an instance of the Q15 FIR interpolator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_interpolate_q31(
+ const arm_fir_interpolate_instance_q31 * S,
+ const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q31 FIR interpolator.
+ * @param[in,out] S points to an instance of the Q31 FIR interpolator structure.
+ * @param[in] L upsample factor.
+ * @param[in] numTaps number of filter coefficients in the filter.
+ * @param[in] pCoeffs points to the filter coefficient buffer.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
+ */
+ arm_status arm_fir_interpolate_init_q31(
+ arm_fir_interpolate_instance_q31 * S,
+ uint8_t L,
+ uint16_t numTaps,
+ const q31_t * pCoeffs,
+ q31_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the floating-point FIR interpolator.
+ * @param[in] S points to an instance of the floating-point FIR interpolator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_interpolate_f32(
+ const arm_fir_interpolate_instance_f32 * S,
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the floating-point FIR interpolator.
+ * @param[in,out] S points to an instance of the floating-point FIR interpolator structure.
+ * @param[in] L upsample factor.
+ * @param[in] numTaps number of filter coefficients in the filter.
+ * @param[in] pCoeffs points to the filter coefficient buffer.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
+ */
+ arm_status arm_fir_interpolate_init_f32(
+ arm_fir_interpolate_instance_f32 * S,
+ uint8_t L,
+ uint16_t numTaps,
+ const float32_t * pCoeffs,
+ float32_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the high precision Q31 Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
+ const q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
+ uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */
+ } arm_biquad_cas_df1_32x64_ins_q31;
+
+
+ /**
+ * @param[in] S points to an instance of the high precision Q31 Biquad cascade filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cas_df1_32x64_q31(
+ const arm_biquad_cas_df1_32x64_ins_q31 * S,
+ const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @param[in,out] S points to an instance of the high precision Q31 Biquad cascade filter structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format
+ */
+ void arm_biquad_cas_df1_32x64_init_q31(
+ arm_biquad_cas_df1_32x64_ins_q31 * S,
+ uint8_t numStages,
+ const q31_t * pCoeffs,
+ q63_t * pState,
+ uint8_t postShift);
+
+
+ /**
+ * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
+ const float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
+ } arm_biquad_cascade_df2T_instance_f32;
+
+ /**
+ * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
+ const float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
+ } arm_biquad_cascade_stereo_df2T_instance_f32;
+
+ /**
+ * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
+ const float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
+ } arm_biquad_cascade_df2T_instance_f64;
+
+
+ /**
+ * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in] S points to an instance of the filter data structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_df2T_f32(
+ const arm_biquad_cascade_df2T_instance_f32 * S,
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels
+ * @param[in] S points to an instance of the filter data structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_stereo_df2T_f32(
+ const arm_biquad_cascade_stereo_df2T_instance_f32 * S,
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in] S points to an instance of the filter data structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_df2T_f64(
+ const arm_biquad_cascade_df2T_instance_f64 * S,
+ const float64_t * pSrc,
+ float64_t * pDst,
+ uint32_t blockSize);
+
+
+#if defined(ARM_MATH_NEON)
+/**
+ @brief Compute new coefficient arrays for use in vectorized filter (Neon only).
+ @param[in] numStages number of 2nd order stages in the filter.
+ @param[in] pCoeffs points to the original filter coefficients.
+ @param[in] pComputedCoeffs points to the new computed coefficients for the vectorized version.
+ @return none
+*/
+void arm_biquad_cascade_df2T_compute_coefs_f32(
+ uint8_t numStages,
+ const float32_t * pCoeffs,
+ float32_t * pComputedCoeffs);
+#endif
+ /**
+ * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in,out] S points to an instance of the filter data structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ */
+ void arm_biquad_cascade_df2T_init_f32(
+ arm_biquad_cascade_df2T_instance_f32 * S,
+ uint8_t numStages,
+ const float32_t * pCoeffs,
+ float32_t * pState);
+
+
+ /**
+ * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in,out] S points to an instance of the filter data structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ */
+ void arm_biquad_cascade_stereo_df2T_init_f32(
+ arm_biquad_cascade_stereo_df2T_instance_f32 * S,
+ uint8_t numStages,
+ const float32_t * pCoeffs,
+ float32_t * pState);
+
+
+ /**
+ * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in,out] S points to an instance of the filter data structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ */
+ void arm_biquad_cascade_df2T_init_f64(
+ arm_biquad_cascade_df2T_instance_f64 * S,
+ uint8_t numStages,
+ const float64_t * pCoeffs,
+ float64_t * pState);
+
+
+ /**
+ * @brief Instance structure for the Q15 FIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of filter stages. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numStages. */
+ const q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
+ } arm_fir_lattice_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 FIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of filter stages. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numStages. */
+ const q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
+ } arm_fir_lattice_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point FIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of filter stages. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numStages. */
+ const float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
+ } arm_fir_lattice_instance_f32;
+
+
+ /**
+ * @brief Initialization function for the Q15 FIR lattice filter.
+ * @param[in] S points to an instance of the Q15 FIR lattice structure.
+ * @param[in] numStages number of filter stages.
+ * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
+ * @param[in] pState points to the state buffer. The array is of length numStages.
+ */
+ void arm_fir_lattice_init_q15(
+ arm_fir_lattice_instance_q15 * S,
+ uint16_t numStages,
+ const q15_t * pCoeffs,
+ q15_t * pState);
+
+
+ /**
+ * @brief Processing function for the Q15 FIR lattice filter.
+ * @param[in] S points to an instance of the Q15 FIR lattice structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_lattice_q15(
+ const arm_fir_lattice_instance_q15 * S,
+ const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q31 FIR lattice filter.
+ * @param[in] S points to an instance of the Q31 FIR lattice structure.
+ * @param[in] numStages number of filter stages.
+ * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
+ * @param[in] pState points to the state buffer. The array is of length numStages.
+ */
+ void arm_fir_lattice_init_q31(
+ arm_fir_lattice_instance_q31 * S,
+ uint16_t numStages,
+ const q31_t * pCoeffs,
+ q31_t * pState);
+
+
+ /**
+ * @brief Processing function for the Q31 FIR lattice filter.
+ * @param[in] S points to an instance of the Q31 FIR lattice structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_lattice_q31(
+ const arm_fir_lattice_instance_q31 * S,
+ const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+/**
+ * @brief Initialization function for the floating-point FIR lattice filter.
+ * @param[in] S points to an instance of the floating-point FIR lattice structure.
+ * @param[in] numStages number of filter stages.
+ * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
+ * @param[in] pState points to the state buffer. The array is of length numStages.
+ */
+ void arm_fir_lattice_init_f32(
+ arm_fir_lattice_instance_f32 * S,
+ uint16_t numStages,
+ const float32_t * pCoeffs,
+ float32_t * pState);
+
+
+ /**
+ * @brief Processing function for the floating-point FIR lattice filter.
+ * @param[in] S points to an instance of the floating-point FIR lattice structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_lattice_f32(
+ const arm_fir_lattice_instance_f32 * S,
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q15 IIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of stages in the filter. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
+ q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
+ q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
+ } arm_iir_lattice_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 IIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of stages in the filter. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
+ q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
+ q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
+ } arm_iir_lattice_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point IIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of stages in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
+ float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
+ float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
+ } arm_iir_lattice_instance_f32;
+
+
+ /**
+ * @brief Processing function for the floating-point IIR lattice filter.
+ * @param[in] S points to an instance of the floating-point IIR lattice structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_iir_lattice_f32(
+ const arm_iir_lattice_instance_f32 * S,
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the floating-point IIR lattice filter.
+ * @param[in] S points to an instance of the floating-point IIR lattice structure.
+ * @param[in] numStages number of stages in the filter.
+ * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
+ * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
+ * @param[in] pState points to the state buffer. The array is of length numStages+blockSize-1.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_iir_lattice_init_f32(
+ arm_iir_lattice_instance_f32 * S,
+ uint16_t numStages,
+ float32_t * pkCoeffs,
+ float32_t * pvCoeffs,
+ float32_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q31 IIR lattice filter.
+ * @param[in] S points to an instance of the Q31 IIR lattice structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_iir_lattice_q31(
+ const arm_iir_lattice_instance_q31 * S,
+ const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q31 IIR lattice filter.
+ * @param[in] S points to an instance of the Q31 IIR lattice structure.
+ * @param[in] numStages number of stages in the filter.
+ * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
+ * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
+ * @param[in] pState points to the state buffer. The array is of length numStages+blockSize.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_iir_lattice_init_q31(
+ arm_iir_lattice_instance_q31 * S,
+ uint16_t numStages,
+ q31_t * pkCoeffs,
+ q31_t * pvCoeffs,
+ q31_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q15 IIR lattice filter.
+ * @param[in] S points to an instance of the Q15 IIR lattice structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_iir_lattice_q15(
+ const arm_iir_lattice_instance_q15 * S,
+ const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+/**
+ * @brief Initialization function for the Q15 IIR lattice filter.
+ * @param[in] S points to an instance of the fixed-point Q15 IIR lattice structure.
+ * @param[in] numStages number of stages in the filter.
+ * @param[in] pkCoeffs points to reflection coefficient buffer. The array is of length numStages.
+ * @param[in] pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1.
+ * @param[in] pState points to state buffer. The array is of length numStages+blockSize.
+ * @param[in] blockSize number of samples to process per call.
+ */
+ void arm_iir_lattice_init_q15(
+ arm_iir_lattice_instance_q15 * S,
+ uint16_t numStages,
+ q15_t * pkCoeffs,
+ q15_t * pvCoeffs,
+ q15_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the floating-point LMS filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ float32_t mu; /**< step size that controls filter coefficient updates. */
+ } arm_lms_instance_f32;
+
+
+ /**
+ * @brief Processing function for floating-point LMS filter.
+ * @param[in] S points to an instance of the floating-point LMS filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[in] pRef points to the block of reference data.
+ * @param[out] pOut points to the block of output data.
+ * @param[out] pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_lms_f32(
+ const arm_lms_instance_f32 * S,
+ const float32_t * pSrc,
+ float32_t * pRef,
+ float32_t * pOut,
+ float32_t * pErr,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for floating-point LMS filter.
+ * @param[in] S points to an instance of the floating-point LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] pCoeffs points to the coefficient buffer.
+ * @param[in] pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_lms_init_f32(
+ arm_lms_instance_f32 * S,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ float32_t mu,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q15 LMS filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ q15_t mu; /**< step size that controls filter coefficient updates. */
+ uint32_t postShift; /**< bit shift applied to coefficients. */
+ } arm_lms_instance_q15;
+
+
+ /**
+ * @brief Initialization function for the Q15 LMS filter.
+ * @param[in] S points to an instance of the Q15 LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] pCoeffs points to the coefficient buffer.
+ * @param[in] pState points to the state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ */
+ void arm_lms_init_q15(
+ arm_lms_instance_q15 * S,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ q15_t mu,
+ uint32_t blockSize,
+ uint32_t postShift);
+
+
+ /**
+ * @brief Processing function for Q15 LMS filter.
+ * @param[in] S points to an instance of the Q15 LMS filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[in] pRef points to the block of reference data.
+ * @param[out] pOut points to the block of output data.
+ * @param[out] pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_lms_q15(
+ const arm_lms_instance_q15 * S,
+ const q15_t * pSrc,
+ q15_t * pRef,
+ q15_t * pOut,
+ q15_t * pErr,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q31 LMS filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ q31_t mu; /**< step size that controls filter coefficient updates. */
+ uint32_t postShift; /**< bit shift applied to coefficients. */
+ } arm_lms_instance_q31;
+
+
+ /**
+ * @brief Processing function for Q31 LMS filter.
+ * @param[in] S points to an instance of the Q15 LMS filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[in] pRef points to the block of reference data.
+ * @param[out] pOut points to the block of output data.
+ * @param[out] pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_lms_q31(
+ const arm_lms_instance_q31 * S,
+ const q31_t * pSrc,
+ q31_t * pRef,
+ q31_t * pOut,
+ q31_t * pErr,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for Q31 LMS filter.
+ * @param[in] S points to an instance of the Q31 LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] pCoeffs points to coefficient buffer.
+ * @param[in] pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ */
+ void arm_lms_init_q31(
+ arm_lms_instance_q31 * S,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ q31_t mu,
+ uint32_t blockSize,
+ uint32_t postShift);
+
+
+ /**
+ * @brief Instance structure for the floating-point normalized LMS filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ float32_t mu; /**< step size that control filter coefficient updates. */
+ float32_t energy; /**< saves previous frame energy. */
+ float32_t x0; /**< saves previous input sample. */
+ } arm_lms_norm_instance_f32;
+
+
+ /**
+ * @brief Processing function for floating-point normalized LMS filter.
+ * @param[in] S points to an instance of the floating-point normalized LMS filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[in] pRef points to the block of reference data.
+ * @param[out] pOut points to the block of output data.
+ * @param[out] pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_lms_norm_f32(
+ arm_lms_norm_instance_f32 * S,
+ const float32_t * pSrc,
+ float32_t * pRef,
+ float32_t * pOut,
+ float32_t * pErr,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for floating-point normalized LMS filter.
+ * @param[in] S points to an instance of the floating-point LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] pCoeffs points to coefficient buffer.
+ * @param[in] pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_lms_norm_init_f32(
+ arm_lms_norm_instance_f32 * S,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ float32_t mu,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q31 normalized LMS filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ q31_t mu; /**< step size that controls filter coefficient updates. */
+ uint8_t postShift; /**< bit shift applied to coefficients. */
+ const q31_t *recipTable; /**< points to the reciprocal initial value table. */
+ q31_t energy; /**< saves previous frame energy. */
+ q31_t x0; /**< saves previous input sample. */
+ } arm_lms_norm_instance_q31;
+
+
+ /**
+ * @brief Processing function for Q31 normalized LMS filter.
+ * @param[in] S points to an instance of the Q31 normalized LMS filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[in] pRef points to the block of reference data.
+ * @param[out] pOut points to the block of output data.
+ * @param[out] pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_lms_norm_q31(
+ arm_lms_norm_instance_q31 * S,
+ const q31_t * pSrc,
+ q31_t * pRef,
+ q31_t * pOut,
+ q31_t * pErr,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for Q31 normalized LMS filter.
+ * @param[in] S points to an instance of the Q31 normalized LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] pCoeffs points to coefficient buffer.
+ * @param[in] pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ */
+ void arm_lms_norm_init_q31(
+ arm_lms_norm_instance_q31 * S,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ q31_t mu,
+ uint32_t blockSize,
+ uint8_t postShift);
+
+
+ /**
+ * @brief Instance structure for the Q15 normalized LMS filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< Number of coefficients in the filter. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ q15_t mu; /**< step size that controls filter coefficient updates. */
+ uint8_t postShift; /**< bit shift applied to coefficients. */
+ const q15_t *recipTable; /**< Points to the reciprocal initial value table. */
+ q15_t energy; /**< saves previous frame energy. */
+ q15_t x0; /**< saves previous input sample. */
+ } arm_lms_norm_instance_q15;
+
+
+ /**
+ * @brief Processing function for Q15 normalized LMS filter.
+ * @param[in] S points to an instance of the Q15 normalized LMS filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[in] pRef points to the block of reference data.
+ * @param[out] pOut points to the block of output data.
+ * @param[out] pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_lms_norm_q15(
+ arm_lms_norm_instance_q15 * S,
+ const q15_t * pSrc,
+ q15_t * pRef,
+ q15_t * pOut,
+ q15_t * pErr,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for Q15 normalized LMS filter.
+ * @param[in] S points to an instance of the Q15 normalized LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] pCoeffs points to coefficient buffer.
+ * @param[in] pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ */
+ void arm_lms_norm_init_q15(
+ arm_lms_norm_instance_q15 * S,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ q15_t mu,
+ uint32_t blockSize,
+ uint8_t postShift);
+
+
+ /**
+ * @brief Correlation of floating-point sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ */
+ void arm_correlate_f32(
+ const float32_t * pSrcA,
+ uint32_t srcALen,
+ const float32_t * pSrcB,
+ uint32_t srcBLen,
+ float32_t * pDst);
+
+
+ /**
+ * @brief Correlation of floating-point sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ */
+ void arm_correlate_f64(
+ const float64_t * pSrcA,
+ uint32_t srcALen,
+ const float64_t * pSrcB,
+ uint32_t srcBLen,
+ float64_t * pDst);
+
+
+/**
+ @brief Correlation of Q15 sequences
+ @param[in] pSrcA points to the first input sequence
+ @param[in] srcALen length of the first input sequence
+ @param[in] pSrcB points to the second input sequence
+ @param[in] srcBLen length of the second input sequence
+ @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+*/
+void arm_correlate_opt_q15(
+ const q15_t * pSrcA,
+ uint32_t srcALen,
+ const q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ q15_t * pScratch);
+
+
+/**
+ @brief Correlation of Q15 sequences.
+ @param[in] pSrcA points to the first input sequence
+ @param[in] srcALen length of the first input sequence
+ @param[in] pSrcB points to the second input sequence
+ @param[in] srcBLen length of the second input sequence
+ @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ */
+ void arm_correlate_q15(
+ const q15_t * pSrcA,
+ uint32_t srcALen,
+ const q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst);
+
+
+/**
+ @brief Correlation of Q15 sequences (fast version).
+ @param[in] pSrcA points to the first input sequence
+ @param[in] srcALen length of the first input sequence
+ @param[in] pSrcB points to the second input sequence
+ @param[in] srcBLen length of the second input sequence
+ @param[out] pDst points to the location where the output result is written. Length 2 * max(srcALen, srcBLen) - 1.
+ @return none
+ */
+void arm_correlate_fast_q15(
+ const q15_t * pSrcA,
+ uint32_t srcALen,
+ const q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst);
+
+
+/**
+ @brief Correlation of Q15 sequences (fast version).
+ @param[in] pSrcA points to the first input sequence.
+ @param[in] srcALen length of the first input sequence.
+ @param[in] pSrcB points to the second input sequence.
+ @param[in] srcBLen length of the second input sequence.
+ @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ */
+void arm_correlate_fast_opt_q15(
+ const q15_t * pSrcA,
+ uint32_t srcALen,
+ const q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ q15_t * pScratch);
+
+
+ /**
+ * @brief Correlation of Q31 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ */
+ void arm_correlate_q31(
+ const q31_t * pSrcA,
+ uint32_t srcALen,
+ const q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst);
+
+
+/**
+ @brief Correlation of Q31 sequences (fast version).
+ @param[in] pSrcA points to the first input sequence
+ @param[in] srcALen length of the first input sequence
+ @param[in] pSrcB points to the second input sequence
+ @param[in] srcBLen length of the second input sequence
+ @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ */
+void arm_correlate_fast_q31(
+ const q31_t * pSrcA,
+ uint32_t srcALen,
+ const q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst);
+
+
+ /**
+ * @brief Correlation of Q7 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
+ */
+ void arm_correlate_opt_q7(
+ const q7_t * pSrcA,
+ uint32_t srcALen,
+ const q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+ /**
+ * @brief Correlation of Q7 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ */
+ void arm_correlate_q7(
+ const q7_t * pSrcA,
+ uint32_t srcALen,
+ const q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst);
+
+
+ /**
+ * @brief Instance structure for the floating-point sparse FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
+ float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+ const float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
+ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
+ } arm_fir_sparse_instance_f32;
+
+ /**
+ * @brief Instance structure for the Q31 sparse FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
+ q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+ const q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
+ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
+ } arm_fir_sparse_instance_q31;
+
+ /**
+ * @brief Instance structure for the Q15 sparse FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
+ q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+ const q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
+ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
+ } arm_fir_sparse_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q7 sparse FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
+ q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+ const q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
+ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
+ } arm_fir_sparse_instance_q7;
+
+
+ /**
+ * @brief Processing function for the floating-point sparse FIR filter.
+ * @param[in] S points to an instance of the floating-point sparse FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_sparse_f32(
+ arm_fir_sparse_instance_f32 * S,
+ const float32_t * pSrc,
+ float32_t * pDst,
+ float32_t * pScratchIn,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the floating-point sparse FIR filter.
+ * @param[in,out] S points to an instance of the floating-point sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] pCoeffs points to the array of filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ */
+ void arm_fir_sparse_init_f32(
+ arm_fir_sparse_instance_f32 * S,
+ uint16_t numTaps,
+ const float32_t * pCoeffs,
+ float32_t * pState,
+ int32_t * pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q31 sparse FIR filter.
+ * @param[in] S points to an instance of the Q31 sparse FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_sparse_q31(
+ arm_fir_sparse_instance_q31 * S,
+ const q31_t * pSrc,
+ q31_t * pDst,
+ q31_t * pScratchIn,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q31 sparse FIR filter.
+ * @param[in,out] S points to an instance of the Q31 sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] pCoeffs points to the array of filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ */
+ void arm_fir_sparse_init_q31(
+ arm_fir_sparse_instance_q31 * S,
+ uint16_t numTaps,
+ const q31_t * pCoeffs,
+ q31_t * pState,
+ int32_t * pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q15 sparse FIR filter.
+ * @param[in] S points to an instance of the Q15 sparse FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] pScratchOut points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_sparse_q15(
+ arm_fir_sparse_instance_q15 * S,
+ const q15_t * pSrc,
+ q15_t * pDst,
+ q15_t * pScratchIn,
+ q31_t * pScratchOut,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q15 sparse FIR filter.
+ * @param[in,out] S points to an instance of the Q15 sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] pCoeffs points to the array of filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ */
+ void arm_fir_sparse_init_q15(
+ arm_fir_sparse_instance_q15 * S,
+ uint16_t numTaps,
+ const q15_t * pCoeffs,
+ q15_t * pState,
+ int32_t * pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q7 sparse FIR filter.
+ * @param[in] S points to an instance of the Q7 sparse FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] pScratchOut points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_sparse_q7(
+ arm_fir_sparse_instance_q7 * S,
+ const q7_t * pSrc,
+ q7_t * pDst,
+ q7_t * pScratchIn,
+ q31_t * pScratchOut,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q7 sparse FIR filter.
+ * @param[in,out] S points to an instance of the Q7 sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] pCoeffs points to the array of filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ */
+ void arm_fir_sparse_init_q7(
+ arm_fir_sparse_instance_q7 * S,
+ uint16_t numTaps,
+ const q7_t * pCoeffs,
+ q7_t * pState,
+ int32_t * pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize);
+
+
+
+
+
+
+ /**
+ * @brief floating-point Circular write function.
+ */
+ __STATIC_FORCEINLINE void arm_circularWrite_f32(
+ int32_t * circBuffer,
+ int32_t L,
+ uint16_t * writeOffset,
+ int32_t bufferInc,
+ const int32_t * src,
+ int32_t srcInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0U;
+ int32_t wOffset;
+
+ /* Copy the value of Index pointer that points
+ * to the current location where the input samples to be copied */
+ wOffset = *writeOffset;
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while (i > 0U)
+ {
+ /* copy the input sample to the circular buffer */
+ circBuffer[wOffset] = *src;
+
+ /* Update the input pointer */
+ src += srcInc;
+
+ /* Circularly update wOffset. Watch out for positive and negative value */
+ wOffset += bufferInc;
+ if (wOffset >= L)
+ wOffset -= L;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *writeOffset = (uint16_t)wOffset;
+ }
+
+
+
+ /**
+ * @brief floating-point Circular Read function.
+ */
+ __STATIC_FORCEINLINE void arm_circularRead_f32(
+ int32_t * circBuffer,
+ int32_t L,
+ int32_t * readOffset,
+ int32_t bufferInc,
+ int32_t * dst,
+ int32_t * dst_base,
+ int32_t dst_length,
+ int32_t dstInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0U;
+ int32_t rOffset;
+ int32_t* dst_end;
+
+ /* Copy the value of Index pointer that points
+ * to the current location from where the input samples to be read */
+ rOffset = *readOffset;
+ dst_end = dst_base + dst_length;
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while (i > 0U)
+ {
+ /* copy the sample from the circular buffer to the destination buffer */
+ *dst = circBuffer[rOffset];
+
+ /* Update the input pointer */
+ dst += dstInc;
+
+ if (dst == dst_end)
+ {
+ dst = dst_base;
+ }
+
+ /* Circularly update rOffset. Watch out for positive and negative value */
+ rOffset += bufferInc;
+
+ if (rOffset >= L)
+ {
+ rOffset -= L;
+ }
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *readOffset = rOffset;
+ }
+
+
+ /**
+ * @brief Q15 Circular write function.
+ */
+ __STATIC_FORCEINLINE void arm_circularWrite_q15(
+ q15_t * circBuffer,
+ int32_t L,
+ uint16_t * writeOffset,
+ int32_t bufferInc,
+ const q15_t * src,
+ int32_t srcInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0U;
+ int32_t wOffset;
+
+ /* Copy the value of Index pointer that points
+ * to the current location where the input samples to be copied */
+ wOffset = *writeOffset;
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while (i > 0U)
+ {
+ /* copy the input sample to the circular buffer */
+ circBuffer[wOffset] = *src;
+
+ /* Update the input pointer */
+ src += srcInc;
+
+ /* Circularly update wOffset. Watch out for positive and negative value */
+ wOffset += bufferInc;
+ if (wOffset >= L)
+ wOffset -= L;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *writeOffset = (uint16_t)wOffset;
+ }
+
+
+ /**
+ * @brief Q15 Circular Read function.
+ */
+ __STATIC_FORCEINLINE void arm_circularRead_q15(
+ q15_t * circBuffer,
+ int32_t L,
+ int32_t * readOffset,
+ int32_t bufferInc,
+ q15_t * dst,
+ q15_t * dst_base,
+ int32_t dst_length,
+ int32_t dstInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0;
+ int32_t rOffset;
+ q15_t* dst_end;
+
+ /* Copy the value of Index pointer that points
+ * to the current location from where the input samples to be read */
+ rOffset = *readOffset;
+
+ dst_end = dst_base + dst_length;
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while (i > 0U)
+ {
+ /* copy the sample from the circular buffer to the destination buffer */
+ *dst = circBuffer[rOffset];
+
+ /* Update the input pointer */
+ dst += dstInc;
+
+ if (dst == dst_end)
+ {
+ dst = dst_base;
+ }
+
+ /* Circularly update wOffset. Watch out for positive and negative value */
+ rOffset += bufferInc;
+
+ if (rOffset >= L)
+ {
+ rOffset -= L;
+ }
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *readOffset = rOffset;
+ }
+
+
+ /**
+ * @brief Q7 Circular write function.
+ */
+ __STATIC_FORCEINLINE void arm_circularWrite_q7(
+ q7_t * circBuffer,
+ int32_t L,
+ uint16_t * writeOffset,
+ int32_t bufferInc,
+ const q7_t * src,
+ int32_t srcInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0U;
+ int32_t wOffset;
+
+ /* Copy the value of Index pointer that points
+ * to the current location where the input samples to be copied */
+ wOffset = *writeOffset;
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while (i > 0U)
+ {
+ /* copy the input sample to the circular buffer */
+ circBuffer[wOffset] = *src;
+
+ /* Update the input pointer */
+ src += srcInc;
+
+ /* Circularly update wOffset. Watch out for positive and negative value */
+ wOffset += bufferInc;
+ if (wOffset >= L)
+ wOffset -= L;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *writeOffset = (uint16_t)wOffset;
+ }
+
+
+ /**
+ * @brief Q7 Circular Read function.
+ */
+ __STATIC_FORCEINLINE void arm_circularRead_q7(
+ q7_t * circBuffer,
+ int32_t L,
+ int32_t * readOffset,
+ int32_t bufferInc,
+ q7_t * dst,
+ q7_t * dst_base,
+ int32_t dst_length,
+ int32_t dstInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0;
+ int32_t rOffset;
+ q7_t* dst_end;
+
+ /* Copy the value of Index pointer that points
+ * to the current location from where the input samples to be read */
+ rOffset = *readOffset;
+
+ dst_end = dst_base + dst_length;
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while (i > 0U)
+ {
+ /* copy the sample from the circular buffer to the destination buffer */
+ *dst = circBuffer[rOffset];
+
+ /* Update the input pointer */
+ dst += dstInc;
+
+ if (dst == dst_end)
+ {
+ dst = dst_base;
+ }
+
+ /* Circularly update rOffset. Watch out for positive and negative value */
+ rOffset += bufferInc;
+
+ if (rOffset >= L)
+ {
+ rOffset -= L;
+ }
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *readOffset = rOffset;
+ }
+
+
+/**
+ @brief Levinson Durbin
+ @param[in] phi autocovariance vector starting with lag 0 (length is nbCoefs + 1)
+ @param[out] a autoregressive coefficients
+ @param[out] err prediction error (variance)
+ @param[in] nbCoefs number of autoregressive coefficients
+ @return none
+ */
+void arm_levinson_durbin_f32(const float32_t *phi,
+ float32_t *a,
+ float32_t *err,
+ int nbCoefs);
+
+
+/**
+ @brief Levinson Durbin
+ @param[in] phi autocovariance vector starting with lag 0 (length is nbCoefs + 1)
+ @param[out] a autoregressive coefficients
+ @param[out] err prediction error (variance)
+ @param[in] nbCoefs number of autoregressive coefficients
+ @return none
+ */
+void arm_levinson_durbin_q31(const q31_t *phi,
+ q31_t *a,
+ q31_t *err,
+ int nbCoefs);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _FILTERING_FUNCTIONS_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/filtering_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/filtering_functions_f16.h
new file mode 100644
index 0000000..fd8b0bb
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/filtering_functions_f16.h
@@ -0,0 +1,237 @@
+/******************************************************************************
+ * @file filtering_functions_f16.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _FILTERING_FUNCTIONS_F16_H_
+#define _FILTERING_FUNCTIONS_F16_H_
+
+#include "arm_math_types_f16.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#if defined(ARM_FLOAT16_SUPPORTED)
+
+ /**
+ * @brief Instance structure for the floating-point FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ float16_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ const float16_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ } arm_fir_instance_f16;
+
+ /**
+ * @brief Initialization function for the floating-point FIR filter.
+ * @param[in,out] S points to an instance of the floating-point FIR filter structure.
+ * @param[in] numTaps Number of filter coefficients in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed at a time.
+ */
+ void arm_fir_init_f16(
+ arm_fir_instance_f16 * S,
+ uint16_t numTaps,
+ const float16_t * pCoeffs,
+ float16_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the floating-point FIR filter.
+ * @param[in] S points to an instance of the floating-point FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_f16(
+ const arm_fir_instance_f16 * S,
+ const float16_t * pSrc,
+ float16_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the floating-point Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ float16_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
+ const float16_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
+ } arm_biquad_casd_df1_inst_f16;
+
+#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
+ /**
+ * @brief Instance structure for the modified Biquad coefs required by vectorized code.
+ */
+ typedef struct
+ {
+ float16_t coeffs[12][8]; /**< Points to the array of modified coefficients. The array is of length 32. There is one per stage */
+ } arm_biquad_mod_coef_f16;
+#endif
+
+ /**
+ * @brief Processing function for the floating-point Biquad cascade filter.
+ * @param[in] S points to an instance of the floating-point Biquad cascade structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_df1_f16(
+ const arm_biquad_casd_df1_inst_f16 * S,
+ const float16_t * pSrc,
+ float16_t * pDst,
+ uint32_t blockSize);
+
+#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
+ void arm_biquad_cascade_df1_mve_init_f16(
+ arm_biquad_casd_df1_inst_f16 * S,
+ uint8_t numStages,
+ const float16_t * pCoeffs,
+ arm_biquad_mod_coef_f16 * pCoeffsMod,
+ float16_t * pState);
+#endif
+
+ void arm_biquad_cascade_df1_init_f16(
+ arm_biquad_casd_df1_inst_f16 * S,
+ uint8_t numStages,
+ const float16_t * pCoeffs,
+ float16_t * pState);
+
+ /**
+ * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ float16_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
+ const float16_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
+ } arm_biquad_cascade_df2T_instance_f16;
+
+ /**
+ * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ float16_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
+ const float16_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
+ } arm_biquad_cascade_stereo_df2T_instance_f16;
+
+ /**
+ * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in] S points to an instance of the filter data structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_df2T_f16(
+ const arm_biquad_cascade_df2T_instance_f16 * S,
+ const float16_t * pSrc,
+ float16_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels
+ * @param[in] S points to an instance of the filter data structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_stereo_df2T_f16(
+ const arm_biquad_cascade_stereo_df2T_instance_f16 * S,
+ const float16_t * pSrc,
+ float16_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in,out] S points to an instance of the filter data structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ */
+ void arm_biquad_cascade_df2T_init_f16(
+ arm_biquad_cascade_df2T_instance_f16 * S,
+ uint8_t numStages,
+ const float16_t * pCoeffs,
+ float16_t * pState);
+
+ /**
+ * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in,out] S points to an instance of the filter data structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ */
+ void arm_biquad_cascade_stereo_df2T_init_f16(
+ arm_biquad_cascade_stereo_df2T_instance_f16 * S,
+ uint8_t numStages,
+ const float16_t * pCoeffs,
+ float16_t * pState);
+
+ /**
+ * @brief Correlation of floating-point sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ */
+ void arm_correlate_f16(
+ const float16_t * pSrcA,
+ uint32_t srcALen,
+ const float16_t * pSrcB,
+ uint32_t srcBLen,
+ float16_t * pDst);
+
+
+/**
+ @brief Levinson Durbin
+ @param[in] phi autocovariance vector starting with lag 0 (length is nbCoefs + 1)
+ @param[out] a autoregressive coefficients
+ @param[out] err prediction error (variance)
+ @param[in] nbCoefs number of autoregressive coefficients
+ @return none
+ */
+void arm_levinson_durbin_f16(const float16_t *phi,
+ float16_t *a,
+ float16_t *err,
+ int nbCoefs);
+
+#endif /*defined(ARM_FLOAT16_SUPPORTED)*/
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _FILTERING_FUNCTIONS_F16_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/interpolation_functions.h b/Drivers/CMSIS/DSP/Include/dsp/interpolation_functions.h
new file mode 100644
index 0000000..6e51f7c
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/interpolation_functions.h
@@ -0,0 +1,319 @@
+/******************************************************************************
+ * @file interpolation_functions.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _INTERPOLATION_FUNCTIONS_H_
+#define _INTERPOLATION_FUNCTIONS_H_
+
+#include "arm_math_types.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+
+/**
+ * @defgroup groupInterpolation Interpolation Functions
+ * These functions perform 1- and 2-dimensional interpolation of data.
+ * Linear interpolation is used for 1-dimensional data and
+ * bilinear interpolation is used for 2-dimensional data.
+ */
+
+
+ /**
+ * @brief Instance structure for the floating-point Linear Interpolate function.
+ */
+ typedef struct
+ {
+ uint32_t nValues; /**< nValues */
+ float32_t x1; /**< x1 */
+ float32_t xSpacing; /**< xSpacing */
+ float32_t *pYData; /**< pointer to the table of Y values */
+ } arm_linear_interp_instance_f32;
+
+ /**
+ * @brief Instance structure for the floating-point bilinear interpolation function.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows in the data table. */
+ uint16_t numCols; /**< number of columns in the data table. */
+ float32_t *pData; /**< points to the data table. */
+ } arm_bilinear_interp_instance_f32;
+
+ /**
+ * @brief Instance structure for the Q31 bilinear interpolation function.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows in the data table. */
+ uint16_t numCols; /**< number of columns in the data table. */
+ q31_t *pData; /**< points to the data table. */
+ } arm_bilinear_interp_instance_q31;
+
+ /**
+ * @brief Instance structure for the Q15 bilinear interpolation function.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows in the data table. */
+ uint16_t numCols; /**< number of columns in the data table. */
+ q15_t *pData; /**< points to the data table. */
+ } arm_bilinear_interp_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q15 bilinear interpolation function.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows in the data table. */
+ uint16_t numCols; /**< number of columns in the data table. */
+ q7_t *pData; /**< points to the data table. */
+ } arm_bilinear_interp_instance_q7;
+
+
+ /**
+ * @brief Struct for specifying cubic spline type
+ */
+ typedef enum
+ {
+ ARM_SPLINE_NATURAL = 0, /**< Natural spline */
+ ARM_SPLINE_PARABOLIC_RUNOUT = 1 /**< Parabolic runout spline */
+ } arm_spline_type;
+
+ /**
+ * @brief Instance structure for the floating-point cubic spline interpolation.
+ */
+ typedef struct
+ {
+ arm_spline_type type; /**< Type (boundary conditions) */
+ const float32_t * x; /**< x values */
+ const float32_t * y; /**< y values */
+ uint32_t n_x; /**< Number of known data points */
+ float32_t * coeffs; /**< Coefficients buffer (b,c, and d) */
+ } arm_spline_instance_f32;
+
+
+
+
+ /**
+ * @ingroup groupInterpolation
+ */
+
+ /**
+ * @addtogroup SplineInterpolate
+ * @{
+ */
+
+
+ /**
+ * @brief Processing function for the floating-point cubic spline interpolation.
+ * @param[in] S points to an instance of the floating-point spline structure.
+ * @param[in] xq points to the x values ot the interpolated data points.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples of output data.
+ */
+ void arm_spline_f32(
+ arm_spline_instance_f32 * S,
+ const float32_t * xq,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the floating-point cubic spline interpolation.
+ * @param[in,out] S points to an instance of the floating-point spline structure.
+ * @param[in] type type of cubic spline interpolation (boundary conditions)
+ * @param[in] x points to the x values of the known data points.
+ * @param[in] y points to the y values of the known data points.
+ * @param[in] n number of known data points.
+ * @param[in] coeffs coefficients array for b, c, and d
+ * @param[in] tempBuffer buffer array for internal computations
+ */
+ void arm_spline_init_f32(
+ arm_spline_instance_f32 * S,
+ arm_spline_type type,
+ const float32_t * x,
+ const float32_t * y,
+ uint32_t n,
+ float32_t * coeffs,
+ float32_t * tempBuffer);
+
+
+ /**
+ * @} end of SplineInterpolate group
+ */
+
+
+
+ /**
+ * @addtogroup LinearInterpolate
+ * @{
+ */
+
+ /**
+ * @brief Process function for the floating-point Linear Interpolation Function.
+ * @param[in,out] S is an instance of the floating-point Linear Interpolation structure
+ * @param[in] x input sample to process
+ * @return y processed output sample.
+ *
+ */
+ float32_t arm_linear_interp_f32(
+ arm_linear_interp_instance_f32 * S,
+ float32_t x);
+
+ /**
+ *
+ * @brief Process function for the Q31 Linear Interpolation Function.
+ * @param[in] pYData pointer to Q31 Linear Interpolation table
+ * @param[in] x input sample to process
+ * @param[in] nValues number of table values
+ * @return y processed output sample.
+ *
+ * \par
+ * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
+ * This function can support maximum of table size 2^12.
+ *
+ */
+ q31_t arm_linear_interp_q31(
+ const q31_t * pYData,
+ q31_t x,
+ uint32_t nValues);
+
+ /**
+ *
+ * @brief Process function for the Q15 Linear Interpolation Function.
+ * @param[in] pYData pointer to Q15 Linear Interpolation table
+ * @param[in] x input sample to process
+ * @param[in] nValues number of table values
+ * @return y processed output sample.
+ *
+ * \par
+ * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
+ * This function can support maximum of table size 2^12.
+ *
+ */
+ q15_t arm_linear_interp_q15(
+ const q15_t * pYData,
+ q31_t x,
+ uint32_t nValues);
+
+ /**
+ *
+ * @brief Process function for the Q7 Linear Interpolation Function.
+ * @param[in] pYData pointer to Q7 Linear Interpolation table
+ * @param[in] x input sample to process
+ * @param[in] nValues number of table values
+ * @return y processed output sample.
+ *
+ * \par
+ * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
+ * This function can support maximum of table size 2^12.
+ */
+q7_t arm_linear_interp_q7(
+ const q7_t * pYData,
+ q31_t x,
+ uint32_t nValues);
+
+ /**
+ * @} end of LinearInterpolate group
+ */
+
+
+
+
+ /**
+ * @ingroup groupInterpolation
+ */
+
+
+ /**
+ * @addtogroup BilinearInterpolate
+ * @{
+ */
+
+ /**
+ * @brief Floating-point bilinear interpolation.
+ * @param[in,out] S points to an instance of the interpolation structure.
+ * @param[in] X interpolation coordinate.
+ * @param[in] Y interpolation coordinate.
+ * @return out interpolated value.
+ */
+ float32_t arm_bilinear_interp_f32(
+ const arm_bilinear_interp_instance_f32 * S,
+ float32_t X,
+ float32_t Y);
+
+ /**
+ * @brief Q31 bilinear interpolation.
+ * @param[in,out] S points to an instance of the interpolation structure.
+ * @param[in] X interpolation coordinate in 12.20 format.
+ * @param[in] Y interpolation coordinate in 12.20 format.
+ * @return out interpolated value.
+ */
+ q31_t arm_bilinear_interp_q31(
+ arm_bilinear_interp_instance_q31 * S,
+ q31_t X,
+ q31_t Y);
+
+
+ /**
+ * @brief Q15 bilinear interpolation.
+ * @param[in,out] S points to an instance of the interpolation structure.
+ * @param[in] X interpolation coordinate in 12.20 format.
+ * @param[in] Y interpolation coordinate in 12.20 format.
+ * @return out interpolated value.
+ */
+ q15_t arm_bilinear_interp_q15(
+ arm_bilinear_interp_instance_q15 * S,
+ q31_t X,
+ q31_t Y);
+
+ /**
+ * @brief Q7 bilinear interpolation.
+ * @param[in,out] S points to an instance of the interpolation structure.
+ * @param[in] X interpolation coordinate in 12.20 format.
+ * @param[in] Y interpolation coordinate in 12.20 format.
+ * @return out interpolated value.
+ */
+ q7_t arm_bilinear_interp_q7(
+ arm_bilinear_interp_instance_q7 * S,
+ q31_t X,
+ q31_t Y);
+ /**
+ * @} end of BilinearInterpolate group
+ */
+
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _INTERPOLATION_FUNCTIONS_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/interpolation_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/interpolation_functions_f16.h
new file mode 100644
index 0000000..8b6e6a9
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/interpolation_functions_f16.h
@@ -0,0 +1,107 @@
+/******************************************************************************
+ * @file interpolation_functions_f16.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _INTERPOLATION_FUNCTIONS_F16_H_
+#define _INTERPOLATION_FUNCTIONS_F16_H_
+
+#include "arm_math_types_f16.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#if defined(ARM_FLOAT16_SUPPORTED)
+
+typedef struct
+{
+ uint32_t nValues; /**< nValues */
+ float16_t x1; /**< x1 */
+ float16_t xSpacing; /**< xSpacing */
+ float16_t *pYData; /**< pointer to the table of Y values */
+} arm_linear_interp_instance_f16;
+
+/**
+ * @brief Instance structure for the floating-point bilinear interpolation function.
+ */
+typedef struct
+{
+ uint16_t numRows;/**< number of rows in the data table. */
+ uint16_t numCols;/**< number of columns in the data table. */
+ float16_t *pData; /**< points to the data table. */
+} arm_bilinear_interp_instance_f16;
+
+ /**
+ * @addtogroup LinearInterpolate
+ * @{
+ */
+
+ /**
+ * @brief Process function for the floating-point Linear Interpolation Function.
+ * @param[in,out] S is an instance of the floating-point Linear Interpolation structure
+ * @param[in] x input sample to process
+ * @return y processed output sample.
+ *
+ */
+ float16_t arm_linear_interp_f16(
+ arm_linear_interp_instance_f16 * S,
+ float16_t x);
+
+ /**
+ * @} end of LinearInterpolate group
+ */
+
+/**
+ * @addtogroup BilinearInterpolate
+ * @{
+ */
+
+ /**
+ * @brief Floating-point bilinear interpolation.
+ * @param[in,out] S points to an instance of the interpolation structure.
+ * @param[in] X interpolation coordinate.
+ * @param[in] Y interpolation coordinate.
+ * @return out interpolated value.
+ */
+ float16_t arm_bilinear_interp_f16(
+ const arm_bilinear_interp_instance_f16 * S,
+ float16_t X,
+ float16_t Y);
+
+
+ /**
+ * @} end of BilinearInterpolate group
+ */
+#endif /*defined(ARM_FLOAT16_SUPPORTED)*/
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _INTERPOLATION_FUNCTIONS_F16_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/matrix_functions.h b/Drivers/CMSIS/DSP/Include/dsp/matrix_functions.h
new file mode 100644
index 0000000..f3801a9
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/matrix_functions.h
@@ -0,0 +1,757 @@
+/******************************************************************************
+ * @file matrix_functions.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _MATRIX_FUNCTIONS_H_
+#define _MATRIX_FUNCTIONS_H_
+
+#include "arm_math_types.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+/**
+ * @defgroup groupMatrix Matrix Functions
+ *
+ * This set of functions provides basic matrix math operations.
+ * The functions operate on matrix data structures. For example,
+ * the type
+ * definition for the floating-point matrix structure is shown
+ * below:
+ * <pre>
+ * typedef struct
+ * {
+ * uint16_t numRows; // number of rows of the matrix.
+ * uint16_t numCols; // number of columns of the matrix.
+ * float32_t *pData; // points to the data of the matrix.
+ * } arm_matrix_instance_f32;
+ * </pre>
+ * There are similar definitions for Q15 and Q31 data types.
+ *
+ * The structure specifies the size of the matrix and then points to
+ * an array of data. The array is of size <code>numRows X numCols</code>
+ * and the values are arranged in row order. That is, the
+ * matrix element (i, j) is stored at:
+ * <pre>
+ * pData[i*numCols + j]
+ * </pre>
+ *
+ * \par Init Functions
+ * There is an associated initialization function for each type of matrix
+ * data structure.
+ * The initialization function sets the values of the internal structure fields.
+ * Refer to \ref arm_mat_init_f32(), \ref arm_mat_init_q31() and \ref arm_mat_init_q15()
+ * for floating-point, Q31 and Q15 types, respectively.
+ *
+ * \par
+ * Use of the initialization function is optional. However, if initialization function is used
+ * then the instance structure cannot be placed into a const data section.
+ * To place the instance structure in a const data
+ * section, manually initialize the data structure. For example:
+ * <pre>
+ * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code>
+ * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code>
+ * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code>
+ * </pre>
+ * where <code>nRows</code> specifies the number of rows, <code>nColumns</code>
+ * specifies the number of columns, and <code>pData</code> points to the
+ * data array.
+ *
+ * \par Size Checking
+ * By default all of the matrix functions perform size checking on the input and
+ * output matrices. For example, the matrix addition function verifies that the
+ * two input matrices and the output matrix all have the same number of rows and
+ * columns. If the size check fails the functions return:
+ * <pre>
+ * ARM_MATH_SIZE_MISMATCH
+ * </pre>
+ * Otherwise the functions return
+ * <pre>
+ * ARM_MATH_SUCCESS
+ * </pre>
+ * There is some overhead associated with this matrix size checking.
+ * The matrix size checking is enabled via the \#define
+ * <pre>
+ * ARM_MATH_MATRIX_CHECK
+ * </pre>
+ * within the library project settings. By default this macro is defined
+ * and size checking is enabled. By changing the project settings and
+ * undefining this macro size checking is eliminated and the functions
+ * run a bit faster. With size checking disabled the functions always
+ * return <code>ARM_MATH_SUCCESS</code>.
+ */
+
+ /**
+ * @brief Instance structure for the floating-point matrix structure.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows of the matrix. */
+ uint16_t numCols; /**< number of columns of the matrix. */
+ float32_t *pData; /**< points to the data of the matrix. */
+ } arm_matrix_instance_f32;
+
+ /**
+ * @brief Instance structure for the floating-point matrix structure.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows of the matrix. */
+ uint16_t numCols; /**< number of columns of the matrix. */
+ float64_t *pData; /**< points to the data of the matrix. */
+ } arm_matrix_instance_f64;
+
+ /**
+ * @brief Instance structure for the Q7 matrix structure.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows of the matrix. */
+ uint16_t numCols; /**< number of columns of the matrix. */
+ q7_t *pData; /**< points to the data of the matrix. */
+ } arm_matrix_instance_q7;
+
+ /**
+ * @brief Instance structure for the Q15 matrix structure.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows of the matrix. */
+ uint16_t numCols; /**< number of columns of the matrix. */
+ q15_t *pData; /**< points to the data of the matrix. */
+ } arm_matrix_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 matrix structure.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows of the matrix. */
+ uint16_t numCols; /**< number of columns of the matrix. */
+ q31_t *pData; /**< points to the data of the matrix. */
+ } arm_matrix_instance_q31;
+
+ /**
+ * @brief Floating-point matrix addition.
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_add_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst);
+
+ /**
+ * @brief Q15 matrix addition.
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_add_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst);
+
+ /**
+ * @brief Q31 matrix addition.
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_add_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+ /**
+ * @brief Floating-point, complex, matrix multiplication.
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_cmplx_mult_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst);
+
+ /**
+ * @brief Q15, complex, matrix multiplication.
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_cmplx_mult_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst,
+ q15_t * pScratch);
+
+ /**
+ * @brief Q31, complex, matrix multiplication.
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_cmplx_mult_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+ /**
+ * @brief Floating-point matrix transpose.
+ * @param[in] pSrc points to the input matrix
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
+ * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_trans_f32(
+ const arm_matrix_instance_f32 * pSrc,
+ arm_matrix_instance_f32 * pDst);
+
+/**
+ * @brief Floating-point matrix transpose.
+ * @param[in] pSrc points to the input matrix
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
+ * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_trans_f64(
+ const arm_matrix_instance_f64 * pSrc,
+ arm_matrix_instance_f64 * pDst);
+
+ /**
+ * @brief Floating-point complex matrix transpose.
+ * @param[in] pSrc points to the input matrix
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
+ * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_cmplx_trans_f32(
+ const arm_matrix_instance_f32 * pSrc,
+ arm_matrix_instance_f32 * pDst);
+
+
+ /**
+ * @brief Q15 matrix transpose.
+ * @param[in] pSrc points to the input matrix
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
+ * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_trans_q15(
+ const arm_matrix_instance_q15 * pSrc,
+ arm_matrix_instance_q15 * pDst);
+
+ /**
+ * @brief Q15 complex matrix transpose.
+ * @param[in] pSrc points to the input matrix
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
+ * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_cmplx_trans_q15(
+ const arm_matrix_instance_q15 * pSrc,
+ arm_matrix_instance_q15 * pDst);
+
+ /**
+ * @brief Q7 matrix transpose.
+ * @param[in] pSrc points to the input matrix
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
+ * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_trans_q7(
+ const arm_matrix_instance_q7 * pSrc,
+ arm_matrix_instance_q7 * pDst);
+
+ /**
+ * @brief Q31 matrix transpose.
+ * @param[in] pSrc points to the input matrix
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
+ * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_trans_q31(
+ const arm_matrix_instance_q31 * pSrc,
+ arm_matrix_instance_q31 * pDst);
+
+ /**
+ * @brief Q31 complex matrix transpose.
+ * @param[in] pSrc points to the input matrix
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
+ * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_cmplx_trans_q31(
+ const arm_matrix_instance_q31 * pSrc,
+ arm_matrix_instance_q31 * pDst);
+
+ /**
+ * @brief Floating-point matrix multiplication
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_mult_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst);
+
+ /**
+ * @brief Floating-point matrix multiplication
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_mult_f64(
+ const arm_matrix_instance_f64 * pSrcA,
+ const arm_matrix_instance_f64 * pSrcB,
+ arm_matrix_instance_f64 * pDst);
+
+ /**
+ * @brief Floating-point matrix and vector multiplication
+ * @param[in] pSrcMat points to the input matrix structure
+ * @param[in] pVec points to vector
+ * @param[out] pDst points to output vector
+ */
+void arm_mat_vec_mult_f32(
+ const arm_matrix_instance_f32 *pSrcMat,
+ const float32_t *pVec,
+ float32_t *pDst);
+
+ /**
+ * @brief Q7 matrix multiplication
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @param[in] pState points to the array for storing intermediate results
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_mult_q7(
+ const arm_matrix_instance_q7 * pSrcA,
+ const arm_matrix_instance_q7 * pSrcB,
+ arm_matrix_instance_q7 * pDst,
+ q7_t * pState);
+
+ /**
+ * @brief Q7 matrix and vector multiplication
+ * @param[in] pSrcMat points to the input matrix structure
+ * @param[in] pVec points to vector
+ * @param[out] pDst points to output vector
+ */
+void arm_mat_vec_mult_q7(
+ const arm_matrix_instance_q7 *pSrcMat,
+ const q7_t *pVec,
+ q7_t *pDst);
+
+ /**
+ * @brief Q15 matrix multiplication
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @param[in] pState points to the array for storing intermediate results
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_mult_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst,
+ q15_t * pState);
+
+ /**
+ * @brief Q15 matrix and vector multiplication
+ * @param[in] pSrcMat points to the input matrix structure
+ * @param[in] pVec points to vector
+ * @param[out] pDst points to output vector
+ */
+void arm_mat_vec_mult_q15(
+ const arm_matrix_instance_q15 *pSrcMat,
+ const q15_t *pVec,
+ q15_t *pDst);
+
+ /**
+ * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @param[in] pState points to the array for storing intermediate results
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_mult_fast_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst,
+ q15_t * pState);
+
+ /**
+ * @brief Q31 matrix multiplication
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_mult_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+ /**
+ * @brief Q31 matrix multiplication
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @param[in] pState points to the array for storing intermediate results
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_mult_opt_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst,
+ q31_t *pState);
+
+ /**
+ * @brief Q31 matrix and vector multiplication
+ * @param[in] pSrcMat points to the input matrix structure
+ * @param[in] pVec points to vector
+ * @param[out] pDst points to output vector
+ */
+void arm_mat_vec_mult_q31(
+ const arm_matrix_instance_q31 *pSrcMat,
+ const q31_t *pVec,
+ q31_t *pDst);
+
+ /**
+ * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_mult_fast_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+ /**
+ * @brief Floating-point matrix subtraction
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_sub_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst);
+
+ /**
+ * @brief Floating-point matrix subtraction
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_sub_f64(
+ const arm_matrix_instance_f64 * pSrcA,
+ const arm_matrix_instance_f64 * pSrcB,
+ arm_matrix_instance_f64 * pDst);
+
+ /**
+ * @brief Q15 matrix subtraction
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_sub_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst);
+
+ /**
+ * @brief Q31 matrix subtraction
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_sub_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+ /**
+ * @brief Floating-point matrix scaling.
+ * @param[in] pSrc points to the input matrix
+ * @param[in] scale scale factor
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_scale_f32(
+ const arm_matrix_instance_f32 * pSrc,
+ float32_t scale,
+ arm_matrix_instance_f32 * pDst);
+
+ /**
+ * @brief Q15 matrix scaling.
+ * @param[in] pSrc points to input matrix
+ * @param[in] scaleFract fractional portion of the scale factor
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] pDst points to output matrix
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_scale_q15(
+ const arm_matrix_instance_q15 * pSrc,
+ q15_t scaleFract,
+ int32_t shift,
+ arm_matrix_instance_q15 * pDst);
+
+ /**
+ * @brief Q31 matrix scaling.
+ * @param[in] pSrc points to input matrix
+ * @param[in] scaleFract fractional portion of the scale factor
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_scale_q31(
+ const arm_matrix_instance_q31 * pSrc,
+ q31_t scaleFract,
+ int32_t shift,
+ arm_matrix_instance_q31 * pDst);
+
+ /**
+ * @brief Q31 matrix initialization.
+ * @param[in,out] S points to an instance of the floating-point matrix structure.
+ * @param[in] nRows number of rows in the matrix.
+ * @param[in] nColumns number of columns in the matrix.
+ * @param[in] pData points to the matrix data array.
+ */
+void arm_mat_init_q31(
+ arm_matrix_instance_q31 * S,
+ uint16_t nRows,
+ uint16_t nColumns,
+ q31_t * pData);
+
+ /**
+ * @brief Q15 matrix initialization.
+ * @param[in,out] S points to an instance of the floating-point matrix structure.
+ * @param[in] nRows number of rows in the matrix.
+ * @param[in] nColumns number of columns in the matrix.
+ * @param[in] pData points to the matrix data array.
+ */
+void arm_mat_init_q15(
+ arm_matrix_instance_q15 * S,
+ uint16_t nRows,
+ uint16_t nColumns,
+ q15_t * pData);
+
+ /**
+ * @brief Floating-point matrix initialization.
+ * @param[in,out] S points to an instance of the floating-point matrix structure.
+ * @param[in] nRows number of rows in the matrix.
+ * @param[in] nColumns number of columns in the matrix.
+ * @param[in] pData points to the matrix data array.
+ */
+void arm_mat_init_f32(
+ arm_matrix_instance_f32 * S,
+ uint16_t nRows,
+ uint16_t nColumns,
+ float32_t * pData);
+
+
+
+ /**
+ * @brief Floating-point matrix inverse.
+ * @param[in] src points to the instance of the input floating-point matrix structure.
+ * @param[out] dst points to the instance of the output floating-point matrix structure.
+ * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
+ * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
+ */
+ arm_status arm_mat_inverse_f32(
+ const arm_matrix_instance_f32 * src,
+ arm_matrix_instance_f32 * dst);
+
+
+ /**
+ * @brief Floating-point matrix inverse.
+ * @param[in] src points to the instance of the input floating-point matrix structure.
+ * @param[out] dst points to the instance of the output floating-point matrix structure.
+ * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
+ * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
+ */
+ arm_status arm_mat_inverse_f64(
+ const arm_matrix_instance_f64 * src,
+ arm_matrix_instance_f64 * dst);
+
+ /**
+ * @brief Floating-point Cholesky decomposition of Symmetric Positive Definite Matrix.
+ * @param[in] src points to the instance of the input floating-point matrix structure.
+ * @param[out] dst points to the instance of the output floating-point matrix structure.
+ * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
+ * If the input matrix does not have a decomposition, then the algorithm terminates and returns error status ARM_MATH_DECOMPOSITION_FAILURE.
+ * If the matrix is ill conditioned or only semi-definite, then it is better using the LDL^t decomposition.
+ * The decomposition is returning a lower triangular matrix.
+ */
+ arm_status arm_mat_cholesky_f64(
+ const arm_matrix_instance_f64 * src,
+ arm_matrix_instance_f64 * dst);
+
+ /**
+ * @brief Floating-point Cholesky decomposition of Symmetric Positive Definite Matrix.
+ * @param[in] src points to the instance of the input floating-point matrix structure.
+ * @param[out] dst points to the instance of the output floating-point matrix structure.
+ * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
+ * If the input matrix does not have a decomposition, then the algorithm terminates and returns error status ARM_MATH_DECOMPOSITION_FAILURE.
+ * If the matrix is ill conditioned or only semi-definite, then it is better using the LDL^t decomposition.
+ * The decomposition is returning a lower triangular matrix.
+ */
+ arm_status arm_mat_cholesky_f32(
+ const arm_matrix_instance_f32 * src,
+ arm_matrix_instance_f32 * dst);
+
+ /**
+ * @brief Solve UT . X = A where UT is an upper triangular matrix
+ * @param[in] ut The upper triangular matrix
+ * @param[in] a The matrix a
+ * @param[out] dst The solution X of UT . X = A
+ * @return The function returns ARM_MATH_SINGULAR, if the system can't be solved.
+ */
+ arm_status arm_mat_solve_upper_triangular_f32(
+ const arm_matrix_instance_f32 * ut,
+ const arm_matrix_instance_f32 * a,
+ arm_matrix_instance_f32 * dst);
+
+ /**
+ * @brief Solve LT . X = A where LT is a lower triangular matrix
+ * @param[in] lt The lower triangular matrix
+ * @param[in] a The matrix a
+ * @param[out] dst The solution X of LT . X = A
+ * @return The function returns ARM_MATH_SINGULAR, if the system can't be solved.
+ */
+ arm_status arm_mat_solve_lower_triangular_f32(
+ const arm_matrix_instance_f32 * lt,
+ const arm_matrix_instance_f32 * a,
+ arm_matrix_instance_f32 * dst);
+
+
+ /**
+ * @brief Solve UT . X = A where UT is an upper triangular matrix
+ * @param[in] ut The upper triangular matrix
+ * @param[in] a The matrix a
+ * @param[out] dst The solution X of UT . X = A
+ * @return The function returns ARM_MATH_SINGULAR, if the system can't be solved.
+ */
+ arm_status arm_mat_solve_upper_triangular_f64(
+ const arm_matrix_instance_f64 * ut,
+ const arm_matrix_instance_f64 * a,
+ arm_matrix_instance_f64 * dst);
+
+ /**
+ * @brief Solve LT . X = A where LT is a lower triangular matrix
+ * @param[in] lt The lower triangular matrix
+ * @param[in] a The matrix a
+ * @param[out] dst The solution X of LT . X = A
+ * @return The function returns ARM_MATH_SINGULAR, if the system can't be solved.
+ */
+ arm_status arm_mat_solve_lower_triangular_f64(
+ const arm_matrix_instance_f64 * lt,
+ const arm_matrix_instance_f64 * a,
+ arm_matrix_instance_f64 * dst);
+
+
+ /**
+ * @brief Floating-point LDL decomposition of Symmetric Positive Semi-Definite Matrix.
+ * @param[in] src points to the instance of the input floating-point matrix structure.
+ * @param[out] l points to the instance of the output floating-point triangular matrix structure.
+ * @param[out] d points to the instance of the output floating-point diagonal matrix structure.
+ * @param[out] p points to the instance of the output floating-point permutation vector.
+ * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
+ * If the input matrix does not have a decomposition, then the algorithm terminates and returns error status ARM_MATH_DECOMPOSITION_FAILURE.
+ * The decomposition is returning a lower triangular matrix.
+ */
+ arm_status arm_mat_ldlt_f32(
+ const arm_matrix_instance_f32 * src,
+ arm_matrix_instance_f32 * l,
+ arm_matrix_instance_f32 * d,
+ uint16_t * pp);
+
+ /**
+ * @brief Floating-point LDL decomposition of Symmetric Positive Semi-Definite Matrix.
+ * @param[in] src points to the instance of the input floating-point matrix structure.
+ * @param[out] l points to the instance of the output floating-point triangular matrix structure.
+ * @param[out] d points to the instance of the output floating-point diagonal matrix structure.
+ * @param[out] p points to the instance of the output floating-point permutation vector.
+ * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
+ * If the input matrix does not have a decomposition, then the algorithm terminates and returns error status ARM_MATH_DECOMPOSITION_FAILURE.
+ * The decomposition is returning a lower triangular matrix.
+ */
+ arm_status arm_mat_ldlt_f64(
+ const arm_matrix_instance_f64 * src,
+ arm_matrix_instance_f64 * l,
+ arm_matrix_instance_f64 * d,
+ uint16_t * pp);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _MATRIX_FUNCTIONS_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/matrix_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/matrix_functions_f16.h
new file mode 100644
index 0000000..3693ec4
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/matrix_functions_f16.h
@@ -0,0 +1,221 @@
+/******************************************************************************
+ * @file matrix_functions_f16.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _MATRIX_FUNCTIONS_F16_H_
+#define _MATRIX_FUNCTIONS_F16_H_
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+
+#include "arm_math_types_f16.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+#if defined(ARM_FLOAT16_SUPPORTED)
+
+ /**
+ * @brief Instance structure for the floating-point matrix structure.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows of the matrix. */
+ uint16_t numCols; /**< number of columns of the matrix. */
+ float16_t *pData; /**< points to the data of the matrix. */
+ } arm_matrix_instance_f16;
+
+ /**
+ * @brief Floating-point matrix addition.
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_add_f16(
+ const arm_matrix_instance_f16 * pSrcA,
+ const arm_matrix_instance_f16 * pSrcB,
+ arm_matrix_instance_f16 * pDst);
+
+ /**
+ * @brief Floating-point, complex, matrix multiplication.
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_cmplx_mult_f16(
+ const arm_matrix_instance_f16 * pSrcA,
+ const arm_matrix_instance_f16 * pSrcB,
+ arm_matrix_instance_f16 * pDst);
+
+ /**
+ * @brief Floating-point matrix transpose.
+ * @param[in] pSrc points to the input matrix
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
+ * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_trans_f16(
+ const arm_matrix_instance_f16 * pSrc,
+ arm_matrix_instance_f16 * pDst);
+
+ /**
+ * @brief Floating-point complex matrix transpose.
+ * @param[in] pSrc points to the input matrix
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
+ * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_cmplx_trans_f16(
+ const arm_matrix_instance_f16 * pSrc,
+ arm_matrix_instance_f16 * pDst);
+
+ /**
+ * @brief Floating-point matrix multiplication
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_mult_f16(
+ const arm_matrix_instance_f16 * pSrcA,
+ const arm_matrix_instance_f16 * pSrcB,
+ arm_matrix_instance_f16 * pDst);
+ /**
+ * @brief Floating-point matrix and vector multiplication
+ * @param[in] pSrcMat points to the input matrix structure
+ * @param[in] pVec points to vector
+ * @param[out] pDst points to output vector
+ */
+void arm_mat_vec_mult_f16(
+ const arm_matrix_instance_f16 *pSrcMat,
+ const float16_t *pVec,
+ float16_t *pDst);
+
+ /**
+ * @brief Floating-point matrix subtraction
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_sub_f16(
+ const arm_matrix_instance_f16 * pSrcA,
+ const arm_matrix_instance_f16 * pSrcB,
+ arm_matrix_instance_f16 * pDst);
+
+ /**
+ * @brief Floating-point matrix scaling.
+ * @param[in] pSrc points to the input matrix
+ * @param[in] scale scale factor
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_scale_f16(
+ const arm_matrix_instance_f16 * pSrc,
+ float16_t scale,
+ arm_matrix_instance_f16 * pDst);
+
+ /**
+ * @brief Floating-point matrix initialization.
+ * @param[in,out] S points to an instance of the floating-point matrix structure.
+ * @param[in] nRows number of rows in the matrix.
+ * @param[in] nColumns number of columns in the matrix.
+ * @param[in] pData points to the matrix data array.
+ */
+void arm_mat_init_f16(
+ arm_matrix_instance_f16 * S,
+ uint16_t nRows,
+ uint16_t nColumns,
+ float16_t * pData);
+
+
+ /**
+ * @brief Floating-point matrix inverse.
+ * @param[in] src points to the instance of the input floating-point matrix structure.
+ * @param[out] dst points to the instance of the output floating-point matrix structure.
+ * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
+ * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
+ */
+ arm_status arm_mat_inverse_f16(
+ const arm_matrix_instance_f16 * src,
+ arm_matrix_instance_f16 * dst);
+
+
+ /**
+ * @brief Floating-point Cholesky decomposition of Symmetric Positive Definite Matrix.
+ * @param[in] src points to the instance of the input floating-point matrix structure.
+ * @param[out] dst points to the instance of the output floating-point matrix structure.
+ * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
+ * If the input matrix does not have a decomposition, then the algorithm terminates and returns error status ARM_MATH_DECOMPOSITION_FAILURE.
+ * If the matrix is ill conditioned or only semi-definite, then it is better using the LDL^t decomposition.
+ * The decomposition is returning a lower triangular matrix.
+ */
+ arm_status arm_mat_cholesky_f16(
+ const arm_matrix_instance_f16 * src,
+ arm_matrix_instance_f16 * dst);
+
+ /**
+ * @brief Solve UT . X = A where UT is an upper triangular matrix
+ * @param[in] ut The upper triangular matrix
+ * @param[in] a The matrix a
+ * @param[out] dst The solution X of UT . X = A
+ * @return The function returns ARM_MATH_SINGULAR, if the system can't be solved.
+ */
+ arm_status arm_mat_solve_upper_triangular_f16(
+ const arm_matrix_instance_f16 * ut,
+ const arm_matrix_instance_f16 * a,
+ arm_matrix_instance_f16 * dst);
+
+ /**
+ * @brief Solve LT . X = A where LT is a lower triangular matrix
+ * @param[in] lt The lower triangular matrix
+ * @param[in] a The matrix a
+ * @param[out] dst The solution X of LT . X = A
+ * @return The function returns ARM_MATH_SINGULAR, if the system can't be solved.
+ */
+ arm_status arm_mat_solve_lower_triangular_f16(
+ const arm_matrix_instance_f16 * lt,
+ const arm_matrix_instance_f16 * a,
+ arm_matrix_instance_f16 * dst);
+
+
+
+#endif /*defined(ARM_FLOAT16_SUPPORTED)*/
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _MATRIX_FUNCTIONS_F16_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/none.h b/Drivers/CMSIS/DSP/Include/dsp/none.h
new file mode 100644
index 0000000..130386e
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/none.h
@@ -0,0 +1,576 @@
+/******************************************************************************
+ * @file none.h
+ * @brief Intrinsincs when no DSP extension available
+ * @version V1.9.0
+ * @date 20. July 2020
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/*
+
+Definitions in this file are allowing to reuse some versions of the
+CMSIS-DSP to build on a core (M0 for instance) or a host where
+DSP extension are not available.
+
+Ideally a pure C version should have been used instead.
+But those are not always available or use a restricted set
+of intrinsics.
+
+*/
+
+#ifndef _NONE_H_
+#define _NONE_H_
+
+#include "arm_math_types.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+
+
+/*
+
+Normally those kind of definitions are in a compiler file
+in Core or Core_A.
+
+But for MSVC compiler it is a bit special. The goal is very specific
+to CMSIS-DSP and only to allow the use of this library from other
+systems like Python or Matlab.
+
+MSVC is not going to be used to cross-compile to ARM. So, having a MSVC
+compiler file in Core or Core_A would not make sense.
+
+*/
+#if defined ( _MSC_VER ) || defined(__GNUC_PYTHON__) || defined(__APPLE_CC__)
+ __STATIC_FORCEINLINE uint8_t __CLZ(uint32_t data)
+ {
+ if (data == 0U) { return 32U; }
+
+ uint32_t count = 0U;
+ uint32_t mask = 0x80000000U;
+
+ while ((data & mask) == 0U)
+ {
+ count += 1U;
+ mask = mask >> 1U;
+ }
+ return count;
+ }
+
+ __STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat)
+ {
+ if ((sat >= 1U) && (sat <= 32U))
+ {
+ const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
+ const int32_t min = -1 - max ;
+ if (val > max)
+ {
+ return max;
+ }
+ else if (val < min)
+ {
+ return min;
+ }
+ }
+ return val;
+ }
+
+ __STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat)
+ {
+ if (sat <= 31U)
+ {
+ const uint32_t max = ((1U << sat) - 1U);
+ if (val > (int32_t)max)
+ {
+ return max;
+ }
+ else if (val < 0)
+ {
+ return 0U;
+ }
+ }
+ return (uint32_t)val;
+ }
+
+ /**
+ \brief Rotate Right in unsigned value (32 bit)
+ \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
+ \param [in] op1 Value to rotate
+ \param [in] op2 Number of Bits to rotate
+ \return Rotated value
+ */
+__STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
+{
+ op2 %= 32U;
+ if (op2 == 0U)
+ {
+ return op1;
+ }
+ return (op1 >> op2) | (op1 << (32U - op2));
+}
+
+
+#endif
+
+/**
+ * @brief Clips Q63 to Q31 values.
+ */
+ __STATIC_FORCEINLINE q31_t clip_q63_to_q31(
+ q63_t x)
+ {
+ return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
+ ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
+ }
+
+ /**
+ * @brief Clips Q63 to Q15 values.
+ */
+ __STATIC_FORCEINLINE q15_t clip_q63_to_q15(
+ q63_t x)
+ {
+ return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
+ ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
+ }
+
+ /**
+ * @brief Clips Q31 to Q7 values.
+ */
+ __STATIC_FORCEINLINE q7_t clip_q31_to_q7(
+ q31_t x)
+ {
+ return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
+ ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
+ }
+
+ /**
+ * @brief Clips Q31 to Q15 values.
+ */
+ __STATIC_FORCEINLINE q15_t clip_q31_to_q15(
+ q31_t x)
+ {
+ return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
+ ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
+ }
+
+ /**
+ * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
+ */
+ __STATIC_FORCEINLINE q63_t mult32x64(
+ q63_t x,
+ q31_t y)
+ {
+ return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
+ (((q63_t) (x >> 32) * y) ) );
+ }
+
+/* SMMLAR */
+#define multAcc_32x32_keep32_R(a, x, y) \
+ a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32)
+
+/* SMMLSR */
+#define multSub_32x32_keep32_R(a, x, y) \
+ a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32)
+
+/* SMMULR */
+#define mult_32x32_keep32_R(a, x, y) \
+ a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32)
+
+/* SMMLA */
+#define multAcc_32x32_keep32(a, x, y) \
+ a += (q31_t) (((q63_t) x * y) >> 32)
+
+/* SMMLS */
+#define multSub_32x32_keep32(a, x, y) \
+ a -= (q31_t) (((q63_t) x * y) >> 32)
+
+/* SMMUL */
+#define mult_32x32_keep32(a, x, y) \
+ a = (q31_t) (((q63_t) x * y ) >> 32)
+
+#ifndef ARM_MATH_DSP
+ /**
+ * @brief definition to pack two 16 bit values.
+ */
+ #define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \
+ (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) )
+ #define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \
+ (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) )
+#endif
+
+ /**
+ * @brief definition to pack four 8 bit values.
+ */
+#ifndef ARM_MATH_BIG_ENDIAN
+ #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \
+ (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
+ (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
+ (((int32_t)(v3) << 24) & (int32_t)0xFF000000) )
+#else
+ #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \
+ (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \
+ (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
+ (((int32_t)(v0) << 24) & (int32_t)0xFF000000) )
+#endif
+
+
+
+
+/*
+ * @brief C custom defined intrinsic functions
+ */
+#if !defined (ARM_MATH_DSP)
+
+
+ /*
+ * @brief C custom defined QADD8
+ */
+ __STATIC_FORCEINLINE uint32_t __QADD8(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s, t, u;
+
+ r = __SSAT(((((q31_t)x << 24) >> 24) + (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
+ s = __SSAT(((((q31_t)x << 16) >> 24) + (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
+ t = __SSAT(((((q31_t)x << 8) >> 24) + (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF;
+ u = __SSAT(((((q31_t)x ) >> 24) + (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF;
+
+ return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined QSUB8
+ */
+ __STATIC_FORCEINLINE uint32_t __QSUB8(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s, t, u;
+
+ r = __SSAT(((((q31_t)x << 24) >> 24) - (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
+ s = __SSAT(((((q31_t)x << 16) >> 24) - (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
+ t = __SSAT(((((q31_t)x << 8) >> 24) - (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF;
+ u = __SSAT(((((q31_t)x ) >> 24) - (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF;
+
+ return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined QADD16
+ */
+ __STATIC_FORCEINLINE uint32_t __QADD16(
+ uint32_t x,
+ uint32_t y)
+ {
+/* q31_t r, s; without initialisation 'arm_offset_q15 test' fails but 'intrinsic' tests pass! for armCC */
+ q31_t r = 0, s = 0;
+
+ r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
+ s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined SHADD16
+ */
+ __STATIC_FORCEINLINE uint32_t __SHADD16(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s;
+
+ r = (((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+ s = (((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined QSUB16
+ */
+ __STATIC_FORCEINLINE uint32_t __QSUB16(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s;
+
+ r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
+ s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined SHSUB16
+ */
+ __STATIC_FORCEINLINE uint32_t __SHSUB16(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s;
+
+ r = (((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+ s = (((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined QASX
+ */
+ __STATIC_FORCEINLINE uint32_t __QASX(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s;
+
+ r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
+ s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined SHASX
+ */
+ __STATIC_FORCEINLINE uint32_t __SHASX(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s;
+
+ r = (((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+ s = (((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined QSAX
+ */
+ __STATIC_FORCEINLINE uint32_t __QSAX(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s;
+
+ r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
+ s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined SHSAX
+ */
+ __STATIC_FORCEINLINE uint32_t __SHSAX(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s;
+
+ r = (((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+ s = (((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined SMUSDX
+ */
+ __STATIC_FORCEINLINE uint32_t __SMUSDX(
+ uint32_t x,
+ uint32_t y)
+ {
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) -
+ ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ));
+ }
+
+ /*
+ * @brief C custom defined SMUADX
+ */
+ __STATIC_FORCEINLINE uint32_t __SMUADX(
+ uint32_t x,
+ uint32_t y)
+ {
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
+ ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ));
+ }
+
+
+ /*
+ * @brief C custom defined QADD
+ */
+ __STATIC_FORCEINLINE int32_t __QADD(
+ int32_t x,
+ int32_t y)
+ {
+ return ((int32_t)(clip_q63_to_q31((q63_t)x + (q31_t)y)));
+ }
+
+
+ /*
+ * @brief C custom defined QSUB
+ */
+ __STATIC_FORCEINLINE int32_t __QSUB(
+ int32_t x,
+ int32_t y)
+ {
+ return ((int32_t)(clip_q63_to_q31((q63_t)x - (q31_t)y)));
+ }
+
+
+ /*
+ * @brief C custom defined SMLAD
+ */
+ __STATIC_FORCEINLINE uint32_t __SMLAD(
+ uint32_t x,
+ uint32_t y,
+ uint32_t sum)
+ {
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
+ ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) +
+ ( ((q31_t)sum ) ) ));
+ }
+
+
+ /*
+ * @brief C custom defined SMLADX
+ */
+ __STATIC_FORCEINLINE uint32_t __SMLADX(
+ uint32_t x,
+ uint32_t y,
+ uint32_t sum)
+ {
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
+ ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
+ ( ((q31_t)sum ) ) ));
+ }
+
+
+ /*
+ * @brief C custom defined SMLSDX
+ */
+ __STATIC_FORCEINLINE uint32_t __SMLSDX(
+ uint32_t x,
+ uint32_t y,
+ uint32_t sum)
+ {
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) -
+ ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
+ ( ((q31_t)sum ) ) ));
+ }
+
+
+ /*
+ * @brief C custom defined SMLALD
+ */
+ __STATIC_FORCEINLINE uint64_t __SMLALD(
+ uint32_t x,
+ uint32_t y,
+ uint64_t sum)
+ {
+/* return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + ((q15_t) x * (q15_t) y)); */
+ return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
+ ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) +
+ ( ((q63_t)sum ) ) ));
+ }
+
+
+ /*
+ * @brief C custom defined SMLALDX
+ */
+ __STATIC_FORCEINLINE uint64_t __SMLALDX(
+ uint32_t x,
+ uint32_t y,
+ uint64_t sum)
+ {
+/* return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + ((q15_t) x * (q15_t) (y >> 16)); */
+ return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
+ ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
+ ( ((q63_t)sum ) ) ));
+ }
+
+
+ /*
+ * @brief C custom defined SMUAD
+ */
+ __STATIC_FORCEINLINE uint32_t __SMUAD(
+ uint32_t x,
+ uint32_t y)
+ {
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
+ ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) ));
+ }
+
+
+ /*
+ * @brief C custom defined SMUSD
+ */
+ __STATIC_FORCEINLINE uint32_t __SMUSD(
+ uint32_t x,
+ uint32_t y)
+ {
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) -
+ ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) ));
+ }
+
+
+ /*
+ * @brief C custom defined SXTB16
+ */
+ __STATIC_FORCEINLINE uint32_t __SXTB16(
+ uint32_t x)
+ {
+ return ((uint32_t)(((((q31_t)x << 24) >> 24) & (q31_t)0x0000FFFF) |
+ ((((q31_t)x << 8) >> 8) & (q31_t)0xFFFF0000) ));
+ }
+
+ /*
+ * @brief C custom defined SMMLA
+ */
+ __STATIC_FORCEINLINE int32_t __SMMLA(
+ int32_t x,
+ int32_t y,
+ int32_t sum)
+ {
+ return (sum + (int32_t) (((int64_t) x * y) >> 32));
+ }
+
+#endif /* !defined (ARM_MATH_DSP) */
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _TRANSFORM_FUNCTIONS_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/quaternion_math_functions.h b/Drivers/CMSIS/DSP/Include/dsp/quaternion_math_functions.h
new file mode 100644
index 0000000..0c5d067
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/quaternion_math_functions.h
@@ -0,0 +1,159 @@
+/******************************************************************************
+ * @file quaternion_math_functions.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ *
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _QUATERNION_MATH_FUNCTIONS_H_
+#define _QUATERNION_MATH_FUNCTIONS_H_
+
+#include "arm_math_types.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+/**
+ * @defgroup groupQuaternionMath Quaternion Math Functions
+ * Functions to operates on quaternions and convert between a
+ * rotation and quaternion representation.
+ */
+
+
+/**
+ @brief Floating-point quaternion Norm.
+ @param[in] pInputQuaternions points to the input vector of quaternions
+ @param[out] pNorms points to the output vector of norms
+ @param[in] nbQuaternions number of quaternions in each vector
+ @return none
+ */
+
+
+
+void arm_quaternion_norm_f32(const float32_t *pInputQuaternions,
+ float32_t *pNorms,
+ uint32_t nbQuaternions);
+
+
+/**
+ @brief Floating-point quaternion inverse.
+ @param[in] pInputQuaternions points to the input vector of quaternions
+ @param[out] pInverseQuaternions points to the output vector of inverse quaternions
+ @param[in] nbQuaternions number of quaternions in each vector
+ @return none
+ */
+
+void arm_quaternion_inverse_f32(const float32_t *pInputQuaternions,
+ float32_t *pInverseQuaternions,
+ uint32_t nbQuaternions);
+
+/**
+ @brief Floating-point quaternion conjugates.
+ @param[in] pInputQuaternions points to the input vector of quaternions
+ @param[out] pConjugateQuaternions points to the output vector of conjugate quaternions
+ @param[in] nbQuaternions number of quaternions in each vector
+ @return none
+ */
+void arm_quaternion_conjugate_f32(const float32_t *inputQuaternions,
+ float32_t *pConjugateQuaternions,
+ uint32_t nbQuaternions);
+
+/**
+ @brief Floating-point normalization of quaternions.
+ @param[in] pInputQuaternions points to the input vector of quaternions
+ @param[out] pNormalizedQuaternions points to the output vector of normalized quaternions
+ @param[in] nbQuaternions number of quaternions in each vector
+ @return none
+ */
+void arm_quaternion_normalize_f32(const float32_t *inputQuaternions,
+ float32_t *pNormalizedQuaternions,
+ uint32_t nbQuaternions);
+
+
+/**
+ @brief Floating-point product of two quaternions.
+ @param[in] qa First quaternion
+ @param[in] qb Second quaternion
+ @param[out] r Product of two quaternions
+ @return none
+ */
+void arm_quaternion_product_single_f32(const float32_t *qa,
+ const float32_t *qb,
+ float32_t *r);
+
+/**
+ @brief Floating-point elementwise product two quaternions.
+ @param[in] qa First array of quaternions
+ @param[in] qb Second array of quaternions
+ @param[out] r Elementwise product of quaternions
+ @param[in] nbQuaternions Number of quaternions in the array
+ @return none
+ */
+void arm_quaternion_product_f32(const float32_t *qa,
+ const float32_t *qb,
+ float32_t *r,
+ uint32_t nbQuaternions);
+
+/**
+ * @brief Conversion of quaternion to equivalent rotation matrix.
+ * @param[in] pInputQuaternions points to an array of normalized quaternions
+ * @param[out] pOutputRotations points to an array of 3x3 rotations (in row order)
+ * @param[in] nbQuaternions in the array
+ * @return none.
+ *
+ * <b>Format of rotation matrix</b>
+ * \par
+ * The quaternion a + ib + jc + kd is converted into rotation matrix:
+ * a^2 + b^2 - c^2 - d^2 2bc - 2ad 2bd + 2ac
+ * 2bc + 2ad a^2 - b^2 + c^2 - d^2 2cd - 2ab
+ * 2bd - 2ac 2cd + 2ab a^2 - b^2 - c^2 + d^2
+ *
+ * Rotation matrix is saved in row order : R00 R01 R02 R10 R11 R12 R20 R21 R22
+ */
+void arm_quaternion2rotation_f32(const float32_t *pInputQuaternions,
+ float32_t *pOutputRotations,
+ uint32_t nbQuaternions);
+
+/**
+ * @brief Conversion of a rotation matrix to equivalent quaternion.
+ * @param[in] pInputRotations points to an array 3x3 rotation matrix (in row order)
+ * @param[out] pOutputQuaternions points to an array of quaternions
+ * @param[in] nbQuaternions in the array
+ * @return none.
+*/
+void arm_rotation2quaternion_f32(const float32_t *pInputRotations,
+ float32_t *pOutputQuaternions,
+ uint32_t nbQuaternions);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _QUATERNION_MATH_FUNCTIONS_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/statistics_functions.h b/Drivers/CMSIS/DSP/Include/dsp/statistics_functions.h
new file mode 100644
index 0000000..c5224c6
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/statistics_functions.h
@@ -0,0 +1,977 @@
+/******************************************************************************
+ * @file statistics_functions.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _STATISTICS_FUNCTIONS_H_
+#define _STATISTICS_FUNCTIONS_H_
+
+#include "arm_math_types.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+#include "dsp/basic_math_functions.h"
+#include "dsp/fast_math_functions.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+
+/**
+ * @defgroup groupStats Statistics Functions
+ */
+
+/**
+ * @brief Computation of the LogSumExp
+ *
+ * In probabilistic computations, the dynamic of the probability values can be very
+ * wide because they come from gaussian functions.
+ * To avoid underflow and overflow issues, the values are represented by their log.
+ * In this representation, multiplying the original exp values is easy : their logs are added.
+ * But adding the original exp values is requiring some special handling and it is the
+ * goal of the LogSumExp function.
+ *
+ * If the values are x1...xn, the function is computing:
+ *
+ * ln(exp(x1) + ... + exp(xn)) and the computation is done in such a way that
+ * rounding issues are minimised.
+ *
+ * The max xm of the values is extracted and the function is computing:
+ * xm + ln(exp(x1 - xm) + ... + exp(xn - xm))
+ *
+ * @param[in] *in Pointer to an array of input values.
+ * @param[in] blockSize Number of samples in the input array.
+ * @return LogSumExp
+ *
+ */
+
+
+float32_t arm_logsumexp_f32(const float32_t *in, uint32_t blockSize);
+
+/**
+ * @brief Dot product with log arithmetic
+ *
+ * Vectors are containing the log of the samples
+ *
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[in] pTmpBuffer temporary buffer of length blockSize
+ * @return The log of the dot product .
+ *
+ */
+
+
+float32_t arm_logsumexp_dot_prod_f32(const float32_t * pSrcA,
+ const float32_t * pSrcB,
+ uint32_t blockSize,
+ float32_t *pTmpBuffer);
+
+/**
+ * @brief Entropy
+ *
+ * @param[in] pSrcA Array of input values.
+ * @param[in] blockSize Number of samples in the input array.
+ * @return Entropy -Sum(p ln p)
+ *
+ */
+
+
+float32_t arm_entropy_f32(const float32_t * pSrcA,uint32_t blockSize);
+
+
+/**
+ * @brief Entropy
+ *
+ * @param[in] pSrcA Array of input values.
+ * @param[in] blockSize Number of samples in the input array.
+ * @return Entropy -Sum(p ln p)
+ *
+ */
+
+
+float64_t arm_entropy_f64(const float64_t * pSrcA, uint32_t blockSize);
+
+
+/**
+ * @brief Kullback-Leibler
+ *
+ * @param[in] pSrcA Pointer to an array of input values for probability distribution A.
+ * @param[in] pSrcB Pointer to an array of input values for probability distribution B.
+ * @param[in] blockSize Number of samples in the input array.
+ * @return Kullback-Leibler Divergence D(A || B)
+ *
+ */
+float32_t arm_kullback_leibler_f32(const float32_t * pSrcA
+ ,const float32_t * pSrcB
+ ,uint32_t blockSize);
+
+
+/**
+ * @brief Kullback-Leibler
+ *
+ * @param[in] pSrcA Pointer to an array of input values for probability distribution A.
+ * @param[in] pSrcB Pointer to an array of input values for probability distribution B.
+ * @param[in] blockSize Number of samples in the input array.
+ * @return Kullback-Leibler Divergence D(A || B)
+ *
+ */
+float64_t arm_kullback_leibler_f64(const float64_t * pSrcA,
+ const float64_t * pSrcB,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Sum of the squares of the elements of a Q31 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_power_q31(
+ const q31_t * pSrc,
+ uint32_t blockSize,
+ q63_t * pResult);
+
+
+ /**
+ * @brief Sum of the squares of the elements of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_power_f32(
+ const float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+
+ /**
+ * @brief Sum of the squares of the elements of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_power_f64(
+ const float64_t * pSrc,
+ uint32_t blockSize,
+ float64_t * pResult);
+
+
+ /**
+ * @brief Sum of the squares of the elements of a Q15 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_power_q15(
+ const q15_t * pSrc,
+ uint32_t blockSize,
+ q63_t * pResult);
+
+
+ /**
+ * @brief Sum of the squares of the elements of a Q7 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_power_q7(
+ const q7_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+
+ /**
+ * @brief Mean value of a Q7 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_mean_q7(
+ const q7_t * pSrc,
+ uint32_t blockSize,
+ q7_t * pResult);
+
+
+ /**
+ * @brief Mean value of a Q15 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_mean_q15(
+ const q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult);
+
+
+ /**
+ * @brief Mean value of a Q31 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_mean_q31(
+ const q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+
+ /**
+ * @brief Mean value of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_mean_f32(
+ const float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+
+ /**
+ * @brief Mean value of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_mean_f64(
+ const float64_t * pSrc,
+ uint32_t blockSize,
+ float64_t * pResult);
+
+
+ /**
+ * @brief Variance of the elements of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_var_f32(
+ const float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+
+ /**
+ * @brief Variance of the elements of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_var_f64(
+ const float64_t * pSrc,
+ uint32_t blockSize,
+ float64_t * pResult);
+
+
+ /**
+ * @brief Variance of the elements of a Q31 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_var_q31(
+ const q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+
+ /**
+ * @brief Variance of the elements of a Q15 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_var_q15(
+ const q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult);
+
+
+ /**
+ * @brief Root Mean Square of the elements of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_rms_f32(
+ const float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+
+ /**
+ * @brief Root Mean Square of the elements of a Q31 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_rms_q31(
+ const q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+
+ /**
+ * @brief Root Mean Square of the elements of a Q15 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_rms_q15(
+ const q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult);
+
+
+ /**
+ * @brief Standard deviation of the elements of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_std_f32(
+ const float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+
+ /**
+ * @brief Standard deviation of the elements of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_std_f64(
+ const float64_t * pSrc,
+ uint32_t blockSize,
+ float64_t * pResult);
+
+
+ /**
+ * @brief Standard deviation of the elements of a Q31 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_std_q31(
+ const q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+
+ /**
+ * @brief Standard deviation of the elements of a Q15 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_std_q15(
+ const q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult);
+
+
+
+ /**
+ * @brief Minimum value of a Q7 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] result is output pointer
+ * @param[in] index is the array index of the minimum value in the input buffer.
+ */
+ void arm_min_q7(
+ const q7_t * pSrc,
+ uint32_t blockSize,
+ q7_t * result,
+ uint32_t * index);
+
+ /**
+ * @brief Minimum value of absolute values of a Q7 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] result is output pointer
+ * @param[in] index is the array index of the minimum value in the input buffer.
+ */
+ void arm_absmin_q7(
+ const q7_t * pSrc,
+ uint32_t blockSize,
+ q7_t * result,
+ uint32_t * index);
+
+ /**
+ * @brief Minimum value of absolute values of a Q7 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] result is output pointer
+ */
+ void arm_absmin_no_idx_q7(
+ const q7_t * pSrc,
+ uint32_t blockSize,
+ q7_t * result);
+
+
+ /**
+ * @brief Minimum value of a Q15 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ * @param[in] pIndex is the array index of the minimum value in the input buffer.
+ */
+ void arm_min_q15(
+ const q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult,
+ uint32_t * pIndex);
+
+/**
+ * @brief Minimum value of absolute values of a Q15 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ * @param[in] pIndex is the array index of the minimum value in the input buffer.
+ */
+ void arm_absmin_q15(
+ const q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult,
+ uint32_t * pIndex);
+
+ /**
+ * @brief Minimum value of absolute values of a Q15 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ */
+ void arm_absmin_no_idx_q15(
+ const q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult);
+
+
+ /**
+ * @brief Minimum value of a Q31 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ * @param[out] pIndex is the array index of the minimum value in the input buffer.
+ */
+ void arm_min_q31(
+ const q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult,
+ uint32_t * pIndex);
+
+ /**
+ * @brief Minimum value of absolute values of a Q31 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ * @param[out] pIndex is the array index of the minimum value in the input buffer.
+ */
+ void arm_absmin_q31(
+ const q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult,
+ uint32_t * pIndex);
+
+ /**
+ * @brief Minimum value of absolute values of a Q31 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ */
+ void arm_absmin_no_idx_q31(
+ const q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+
+ /**
+ * @brief Minimum value of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ * @param[out] pIndex is the array index of the minimum value in the input buffer.
+ */
+ void arm_min_f32(
+ const float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult,
+ uint32_t * pIndex);
+
+ /**
+ * @brief Minimum value of absolute values of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ * @param[out] pIndex is the array index of the minimum value in the input buffer.
+ */
+ void arm_absmin_f32(
+ const float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult,
+ uint32_t * pIndex);
+
+ /**
+ * @brief Minimum value of absolute values of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ */
+ void arm_absmin_no_idx_f32(
+ const float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+
+ /**
+ * @brief Minimum value of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ * @param[out] pIndex is the array index of the minimum value in the input buffer.
+ */
+ void arm_min_f64(
+ const float64_t * pSrc,
+ uint32_t blockSize,
+ float64_t * pResult,
+ uint32_t * pIndex);
+
+ /**
+ * @brief Minimum value of absolute values of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ * @param[out] pIndex is the array index of the minimum value in the input buffer.
+ */
+ void arm_absmin_f64(
+ const float64_t * pSrc,
+ uint32_t blockSize,
+ float64_t * pResult,
+ uint32_t * pIndex);
+
+ /**
+ * @brief Minimum value of absolute values of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ */
+ void arm_absmin_no_idx_f64(
+ const float64_t * pSrc,
+ uint32_t blockSize,
+ float64_t * pResult);
+
+
+/**
+ * @brief Maximum value of a Q7 vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
+ */
+ void arm_max_q7(
+ const q7_t * pSrc,
+ uint32_t blockSize,
+ q7_t * pResult,
+ uint32_t * pIndex);
+
+/**
+ * @brief Maximum value of absolute values of a Q7 vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
+ */
+ void arm_absmax_q7(
+ const q7_t * pSrc,
+ uint32_t blockSize,
+ q7_t * pResult,
+ uint32_t * pIndex);
+
+/**
+ * @brief Maximum value of absolute values of a Q7 vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ */
+ void arm_absmax_no_idx_q7(
+ const q7_t * pSrc,
+ uint32_t blockSize,
+ q7_t * pResult);
+
+
+/**
+ * @brief Maximum value of a Q15 vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
+ */
+ void arm_max_q15(
+ const q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult,
+ uint32_t * pIndex);
+
+/**
+ * @brief Maximum value of absolute values of a Q15 vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
+ */
+ void arm_absmax_q15(
+ const q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult,
+ uint32_t * pIndex);
+
+ /**
+ * @brief Maximum value of absolute values of a Q15 vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ */
+ void arm_absmax_no_idx_q15(
+ const q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult);
+
+/**
+ * @brief Maximum value of a Q31 vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
+ */
+ void arm_max_q31(
+ const q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult,
+ uint32_t * pIndex);
+
+/**
+ * @brief Maximum value of absolute values of a Q31 vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
+ */
+ void arm_absmax_q31(
+ const q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult,
+ uint32_t * pIndex);
+
+ /**
+ * @brief Maximum value of absolute values of a Q31 vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ */
+ void arm_absmax_no_idx_q31(
+ const q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+/**
+ * @brief Maximum value of a floating-point vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
+ */
+ void arm_max_f32(
+ const float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult,
+ uint32_t * pIndex);
+
+/**
+ * @brief Maximum value of absolute values of a floating-point vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
+ */
+ void arm_absmax_f32(
+ const float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult,
+ uint32_t * pIndex);
+
+ /**
+ * @brief Maximum value of absolute values of a floating-point vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ */
+ void arm_absmax_no_idx_f32(
+ const float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+/**
+ * @brief Maximum value of a floating-point vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
+ */
+ void arm_max_f64(
+ const float64_t * pSrc,
+ uint32_t blockSize,
+ float64_t * pResult,
+ uint32_t * pIndex);
+
+/**
+ * @brief Maximum value of absolute values of a floating-point vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
+ */
+ void arm_absmax_f64(
+ const float64_t * pSrc,
+ uint32_t blockSize,
+ float64_t * pResult,
+ uint32_t * pIndex);
+
+/**
+ * @brief Maximum value of absolute values of a floating-point vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ */
+ void arm_absmax_no_idx_f64(
+ const float64_t * pSrc,
+ uint32_t blockSize,
+ float64_t * pResult);
+
+ /**
+ @brief Maximum value of a floating-point vector.
+ @param[in] pSrc points to the input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult maximum value returned here
+ @return none
+ */
+ void arm_max_no_idx_f32(
+ const float32_t *pSrc,
+ uint32_t blockSize,
+ float32_t *pResult);
+
+ /**
+ @brief Minimum value of a floating-point vector.
+ @param[in] pSrc points to the input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult minimum value returned here
+ @return none
+ */
+ void arm_min_no_idx_f32(
+ const float32_t *pSrc,
+ uint32_t blockSize,
+ float32_t *pResult);
+
+ /**
+ @brief Maximum value of a floating-point vector.
+ @param[in] pSrc points to the input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult maximum value returned here
+ @return none
+ */
+ void arm_max_no_idx_f64(
+ const float64_t *pSrc,
+ uint32_t blockSize,
+ float64_t *pResult);
+
+ /**
+ @brief Maximum value of a q31 vector.
+ @param[in] pSrc points to the input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult maximum value returned here
+ @return none
+ */
+ void arm_max_no_idx_q31(
+ const q31_t *pSrc,
+ uint32_t blockSize,
+ q31_t *pResult);
+
+ /**
+ @brief Maximum value of a q15 vector.
+ @param[in] pSrc points to the input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult maximum value returned here
+ @return none
+ */
+ void arm_max_no_idx_q15(
+ const q15_t *pSrc,
+ uint32_t blockSize,
+ q15_t *pResult);
+
+ /**
+ @brief Maximum value of a q7 vector.
+ @param[in] pSrc points to the input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult maximum value returned here
+ @return none
+ */
+ void arm_max_no_idx_q7(
+ const q7_t *pSrc,
+ uint32_t blockSize,
+ q7_t *pResult);
+
+ /**
+ @brief Minimum value of a floating-point vector.
+ @param[in] pSrc points to the input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult minimum value returned here
+ @return none
+ */
+ void arm_min_no_idx_f64(
+ const float64_t *pSrc,
+ uint32_t blockSize,
+ float64_t *pResult);
+
+/**
+ @brief Minimum value of a q31 vector.
+ @param[in] pSrc points to the input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult minimum value returned here
+ @return none
+ */
+ void arm_min_no_idx_q31(
+ const q31_t *pSrc,
+ uint32_t blockSize,
+ q31_t *pResult);
+
+ /**
+ @brief Minimum value of a q15 vector.
+ @param[in] pSrc points to the input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult minimum value returned here
+ @return none
+ */
+ void arm_min_no_idx_q15(
+ const q15_t *pSrc,
+ uint32_t blockSize,
+ q15_t *pResult);
+
+ /**
+ @brief Minimum value of a q7 vector.
+ @param[in] pSrc points to the input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult minimum value returned here
+ @return none
+ */
+ void arm_min_no_idx_q7(
+ const q7_t *pSrc,
+ uint32_t blockSize,
+ q7_t *pResult);
+
+/**
+ @brief Mean square error between two Q7 vectors.
+ @param[in] pSrcA points to the first input vector
+ @param[in] pSrcB points to the second input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult mean square error
+ @return none
+*/
+
+void arm_mse_q7(
+ const q7_t * pSrcA,
+ const q7_t * pSrcB,
+ uint32_t blockSize,
+ q7_t * pResult);
+
+/**
+ @brief Mean square error between two Q15 vectors.
+ @param[in] pSrcA points to the first input vector
+ @param[in] pSrcB points to the second input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult mean square error
+ @return none
+*/
+
+void arm_mse_q15(
+ const q15_t * pSrcA,
+ const q15_t * pSrcB,
+ uint32_t blockSize,
+ q15_t * pResult);
+
+/**
+ @brief Mean square error between two Q31 vectors.
+ @param[in] pSrcA points to the first input vector
+ @param[in] pSrcB points to the second input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult mean square error
+ @return none
+*/
+
+void arm_mse_q31(
+ const q31_t * pSrcA,
+ const q31_t * pSrcB,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+/**
+ @brief Mean square error between two single precision float vectors.
+ @param[in] pSrcA points to the first input vector
+ @param[in] pSrcB points to the second input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult mean square error
+ @return none
+*/
+
+void arm_mse_f32(
+ const float32_t * pSrcA,
+ const float32_t * pSrcB,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+/**
+ @brief Mean square error between two double precision float vectors.
+ @param[in] pSrcA points to the first input vector
+ @param[in] pSrcB points to the second input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult mean square error
+ @return none
+*/
+
+void arm_mse_f64(
+ const float64_t * pSrcA,
+ const float64_t * pSrcB,
+ uint32_t blockSize,
+ float64_t * pResult);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _STATISTICS_FUNCTIONS_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/statistics_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/statistics_functions_f16.h
new file mode 100644
index 0000000..124c0a0
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/statistics_functions_f16.h
@@ -0,0 +1,266 @@
+/******************************************************************************
+ * @file statistics_functions_f16.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _STATISTICS_FUNCTIONS_F16_H_
+#define _STATISTICS_FUNCTIONS_F16_H_
+
+#include "arm_math_types_f16.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+#include "dsp/basic_math_functions_f16.h"
+#include "dsp/fast_math_functions_f16.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#if defined(ARM_FLOAT16_SUPPORTED)
+
+ /**
+ * @brief Sum of the squares of the elements of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_power_f16(
+ const float16_t * pSrc,
+ uint32_t blockSize,
+ float16_t * pResult);
+
+ /**
+ * @brief Mean value of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_mean_f16(
+ const float16_t * pSrc,
+ uint32_t blockSize,
+ float16_t * pResult);
+
+ /**
+ * @brief Variance of the elements of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_var_f16(
+ const float16_t * pSrc,
+ uint32_t blockSize,
+ float16_t * pResult);
+
+ /**
+ * @brief Root Mean Square of the elements of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_rms_f16(
+ const float16_t * pSrc,
+ uint32_t blockSize,
+ float16_t * pResult);
+
+ /**
+ * @brief Standard deviation of the elements of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_std_f16(
+ const float16_t * pSrc,
+ uint32_t blockSize,
+ float16_t * pResult);
+
+ /**
+ * @brief Minimum value of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ * @param[out] pIndex is the array index of the minimum value in the input buffer.
+ */
+ void arm_min_f16(
+ const float16_t * pSrc,
+ uint32_t blockSize,
+ float16_t * pResult,
+ uint32_t * pIndex);
+
+ /**
+ * @brief Minimum value of absolute values of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ * @param[out] pIndex is the array index of the minimum value in the input buffer.
+ */
+ void arm_absmin_f16(
+ const float16_t * pSrc,
+ uint32_t blockSize,
+ float16_t * pResult,
+ uint32_t * pIndex);
+
+/**
+ * @brief Maximum value of a floating-point vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
+ */
+ void arm_max_f16(
+ const float16_t * pSrc,
+ uint32_t blockSize,
+ float16_t * pResult,
+ uint32_t * pIndex);
+
+/**
+ * @brief Maximum value of absolute values of a floating-point vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
+ */
+ void arm_absmax_f16(
+ const float16_t * pSrc,
+ uint32_t blockSize,
+ float16_t * pResult,
+ uint32_t * pIndex);
+
+ /**
+ * @brief Minimum value of absolute values of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ */
+ void arm_absmin_no_idx_f16(
+ const float16_t * pSrc,
+ uint32_t blockSize,
+ float16_t * pResult);
+
+/**
+ * @brief Maximum value of a floating-point vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ */
+ void arm_absmax_no_idx_f16(
+ const float16_t * pSrc,
+ uint32_t blockSize,
+ float16_t * pResult);
+
+
+/**
+ * @brief Entropy
+ *
+ * @param[in] pSrcA Array of input values.
+ * @param[in] blockSize Number of samples in the input array.
+ * @return Entropy -Sum(p ln p)
+ *
+ */
+
+
+float16_t arm_entropy_f16(const float16_t * pSrcA,uint32_t blockSize);
+
+float16_t arm_logsumexp_f16(const float16_t *in, uint32_t blockSize);
+
+/**
+ * @brief Dot product with log arithmetic
+ *
+ * Vectors are containing the log of the samples
+ *
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[in] pTmpBuffer temporary buffer of length blockSize
+ * @return The log of the dot product .
+ *
+ */
+
+
+float16_t arm_logsumexp_dot_prod_f16(const float16_t * pSrcA,
+ const float16_t * pSrcB,
+ uint32_t blockSize,
+ float16_t *pTmpBuffer);
+
+/**
+ * @brief Kullback-Leibler
+ *
+ * @param[in] pSrcA Pointer to an array of input values for probability distribution A.
+ * @param[in] pSrcB Pointer to an array of input values for probability distribution B.
+ * @param[in] blockSize Number of samples in the input array.
+ * @return Kullback-Leibler Divergence D(A || B)
+ *
+ */
+float16_t arm_kullback_leibler_f16(const float16_t * pSrcA
+ ,const float16_t * pSrcB
+ ,uint32_t blockSize);
+
+/**
+ @brief Maximum value of a floating-point vector.
+ @param[in] pSrc points to the input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult maximum value returned here
+ @return none
+ */
+ void arm_max_no_idx_f16(
+ const float16_t *pSrc,
+ uint32_t blockSize,
+ float16_t *pResult);
+
+/**
+ @brief Minimum value of a floating-point vector.
+ @param[in] pSrc points to the input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult minimum value returned here
+ @return none
+ */
+ void arm_min_no_idx_f16(
+ const float16_t *pSrc,
+ uint32_t blockSize,
+ float16_t *pResult);
+
+/**
+ @brief Mean square error between two half precision float vectors.
+ @param[in] pSrcA points to the first input vector
+ @param[in] pSrcB points to the second input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult mean square error
+ @return none
+*/
+
+void arm_mse_f16(
+ const float16_t * pSrcA,
+ const float16_t * pSrcB,
+ uint32_t blockSize,
+ float16_t * pResult);
+
+#endif /*defined(ARM_FLOAT16_SUPPORTED)*/
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _STATISTICS_FUNCTIONS_F16_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/support_functions.h b/Drivers/CMSIS/DSP/Include/dsp/support_functions.h
new file mode 100644
index 0000000..9c77593
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/support_functions.h
@@ -0,0 +1,453 @@
+/******************************************************************************
+ * @file support_functions.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _SUPPORT_FUNCTIONS_H_
+#define _SUPPORT_FUNCTIONS_H_
+
+#include "arm_math_types.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+/**
+ * @defgroup groupSupport Support Functions
+ */
+
+
+/**
+ * @brief Converts the elements of the floating-point vector to Q31 vector.
+ * @param[in] pSrc points to the floating-point input vector
+ * @param[out] pDst points to the Q31 output vector
+ * @param[in] blockSize length of the input vector
+ */
+ void arm_float_to_q31(
+ const float32_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the floating-point vector to Q15 vector.
+ * @param[in] pSrc points to the floating-point input vector
+ * @param[out] pDst points to the Q15 output vector
+ * @param[in] blockSize length of the input vector
+ */
+ void arm_float_to_q15(
+ const float32_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the floating-point vector to Q7 vector.
+ * @param[in] pSrc points to the floating-point input vector
+ * @param[out] pDst points to the Q7 output vector
+ * @param[in] blockSize length of the input vector
+ */
+ void arm_float_to_q7(
+ const float32_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q31 vector to floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ */
+ void arm_q31_to_float(
+ const q31_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q31 vector to Q15 vector.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ */
+ void arm_q31_to_q15(
+ const q31_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q31 vector to Q7 vector.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ */
+ void arm_q31_to_q7(
+ const q31_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q15 vector to floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ */
+ void arm_q15_to_float(
+ const q15_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q15 vector to Q31 vector.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ */
+ void arm_q15_to_q31(
+ const q15_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q15 vector to Q7 vector.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ */
+ void arm_q15_to_q7(
+ const q15_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q7 vector to floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ */
+ void arm_q7_to_float(
+ const q7_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q7 vector to Q31 vector.
+ * @param[in] pSrc input pointer
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_q7_to_q31(
+ const q7_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q7 vector to Q15 vector.
+ * @param[in] pSrc input pointer
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_q7_to_q15(
+ const q7_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+
+
+
+ /**
+ * @brief Struct for specifying sorting algorithm
+ */
+ typedef enum
+ {
+ ARM_SORT_BITONIC = 0,
+ /**< Bitonic sort */
+ ARM_SORT_BUBBLE = 1,
+ /**< Bubble sort */
+ ARM_SORT_HEAP = 2,
+ /**< Heap sort */
+ ARM_SORT_INSERTION = 3,
+ /**< Insertion sort */
+ ARM_SORT_QUICK = 4,
+ /**< Quick sort */
+ ARM_SORT_SELECTION = 5
+ /**< Selection sort */
+ } arm_sort_alg;
+
+ /**
+ * @brief Struct for specifying sorting algorithm
+ */
+ typedef enum
+ {
+ ARM_SORT_DESCENDING = 0,
+ /**< Descending order (9 to 0) */
+ ARM_SORT_ASCENDING = 1
+ /**< Ascending order (0 to 9) */
+ } arm_sort_dir;
+
+ /**
+ * @brief Instance structure for the sorting algorithms.
+ */
+ typedef struct
+ {
+ arm_sort_alg alg; /**< Sorting algorithm selected */
+ arm_sort_dir dir; /**< Sorting order (direction) */
+ } arm_sort_instance_f32;
+
+ /**
+ * @param[in] S points to an instance of the sorting structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_sort_f32(
+ const arm_sort_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @param[in,out] S points to an instance of the sorting structure.
+ * @param[in] alg Selected algorithm.
+ * @param[in] dir Sorting order.
+ */
+ void arm_sort_init_f32(
+ arm_sort_instance_f32 * S,
+ arm_sort_alg alg,
+ arm_sort_dir dir);
+
+ /**
+ * @brief Instance structure for the sorting algorithms.
+ */
+ typedef struct
+ {
+ arm_sort_dir dir; /**< Sorting order (direction) */
+ float32_t * buffer; /**< Working buffer */
+ } arm_merge_sort_instance_f32;
+
+ /**
+ * @param[in] S points to an instance of the sorting structure.
+ * @param[in,out] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_merge_sort_f32(
+ const arm_merge_sort_instance_f32 * S,
+ float32_t *pSrc,
+ float32_t *pDst,
+ uint32_t blockSize);
+
+ /**
+ * @param[in,out] S points to an instance of the sorting structure.
+ * @param[in] dir Sorting order.
+ * @param[in] buffer Working buffer.
+ */
+ void arm_merge_sort_init_f32(
+ arm_merge_sort_instance_f32 * S,
+ arm_sort_dir dir,
+ float32_t * buffer);
+
+
+
+ /**
+ * @brief Copies the elements of a floating-point vector.
+ * @param[in] pSrc input pointer
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_copy_f32(
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @brief Copies the elements of a floating-point vector.
+ * @param[in] pSrc input pointer
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_copy_f64(
+ const float64_t * pSrc,
+ float64_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @brief Copies the elements of a Q7 vector.
+ * @param[in] pSrc input pointer
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_copy_q7(
+ const q7_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Copies the elements of a Q15 vector.
+ * @param[in] pSrc input pointer
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_copy_q15(
+ const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Copies the elements of a Q31 vector.
+ * @param[in] pSrc input pointer
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_copy_q31(
+ const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Fills a constant value into a floating-point vector.
+ * @param[in] value input value to be filled
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_fill_f32(
+ float32_t value,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Fills a constant value into a floating-point vector.
+ * @param[in] value input value to be filled
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_fill_f64(
+ float64_t value,
+ float64_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Fills a constant value into a Q7 vector.
+ * @param[in] value input value to be filled
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_fill_q7(
+ q7_t value,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Fills a constant value into a Q15 vector.
+ * @param[in] value input value to be filled
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_fill_q15(
+ q15_t value,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Fills a constant value into a Q31 vector.
+ * @param[in] value input value to be filled
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_fill_q31(
+ q31_t value,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+
+
+
+
+
+/**
+ * @brief Weighted sum
+ *
+ *
+ * @param[in] *in Array of input values.
+ * @param[in] *weigths Weights
+ * @param[in] blockSize Number of samples in the input array.
+ * @return Weighted sum
+ *
+ */
+float32_t arm_weighted_sum_f32(const float32_t *in
+ , const float32_t *weigths
+ , uint32_t blockSize);
+
+
+/**
+ * @brief Barycenter
+ *
+ *
+ * @param[in] in List of vectors
+ * @param[in] weights Weights of the vectors
+ * @param[out] out Barycenter
+ * @param[in] nbVectors Number of vectors
+ * @param[in] vecDim Dimension of space (vector dimension)
+ * @return None
+ *
+ */
+void arm_barycenter_f32(const float32_t *in
+ , const float32_t *weights
+ , float32_t *out
+ , uint32_t nbVectors
+ , uint32_t vecDim);
+
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _SUPPORT_FUNCTIONS_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/support_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/support_functions_f16.h
new file mode 100644
index 0000000..bc3f266
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/support_functions_f16.h
@@ -0,0 +1,187 @@
+/******************************************************************************
+ * @file support_functions_f16.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _SUPPORT_FUNCTIONS_F16_H_
+#define _SUPPORT_FUNCTIONS_F16_H_
+
+#include "arm_math_types_f16.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#if defined(ARM_FLOAT16_SUPPORTED)
+
+ /**
+ * @brief Copies the elements of a floating-point vector.
+ * @param[in] pSrc input pointer
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+void arm_copy_f16(const float16_t * pSrc, float16_t * pDst, uint32_t blockSize);
+
+ /**
+ * @brief Fills a constant value into a floating-point vector.
+ * @param[in] value input value to be filled
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+void arm_fill_f16(float16_t value, float16_t * pDst, uint32_t blockSize);
+
+/**
+ * @brief Converts the elements of the floating-point vector to Q31 vector.
+ * @param[in] pSrc points to the f16 input vector
+ * @param[out] pDst points to the q15 output vector
+ * @param[in] blockSize length of the input vector
+ */
+void arm_f16_to_q15(const float16_t * pSrc, q15_t * pDst, uint32_t blockSize);
+
+/**
+ * @brief Converts the elements of the floating-point vector to Q31 vector.
+ * @param[in] pSrc points to the q15 input vector
+ * @param[out] pDst points to the f16 output vector
+ * @param[in] blockSize length of the input vector
+ */
+void arm_q15_to_f16(const q15_t * pSrc, float16_t * pDst, uint32_t blockSize);
+
+
+/**
+ * @brief Converts the elements of the floating-point vector to Q31 vector.
+ * @param[in] pSrc points to the f32 input vector
+ * @param[out] pDst points to the f16 output vector
+ * @param[in] blockSize length of the input vector
+ */
+void arm_float_to_f16(const float32_t * pSrc, float16_t * pDst, uint32_t blockSize);
+
+/**
+ * @brief Converts the elements of the floating-point vector to Q31 vector.
+ * @param[in] pSrc points to the f16 input vector
+ * @param[out] pDst points to the f32 output vector
+ * @param[in] blockSize length of the input vector
+ */
+void arm_f16_to_float(const float16_t * pSrc, float32_t * pDst, uint32_t blockSize);
+
+/**
+ * @brief Weighted sum
+ *
+ *
+ * @param[in] *in Array of input values.
+ * @param[in] *weigths Weights
+ * @param[in] blockSize Number of samples in the input array.
+ * @return Weighted sum
+ *
+ */
+float16_t arm_weighted_sum_f16(const float16_t *in
+ , const float16_t *weigths
+ , uint32_t blockSize);
+
+/**
+ * @brief Barycenter
+ *
+ *
+ * @param[in] in List of vectors
+ * @param[in] weights Weights of the vectors
+ * @param[out] out Barycenter
+ * @param[in] nbVectors Number of vectors
+ * @param[in] vecDim Dimension of space (vector dimension)
+ * @return None
+ *
+ */
+void arm_barycenter_f16(const float16_t *in
+ , const float16_t *weights
+ , float16_t *out
+ , uint32_t nbVectors
+ , uint32_t vecDim);
+
+
+/**
+ @ingroup groupSupport
+ */
+
+/**
+ * @defgroup typecast Typecasting
+ */
+
+/**
+ @addtogroup typecast
+ @{
+ */
+
+/**
+ * @brief Interpret a f16 as an s16 value
+ * @param[in] x input value.
+ * @return return value.
+ *
+ * @par Description
+ * It is a typecast. No conversion of the float to int is done.
+ * The memcpy will be optimized out by the compiler.
+ * memcpy is used to prevent type punning issues.
+ * With gcc, -fno-builtins MUST not be used or the
+ * memcpy will not be optimized out.
+ */
+__STATIC_INLINE int16_t arm_typecast_s16_f16(float16_t x)
+{
+ int16_t res;
+ res=*(int16_t*)memcpy((char*)&res,(char*)&x,sizeof(float16_t));
+ return(res);
+}
+
+/**
+ * @brief Interpret an s16 as an f16 value
+ * @param[in] x input value.
+ * @return return value.
+ *
+ * @par Description
+ * It is a typecast. No conversion of the int to float is done.
+ * The memcpy will be optimized out by the compiler.
+ * memcpy is used to prevent type punning issues.
+ * With gcc, -fno-builtins MUST not be used or the
+ * memcpy will not be optimized out.
+ */
+__STATIC_INLINE float16_t arm_typecast_f16_s16(int16_t x)
+{
+ float16_t res;
+ res=*(float16_t*)memcpy((char*)&res,(char*)&x,sizeof(int16_t));
+ return(res);
+}
+
+
+/**
+ @} end of typecast group
+ */
+
+
+#endif /*defined(ARM_FLOAT16_SUPPORTED)*/
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _SUPPORT_FUNCTIONS_F16_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/svm_defines.h b/Drivers/CMSIS/DSP/Include/dsp/svm_defines.h
new file mode 100644
index 0000000..f93e953
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/svm_defines.h
@@ -0,0 +1,46 @@
+/******************************************************************************
+ * @file svm_defines.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ *
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _SVM_DEFINES_H_
+#define _SVM_DEFINES_H_
+
+/**
+ * @brief Struct for specifying SVM Kernel
+ */
+typedef enum
+{
+ ARM_ML_KERNEL_LINEAR = 0,
+ /**< Linear kernel */
+ ARM_ML_KERNEL_POLYNOMIAL = 1,
+ /**< Polynomial kernel */
+ ARM_ML_KERNEL_RBF = 2,
+ /**< Radial Basis Function kernel */
+ ARM_ML_KERNEL_SIGMOID = 3
+ /**< Sigmoid kernel */
+} arm_ml_kernel_type;
+
+#endif
diff --git a/Drivers/CMSIS/DSP/Include/dsp/svm_functions.h b/Drivers/CMSIS/DSP/Include/dsp/svm_functions.h
new file mode 100644
index 0000000..3acc621
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/svm_functions.h
@@ -0,0 +1,299 @@
+/******************************************************************************
+ * @file svm_functions.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _SVM_FUNCTIONS_H_
+#define _SVM_FUNCTIONS_H_
+
+#include "arm_math_types.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+#include "dsp/svm_defines.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#define STEP(x) (x) <= 0 ? 0 : 1
+
+/**
+ * @defgroup groupSVM SVM Functions
+ * This set of functions is implementing SVM classification on 2 classes.
+ * The training must be done from scikit-learn. The parameters can be easily
+ * generated from the scikit-learn object. Some examples are given in
+ * DSP/Testing/PatternGeneration/SVM.py
+ *
+ * If more than 2 classes are needed, the functions in this folder
+ * will have to be used, as building blocks, to do multi-class classification.
+ *
+ * No multi-class classification is provided in this SVM folder.
+ *
+ */
+
+/**
+ * @brief Integer exponentiation
+ * @param[in] x value
+ * @param[in] nb integer exponent >= 1
+ * @return x^nb
+ *
+ */
+__STATIC_INLINE float32_t arm_exponent_f32(float32_t x, int32_t nb)
+{
+ float32_t r = x;
+ nb --;
+ while(nb > 0)
+ {
+ r = r * x;
+ nb--;
+ }
+ return(r);
+}
+
+
+
+
+
+/**
+ * @brief Instance structure for linear SVM prediction function.
+ */
+typedef struct
+{
+ uint32_t nbOfSupportVectors; /**< Number of support vectors */
+ uint32_t vectorDimension; /**< Dimension of vector space */
+ float32_t intercept; /**< Intercept */
+ const float32_t *dualCoefficients; /**< Dual coefficients */
+ const float32_t *supportVectors; /**< Support vectors */
+ const int32_t *classes; /**< The two SVM classes */
+} arm_svm_linear_instance_f32;
+
+
+/**
+ * @brief Instance structure for polynomial SVM prediction function.
+ */
+typedef struct
+{
+ uint32_t nbOfSupportVectors; /**< Number of support vectors */
+ uint32_t vectorDimension; /**< Dimension of vector space */
+ float32_t intercept; /**< Intercept */
+ const float32_t *dualCoefficients; /**< Dual coefficients */
+ const float32_t *supportVectors; /**< Support vectors */
+ const int32_t *classes; /**< The two SVM classes */
+ int32_t degree; /**< Polynomial degree */
+ float32_t coef0; /**< Polynomial constant */
+ float32_t gamma; /**< Gamma factor */
+} arm_svm_polynomial_instance_f32;
+
+/**
+ * @brief Instance structure for rbf SVM prediction function.
+ */
+typedef struct
+{
+ uint32_t nbOfSupportVectors; /**< Number of support vectors */
+ uint32_t vectorDimension; /**< Dimension of vector space */
+ float32_t intercept; /**< Intercept */
+ const float32_t *dualCoefficients; /**< Dual coefficients */
+ const float32_t *supportVectors; /**< Support vectors */
+ const int32_t *classes; /**< The two SVM classes */
+ float32_t gamma; /**< Gamma factor */
+} arm_svm_rbf_instance_f32;
+
+/**
+ * @brief Instance structure for sigmoid SVM prediction function.
+ */
+typedef struct
+{
+ uint32_t nbOfSupportVectors; /**< Number of support vectors */
+ uint32_t vectorDimension; /**< Dimension of vector space */
+ float32_t intercept; /**< Intercept */
+ const float32_t *dualCoefficients; /**< Dual coefficients */
+ const float32_t *supportVectors; /**< Support vectors */
+ const int32_t *classes; /**< The two SVM classes */
+ float32_t coef0; /**< Independent constant */
+ float32_t gamma; /**< Gamma factor */
+} arm_svm_sigmoid_instance_f32;
+
+/**
+ * @brief SVM linear instance init function
+ * @param[in] S Parameters for SVM functions
+ * @param[in] nbOfSupportVectors Number of support vectors
+ * @param[in] vectorDimension Dimension of vector space
+ * @param[in] intercept Intercept
+ * @param[in] dualCoefficients Array of dual coefficients
+ * @param[in] supportVectors Array of support vectors
+ * @param[in] classes Array of 2 classes ID
+ * @return none.
+ *
+ */
+
+
+void arm_svm_linear_init_f32(arm_svm_linear_instance_f32 *S,
+ uint32_t nbOfSupportVectors,
+ uint32_t vectorDimension,
+ float32_t intercept,
+ const float32_t *dualCoefficients,
+ const float32_t *supportVectors,
+ const int32_t *classes);
+
+/**
+ * @brief SVM linear prediction
+ * @param[in] S Pointer to an instance of the linear SVM structure.
+ * @param[in] in Pointer to input vector
+ * @param[out] pResult Decision value
+ * @return none.
+ *
+ */
+
+void arm_svm_linear_predict_f32(const arm_svm_linear_instance_f32 *S,
+ const float32_t * in,
+ int32_t * pResult);
+
+
+/**
+ * @brief SVM polynomial instance init function
+ * @param[in] S points to an instance of the polynomial SVM structure.
+ * @param[in] nbOfSupportVectors Number of support vectors
+ * @param[in] vectorDimension Dimension of vector space
+ * @param[in] intercept Intercept
+ * @param[in] dualCoefficients Array of dual coefficients
+ * @param[in] supportVectors Array of support vectors
+ * @param[in] classes Array of 2 classes ID
+ * @param[in] degree Polynomial degree
+ * @param[in] coef0 coeff0 (scikit-learn terminology)
+ * @param[in] gamma gamma (scikit-learn terminology)
+ * @return none.
+ *
+ */
+
+
+void arm_svm_polynomial_init_f32(arm_svm_polynomial_instance_f32 *S,
+ uint32_t nbOfSupportVectors,
+ uint32_t vectorDimension,
+ float32_t intercept,
+ const float32_t *dualCoefficients,
+ const float32_t *supportVectors,
+ const int32_t *classes,
+ int32_t degree,
+ float32_t coef0,
+ float32_t gamma
+ );
+
+/**
+ * @brief SVM polynomial prediction
+ * @param[in] S Pointer to an instance of the polynomial SVM structure.
+ * @param[in] in Pointer to input vector
+ * @param[out] pResult Decision value
+ * @return none.
+ *
+ */
+void arm_svm_polynomial_predict_f32(const arm_svm_polynomial_instance_f32 *S,
+ const float32_t * in,
+ int32_t * pResult);
+
+
+/**
+ * @brief SVM radial basis function instance init function
+ * @param[in] S points to an instance of the polynomial SVM structure.
+ * @param[in] nbOfSupportVectors Number of support vectors
+ * @param[in] vectorDimension Dimension of vector space
+ * @param[in] intercept Intercept
+ * @param[in] dualCoefficients Array of dual coefficients
+ * @param[in] supportVectors Array of support vectors
+ * @param[in] classes Array of 2 classes ID
+ * @param[in] gamma gamma (scikit-learn terminology)
+ * @return none.
+ *
+ */
+
+void arm_svm_rbf_init_f32(arm_svm_rbf_instance_f32 *S,
+ uint32_t nbOfSupportVectors,
+ uint32_t vectorDimension,
+ float32_t intercept,
+ const float32_t *dualCoefficients,
+ const float32_t *supportVectors,
+ const int32_t *classes,
+ float32_t gamma
+ );
+
+/**
+ * @brief SVM rbf prediction
+ * @param[in] S Pointer to an instance of the rbf SVM structure.
+ * @param[in] in Pointer to input vector
+ * @param[out] pResult decision value
+ * @return none.
+ *
+ */
+void arm_svm_rbf_predict_f32(const arm_svm_rbf_instance_f32 *S,
+ const float32_t * in,
+ int32_t * pResult);
+
+/**
+ * @brief SVM sigmoid instance init function
+ * @param[in] S points to an instance of the rbf SVM structure.
+ * @param[in] nbOfSupportVectors Number of support vectors
+ * @param[in] vectorDimension Dimension of vector space
+ * @param[in] intercept Intercept
+ * @param[in] dualCoefficients Array of dual coefficients
+ * @param[in] supportVectors Array of support vectors
+ * @param[in] classes Array of 2 classes ID
+ * @param[in] coef0 coeff0 (scikit-learn terminology)
+ * @param[in] gamma gamma (scikit-learn terminology)
+ * @return none.
+ *
+ */
+
+void arm_svm_sigmoid_init_f32(arm_svm_sigmoid_instance_f32 *S,
+ uint32_t nbOfSupportVectors,
+ uint32_t vectorDimension,
+ float32_t intercept,
+ const float32_t *dualCoefficients,
+ const float32_t *supportVectors,
+ const int32_t *classes,
+ float32_t coef0,
+ float32_t gamma
+ );
+
+/**
+ * @brief SVM sigmoid prediction
+ * @param[in] S Pointer to an instance of the rbf SVM structure.
+ * @param[in] in Pointer to input vector
+ * @param[out] pResult Decision value
+ * @return none.
+ *
+ */
+void arm_svm_sigmoid_predict_f32(const arm_svm_sigmoid_instance_f32 *S,
+ const float32_t * in,
+ int32_t * pResult);
+
+
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _SVM_FUNCTIONS_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/svm_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/svm_functions_f16.h
new file mode 100644
index 0000000..7c9fbab
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/svm_functions_f16.h
@@ -0,0 +1,281 @@
+/******************************************************************************
+ * @file svm_functions_f16.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _SVM_FUNCTIONS_F16_H_
+#define _SVM_FUNCTIONS_F16_H_
+
+#include "arm_math_types_f16.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+#include "dsp/svm_defines.h"
+
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#if defined(ARM_FLOAT16_SUPPORTED)
+
+#define STEP(x) (x) <= 0 ? 0 : 1
+
+/**
+ * @defgroup groupSVM SVM Functions
+ * This set of functions is implementing SVM classification on 2 classes.
+ * The training must be done from scikit-learn. The parameters can be easily
+ * generated from the scikit-learn object. Some examples are given in
+ * DSP/Testing/PatternGeneration/SVM.py
+ *
+ * If more than 2 classes are needed, the functions in this folder
+ * will have to be used, as building blocks, to do multi-class classification.
+ *
+ * No multi-class classification is provided in this SVM folder.
+ *
+ */
+
+
+
+/**
+ * @brief Instance structure for linear SVM prediction function.
+ */
+typedef struct
+{
+ uint32_t nbOfSupportVectors; /**< Number of support vectors */
+ uint32_t vectorDimension; /**< Dimension of vector space */
+ float16_t intercept; /**< Intercept */
+ const float16_t *dualCoefficients; /**< Dual coefficients */
+ const float16_t *supportVectors; /**< Support vectors */
+ const int32_t *classes; /**< The two SVM classes */
+} arm_svm_linear_instance_f16;
+
+
+/**
+ * @brief Instance structure for polynomial SVM prediction function.
+ */
+typedef struct
+{
+ uint32_t nbOfSupportVectors; /**< Number of support vectors */
+ uint32_t vectorDimension; /**< Dimension of vector space */
+ float16_t intercept; /**< Intercept */
+ const float16_t *dualCoefficients; /**< Dual coefficients */
+ const float16_t *supportVectors; /**< Support vectors */
+ const int32_t *classes; /**< The two SVM classes */
+ int32_t degree; /**< Polynomial degree */
+ float16_t coef0; /**< Polynomial constant */
+ float16_t gamma; /**< Gamma factor */
+} arm_svm_polynomial_instance_f16;
+
+/**
+ * @brief Instance structure for rbf SVM prediction function.
+ */
+typedef struct
+{
+ uint32_t nbOfSupportVectors; /**< Number of support vectors */
+ uint32_t vectorDimension; /**< Dimension of vector space */
+ float16_t intercept; /**< Intercept */
+ const float16_t *dualCoefficients; /**< Dual coefficients */
+ const float16_t *supportVectors; /**< Support vectors */
+ const int32_t *classes; /**< The two SVM classes */
+ float16_t gamma; /**< Gamma factor */
+} arm_svm_rbf_instance_f16;
+
+/**
+ * @brief Instance structure for sigmoid SVM prediction function.
+ */
+typedef struct
+{
+ uint32_t nbOfSupportVectors; /**< Number of support vectors */
+ uint32_t vectorDimension; /**< Dimension of vector space */
+ float16_t intercept; /**< Intercept */
+ const float16_t *dualCoefficients; /**< Dual coefficients */
+ const float16_t *supportVectors; /**< Support vectors */
+ const int32_t *classes; /**< The two SVM classes */
+ float16_t coef0; /**< Independent constant */
+ float16_t gamma; /**< Gamma factor */
+} arm_svm_sigmoid_instance_f16;
+
+/**
+ * @brief SVM linear instance init function
+ * @param[in] S Parameters for SVM functions
+ * @param[in] nbOfSupportVectors Number of support vectors
+ * @param[in] vectorDimension Dimension of vector space
+ * @param[in] intercept Intercept
+ * @param[in] dualCoefficients Array of dual coefficients
+ * @param[in] supportVectors Array of support vectors
+ * @param[in] classes Array of 2 classes ID
+ * @return none.
+ *
+ */
+
+
+void arm_svm_linear_init_f16(arm_svm_linear_instance_f16 *S,
+ uint32_t nbOfSupportVectors,
+ uint32_t vectorDimension,
+ float16_t intercept,
+ const float16_t *dualCoefficients,
+ const float16_t *supportVectors,
+ const int32_t *classes);
+
+/**
+ * @brief SVM linear prediction
+ * @param[in] S Pointer to an instance of the linear SVM structure.
+ * @param[in] in Pointer to input vector
+ * @param[out] pResult Decision value
+ * @return none.
+ *
+ */
+
+void arm_svm_linear_predict_f16(const arm_svm_linear_instance_f16 *S,
+ const float16_t * in,
+ int32_t * pResult);
+
+
+/**
+ * @brief SVM polynomial instance init function
+ * @param[in] S points to an instance of the polynomial SVM structure.
+ * @param[in] nbOfSupportVectors Number of support vectors
+ * @param[in] vectorDimension Dimension of vector space
+ * @param[in] intercept Intercept
+ * @param[in] dualCoefficients Array of dual coefficients
+ * @param[in] supportVectors Array of support vectors
+ * @param[in] classes Array of 2 classes ID
+ * @param[in] degree Polynomial degree
+ * @param[in] coef0 coeff0 (scikit-learn terminology)
+ * @param[in] gamma gamma (scikit-learn terminology)
+ * @return none.
+ *
+ */
+
+
+void arm_svm_polynomial_init_f16(arm_svm_polynomial_instance_f16 *S,
+ uint32_t nbOfSupportVectors,
+ uint32_t vectorDimension,
+ float16_t intercept,
+ const float16_t *dualCoefficients,
+ const float16_t *supportVectors,
+ const int32_t *classes,
+ int32_t degree,
+ float16_t coef0,
+ float16_t gamma
+ );
+
+/**
+ * @brief SVM polynomial prediction
+ * @param[in] S Pointer to an instance of the polynomial SVM structure.
+ * @param[in] in Pointer to input vector
+ * @param[out] pResult Decision value
+ * @return none.
+ *
+ */
+void arm_svm_polynomial_predict_f16(const arm_svm_polynomial_instance_f16 *S,
+ const float16_t * in,
+ int32_t * pResult);
+
+
+/**
+ * @brief SVM radial basis function instance init function
+ * @param[in] S points to an instance of the polynomial SVM structure.
+ * @param[in] nbOfSupportVectors Number of support vectors
+ * @param[in] vectorDimension Dimension of vector space
+ * @param[in] intercept Intercept
+ * @param[in] dualCoefficients Array of dual coefficients
+ * @param[in] supportVectors Array of support vectors
+ * @param[in] classes Array of 2 classes ID
+ * @param[in] gamma gamma (scikit-learn terminology)
+ * @return none.
+ *
+ */
+
+void arm_svm_rbf_init_f16(arm_svm_rbf_instance_f16 *S,
+ uint32_t nbOfSupportVectors,
+ uint32_t vectorDimension,
+ float16_t intercept,
+ const float16_t *dualCoefficients,
+ const float16_t *supportVectors,
+ const int32_t *classes,
+ float16_t gamma
+ );
+
+/**
+ * @brief SVM rbf prediction
+ * @param[in] S Pointer to an instance of the rbf SVM structure.
+ * @param[in] in Pointer to input vector
+ * @param[out] pResult decision value
+ * @return none.
+ *
+ */
+void arm_svm_rbf_predict_f16(const arm_svm_rbf_instance_f16 *S,
+ const float16_t * in,
+ int32_t * pResult);
+
+/**
+ * @brief SVM sigmoid instance init function
+ * @param[in] S points to an instance of the rbf SVM structure.
+ * @param[in] nbOfSupportVectors Number of support vectors
+ * @param[in] vectorDimension Dimension of vector space
+ * @param[in] intercept Intercept
+ * @param[in] dualCoefficients Array of dual coefficients
+ * @param[in] supportVectors Array of support vectors
+ * @param[in] classes Array of 2 classes ID
+ * @param[in] coef0 coeff0 (scikit-learn terminology)
+ * @param[in] gamma gamma (scikit-learn terminology)
+ * @return none.
+ *
+ */
+
+void arm_svm_sigmoid_init_f16(arm_svm_sigmoid_instance_f16 *S,
+ uint32_t nbOfSupportVectors,
+ uint32_t vectorDimension,
+ float16_t intercept,
+ const float16_t *dualCoefficients,
+ const float16_t *supportVectors,
+ const int32_t *classes,
+ float16_t coef0,
+ float16_t gamma
+ );
+
+/**
+ * @brief SVM sigmoid prediction
+ * @param[in] S Pointer to an instance of the rbf SVM structure.
+ * @param[in] in Pointer to input vector
+ * @param[out] pResult Decision value
+ * @return none.
+ *
+ */
+void arm_svm_sigmoid_predict_f16(const arm_svm_sigmoid_instance_f16 *S,
+ const float16_t * in,
+ int32_t * pResult);
+
+
+
+#endif /*defined(ARM_FLOAT16_SUPPORTED)*/
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _SVM_FUNCTIONS_F16_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/transform_functions.h b/Drivers/CMSIS/DSP/Include/dsp/transform_functions.h
new file mode 100644
index 0000000..6270e10
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/transform_functions.h
@@ -0,0 +1,735 @@
+/******************************************************************************
+ * @file transform_functions.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _TRANSFORM_FUNCTIONS_H_
+#define _TRANSFORM_FUNCTIONS_H_
+
+#include "arm_math_types.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+#include "dsp/basic_math_functions.h"
+#include "dsp/complex_math_functions.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+
+/**
+ * @defgroup groupTransforms Transform Functions
+ */
+
+
+ /**
+ * @brief Instance structure for the Q15 CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ const q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */
+ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ } arm_cfft_radix2_instance_q15;
+
+/* Deprecated */
+ arm_status arm_cfft_radix2_init_q15(
+ arm_cfft_radix2_instance_q15 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+/* Deprecated */
+ void arm_cfft_radix2_q15(
+ const arm_cfft_radix2_instance_q15 * S,
+ q15_t * pSrc);
+
+
+ /**
+ * @brief Instance structure for the Q15 CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ const q15_t *pTwiddle; /**< points to the twiddle factor table. */
+ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ } arm_cfft_radix4_instance_q15;
+
+/* Deprecated */
+ arm_status arm_cfft_radix4_init_q15(
+ arm_cfft_radix4_instance_q15 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+/* Deprecated */
+ void arm_cfft_radix4_q15(
+ const arm_cfft_radix4_instance_q15 * S,
+ q15_t * pSrc);
+
+ /**
+ * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ const q31_t *pTwiddle; /**< points to the Twiddle factor table. */
+ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ } arm_cfft_radix2_instance_q31;
+
+/* Deprecated */
+ arm_status arm_cfft_radix2_init_q31(
+ arm_cfft_radix2_instance_q31 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+/* Deprecated */
+ void arm_cfft_radix2_q31(
+ const arm_cfft_radix2_instance_q31 * S,
+ q31_t * pSrc);
+
+ /**
+ * @brief Instance structure for the Q31 CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ const q31_t *pTwiddle; /**< points to the twiddle factor table. */
+ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ } arm_cfft_radix4_instance_q31;
+
+/* Deprecated */
+ void arm_cfft_radix4_q31(
+ const arm_cfft_radix4_instance_q31 * S,
+ q31_t * pSrc);
+
+/* Deprecated */
+ arm_status arm_cfft_radix4_init_q31(
+ arm_cfft_radix4_instance_q31 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+ /**
+ * @brief Instance structure for the floating-point CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ const float32_t *pTwiddle; /**< points to the Twiddle factor table. */
+ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ float32_t onebyfftLen; /**< value of 1/fftLen. */
+ } arm_cfft_radix2_instance_f32;
+
+
+/* Deprecated */
+ arm_status arm_cfft_radix2_init_f32(
+ arm_cfft_radix2_instance_f32 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+/* Deprecated */
+ void arm_cfft_radix2_f32(
+ const arm_cfft_radix2_instance_f32 * S,
+ float32_t * pSrc);
+
+ /**
+ * @brief Instance structure for the floating-point CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ const float32_t *pTwiddle; /**< points to the Twiddle factor table. */
+ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ float32_t onebyfftLen; /**< value of 1/fftLen. */
+ } arm_cfft_radix4_instance_f32;
+
+
+
+/* Deprecated */
+ arm_status arm_cfft_radix4_init_f32(
+ arm_cfft_radix4_instance_f32 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+/* Deprecated */
+ void arm_cfft_radix4_f32(
+ const arm_cfft_radix4_instance_f32 * S,
+ float32_t * pSrc);
+
+ /**
+ * @brief Instance structure for the fixed-point CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ const q15_t *pTwiddle; /**< points to the Twiddle factor table. */
+ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t bitRevLength; /**< bit reversal table length. */
+#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
+ const uint32_t *rearranged_twiddle_tab_stride1_arr; /**< Per stage reordered twiddle pointer (offset 1) */ \
+ const uint32_t *rearranged_twiddle_tab_stride2_arr; /**< Per stage reordered twiddle pointer (offset 2) */ \
+ const uint32_t *rearranged_twiddle_tab_stride3_arr; /**< Per stage reordered twiddle pointer (offset 3) */ \
+ const q15_t *rearranged_twiddle_stride1; /**< reordered twiddle offset 1 storage */ \
+ const q15_t *rearranged_twiddle_stride2; /**< reordered twiddle offset 2 storage */ \
+ const q15_t *rearranged_twiddle_stride3;
+#endif
+ } arm_cfft_instance_q15;
+
+arm_status arm_cfft_init_q15(
+ arm_cfft_instance_q15 * S,
+ uint16_t fftLen);
+
+void arm_cfft_q15(
+ const arm_cfft_instance_q15 * S,
+ q15_t * p1,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+ /**
+ * @brief Instance structure for the fixed-point CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ const q31_t *pTwiddle; /**< points to the Twiddle factor table. */
+ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t bitRevLength; /**< bit reversal table length. */
+#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
+ const uint32_t *rearranged_twiddle_tab_stride1_arr; /**< Per stage reordered twiddle pointer (offset 1) */ \
+ const uint32_t *rearranged_twiddle_tab_stride2_arr; /**< Per stage reordered twiddle pointer (offset 2) */ \
+ const uint32_t *rearranged_twiddle_tab_stride3_arr; /**< Per stage reordered twiddle pointer (offset 3) */ \
+ const q31_t *rearranged_twiddle_stride1; /**< reordered twiddle offset 1 storage */ \
+ const q31_t *rearranged_twiddle_stride2; /**< reordered twiddle offset 2 storage */ \
+ const q31_t *rearranged_twiddle_stride3;
+#endif
+ } arm_cfft_instance_q31;
+
+arm_status arm_cfft_init_q31(
+ arm_cfft_instance_q31 * S,
+ uint16_t fftLen);
+
+void arm_cfft_q31(
+ const arm_cfft_instance_q31 * S,
+ q31_t * p1,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+ /**
+ * @brief Instance structure for the floating-point CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ const float32_t *pTwiddle; /**< points to the Twiddle factor table. */
+ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t bitRevLength; /**< bit reversal table length. */
+#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
+ const uint32_t *rearranged_twiddle_tab_stride1_arr; /**< Per stage reordered twiddle pointer (offset 1) */ \
+ const uint32_t *rearranged_twiddle_tab_stride2_arr; /**< Per stage reordered twiddle pointer (offset 2) */ \
+ const uint32_t *rearranged_twiddle_tab_stride3_arr; /**< Per stage reordered twiddle pointer (offset 3) */ \
+ const float32_t *rearranged_twiddle_stride1; /**< reordered twiddle offset 1 storage */ \
+ const float32_t *rearranged_twiddle_stride2; /**< reordered twiddle offset 2 storage */ \
+ const float32_t *rearranged_twiddle_stride3;
+#endif
+ } arm_cfft_instance_f32;
+
+
+
+ arm_status arm_cfft_init_f32(
+ arm_cfft_instance_f32 * S,
+ uint16_t fftLen);
+
+ void arm_cfft_f32(
+ const arm_cfft_instance_f32 * S,
+ float32_t * p1,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+
+ /**
+ * @brief Instance structure for the Double Precision Floating-point CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ const float64_t *pTwiddle; /**< points to the Twiddle factor table. */
+ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t bitRevLength; /**< bit reversal table length. */
+ } arm_cfft_instance_f64;
+
+ arm_status arm_cfft_init_f64(
+ arm_cfft_instance_f64 * S,
+ uint16_t fftLen);
+
+ void arm_cfft_f64(
+ const arm_cfft_instance_f64 * S,
+ float64_t * p1,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+ /**
+ * @brief Instance structure for the Q15 RFFT/RIFFT function.
+ */
+ typedef struct
+ {
+ uint32_t fftLenReal; /**< length of the real FFT. */
+ uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
+ uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
+ uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ const q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
+ const q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
+#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
+ arm_cfft_instance_q15 cfftInst;
+#else
+ const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */
+#endif
+ } arm_rfft_instance_q15;
+
+ arm_status arm_rfft_init_q15(
+ arm_rfft_instance_q15 * S,
+ uint32_t fftLenReal,
+ uint32_t ifftFlagR,
+ uint32_t bitReverseFlag);
+
+ void arm_rfft_q15(
+ const arm_rfft_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst);
+
+ /**
+ * @brief Instance structure for the Q31 RFFT/RIFFT function.
+ */
+ typedef struct
+ {
+ uint32_t fftLenReal; /**< length of the real FFT. */
+ uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
+ uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
+ uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ const q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
+ const q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
+#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
+ arm_cfft_instance_q31 cfftInst;
+#else
+ const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */
+#endif
+ } arm_rfft_instance_q31;
+
+ arm_status arm_rfft_init_q31(
+ arm_rfft_instance_q31 * S,
+ uint32_t fftLenReal,
+ uint32_t ifftFlagR,
+ uint32_t bitReverseFlag);
+
+ void arm_rfft_q31(
+ const arm_rfft_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst);
+
+ /**
+ * @brief Instance structure for the floating-point RFFT/RIFFT function.
+ */
+ typedef struct
+ {
+ uint32_t fftLenReal; /**< length of the real FFT. */
+ uint16_t fftLenBy2; /**< length of the complex FFT. */
+ uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
+ uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
+ uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ const float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
+ const float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
+ arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
+ } arm_rfft_instance_f32;
+
+ arm_status arm_rfft_init_f32(
+ arm_rfft_instance_f32 * S,
+ arm_cfft_radix4_instance_f32 * S_CFFT,
+ uint32_t fftLenReal,
+ uint32_t ifftFlagR,
+ uint32_t bitReverseFlag);
+
+ void arm_rfft_f32(
+ const arm_rfft_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst);
+
+ /**
+ * @brief Instance structure for the Double Precision Floating-point RFFT/RIFFT function.
+ */
+typedef struct
+ {
+ arm_cfft_instance_f64 Sint; /**< Internal CFFT structure. */
+ uint16_t fftLenRFFT; /**< length of the real sequence */
+ const float64_t * pTwiddleRFFT; /**< Twiddle factors real stage */
+ } arm_rfft_fast_instance_f64 ;
+
+arm_status arm_rfft_fast_init_f64 (
+ arm_rfft_fast_instance_f64 * S,
+ uint16_t fftLen);
+
+
+void arm_rfft_fast_f64(
+ arm_rfft_fast_instance_f64 * S,
+ float64_t * p, float64_t * pOut,
+ uint8_t ifftFlag);
+
+
+ /**
+ * @brief Instance structure for the floating-point RFFT/RIFFT function.
+ */
+typedef struct
+ {
+ arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */
+ uint16_t fftLenRFFT; /**< length of the real sequence */
+ const float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */
+ } arm_rfft_fast_instance_f32 ;
+
+arm_status arm_rfft_fast_init_f32 (
+ arm_rfft_fast_instance_f32 * S,
+ uint16_t fftLen);
+
+
+ void arm_rfft_fast_f32(
+ const arm_rfft_fast_instance_f32 * S,
+ float32_t * p, float32_t * pOut,
+ uint8_t ifftFlag);
+
+ /**
+ * @brief Instance structure for the floating-point DCT4/IDCT4 function.
+ */
+ typedef struct
+ {
+ uint16_t N; /**< length of the DCT4. */
+ uint16_t Nby2; /**< half of the length of the DCT4. */
+ float32_t normalize; /**< normalizing factor. */
+ const float32_t *pTwiddle; /**< points to the twiddle factor table. */
+ const float32_t *pCosFactor; /**< points to the cosFactor table. */
+ arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */
+ arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
+ } arm_dct4_instance_f32;
+
+
+ /**
+ * @brief Initialization function for the floating-point DCT4/IDCT4.
+ * @param[in,out] S points to an instance of floating-point DCT4/IDCT4 structure.
+ * @param[in] S_RFFT points to an instance of floating-point RFFT/RIFFT structure.
+ * @param[in] S_CFFT points to an instance of floating-point CFFT/CIFFT structure.
+ * @param[in] N length of the DCT4.
+ * @param[in] Nby2 half of the length of the DCT4.
+ * @param[in] normalize normalizing factor.
+ * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length.
+ */
+ arm_status arm_dct4_init_f32(
+ arm_dct4_instance_f32 * S,
+ arm_rfft_instance_f32 * S_RFFT,
+ arm_cfft_radix4_instance_f32 * S_CFFT,
+ uint16_t N,
+ uint16_t Nby2,
+ float32_t normalize);
+
+
+ /**
+ * @brief Processing function for the floating-point DCT4/IDCT4.
+ * @param[in] S points to an instance of the floating-point DCT4/IDCT4 structure.
+ * @param[in] pState points to state buffer.
+ * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
+ */
+ void arm_dct4_f32(
+ const arm_dct4_instance_f32 * S,
+ float32_t * pState,
+ float32_t * pInlineBuffer);
+
+
+ /**
+ * @brief Instance structure for the Q31 DCT4/IDCT4 function.
+ */
+ typedef struct
+ {
+ uint16_t N; /**< length of the DCT4. */
+ uint16_t Nby2; /**< half of the length of the DCT4. */
+ q31_t normalize; /**< normalizing factor. */
+ const q31_t *pTwiddle; /**< points to the twiddle factor table. */
+ const q31_t *pCosFactor; /**< points to the cosFactor table. */
+ arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */
+ arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
+ } arm_dct4_instance_q31;
+
+
+ /**
+ * @brief Initialization function for the Q31 DCT4/IDCT4.
+ * @param[in,out] S points to an instance of Q31 DCT4/IDCT4 structure.
+ * @param[in] S_RFFT points to an instance of Q31 RFFT/RIFFT structure
+ * @param[in] S_CFFT points to an instance of Q31 CFFT/CIFFT structure
+ * @param[in] N length of the DCT4.
+ * @param[in] Nby2 half of the length of the DCT4.
+ * @param[in] normalize normalizing factor.
+ * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
+ */
+ arm_status arm_dct4_init_q31(
+ arm_dct4_instance_q31 * S,
+ arm_rfft_instance_q31 * S_RFFT,
+ arm_cfft_radix4_instance_q31 * S_CFFT,
+ uint16_t N,
+ uint16_t Nby2,
+ q31_t normalize);
+
+
+ /**
+ * @brief Processing function for the Q31 DCT4/IDCT4.
+ * @param[in] S points to an instance of the Q31 DCT4 structure.
+ * @param[in] pState points to state buffer.
+ * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
+ */
+ void arm_dct4_q31(
+ const arm_dct4_instance_q31 * S,
+ q31_t * pState,
+ q31_t * pInlineBuffer);
+
+
+ /**
+ * @brief Instance structure for the Q15 DCT4/IDCT4 function.
+ */
+ typedef struct
+ {
+ uint16_t N; /**< length of the DCT4. */
+ uint16_t Nby2; /**< half of the length of the DCT4. */
+ q15_t normalize; /**< normalizing factor. */
+ const q15_t *pTwiddle; /**< points to the twiddle factor table. */
+ const q15_t *pCosFactor; /**< points to the cosFactor table. */
+ arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */
+ arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
+ } arm_dct4_instance_q15;
+
+
+ /**
+ * @brief Initialization function for the Q15 DCT4/IDCT4.
+ * @param[in,out] S points to an instance of Q15 DCT4/IDCT4 structure.
+ * @param[in] S_RFFT points to an instance of Q15 RFFT/RIFFT structure.
+ * @param[in] S_CFFT points to an instance of Q15 CFFT/CIFFT structure.
+ * @param[in] N length of the DCT4.
+ * @param[in] Nby2 half of the length of the DCT4.
+ * @param[in] normalize normalizing factor.
+ * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
+ */
+ arm_status arm_dct4_init_q15(
+ arm_dct4_instance_q15 * S,
+ arm_rfft_instance_q15 * S_RFFT,
+ arm_cfft_radix4_instance_q15 * S_CFFT,
+ uint16_t N,
+ uint16_t Nby2,
+ q15_t normalize);
+
+
+ /**
+ * @brief Processing function for the Q15 DCT4/IDCT4.
+ * @param[in] S points to an instance of the Q15 DCT4 structure.
+ * @param[in] pState points to state buffer.
+ * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
+ */
+ void arm_dct4_q15(
+ const arm_dct4_instance_q15 * S,
+ q15_t * pState,
+ q15_t * pInlineBuffer);
+
+ /**
+ * @brief Instance structure for the Floating-point MFCC function.
+ */
+typedef struct
+ {
+ const float32_t *dctCoefs; /**< Internal DCT coefficients */
+ const float32_t *filterCoefs; /**< Internal Mel filter coefficients */
+ const float32_t *windowCoefs; /**< Windowing coefficients */
+ const uint32_t *filterPos; /**< Internal Mel filter positions in spectrum */
+ const uint32_t *filterLengths; /**< Internal Mel filter lengths */
+ uint32_t fftLen; /**< FFT length */
+ uint32_t nbMelFilters; /**< Number of Mel filters */
+ uint32_t nbDctOutputs; /**< Number of DCT outputs */
+#if defined(ARM_MFCC_CFFT_BASED)
+ /* Implementation of the MFCC is using a CFFT */
+ arm_cfft_instance_f32 cfft; /**< Internal CFFT instance */
+#else
+ /* Implementation of the MFCC is using a RFFT (default) */
+ arm_rfft_fast_instance_f32 rfft;
+#endif
+ } arm_mfcc_instance_f32 ;
+
+arm_status arm_mfcc_init_f32(
+ arm_mfcc_instance_f32 * S,
+ uint32_t fftLen,
+ uint32_t nbMelFilters,
+ uint32_t nbDctOutputs,
+ const float32_t *dctCoefs,
+ const uint32_t *filterPos,
+ const uint32_t *filterLengths,
+ const float32_t *filterCoefs,
+ const float32_t *windowCoefs
+ );
+
+
+/**
+ @brief MFCC F32
+ @param[in] S points to the mfcc instance structure
+ @param[in] pSrc points to the input samples
+ @param[out] pDst points to the output MFCC values
+ @param[inout] pTmp points to a temporary buffer of complex
+ @return none
+ */
+ void arm_mfcc_f32(
+ const arm_mfcc_instance_f32 * S,
+ float32_t *pSrc,
+ float32_t *pDst,
+ float32_t *pTmp
+ );
+
+typedef struct
+ {
+ const q31_t *dctCoefs; /**< Internal DCT coefficients */
+ const q31_t *filterCoefs; /**< Internal Mel filter coefficients */
+ const q31_t *windowCoefs; /**< Windowing coefficients */
+ const uint32_t *filterPos; /**< Internal Mel filter positions in spectrum */
+ const uint32_t *filterLengths; /**< Internal Mel filter lengths */
+ uint32_t fftLen; /**< FFT length */
+ uint32_t nbMelFilters; /**< Number of Mel filters */
+ uint32_t nbDctOutputs; /**< Number of DCT outputs */
+#if defined(ARM_MFCC_CFFT_BASED)
+ /* Implementation of the MFCC is using a CFFT */
+ arm_cfft_instance_q31 cfft; /**< Internal CFFT instance */
+#else
+ /* Implementation of the MFCC is using a RFFT (default) */
+ arm_rfft_instance_q31 rfft;
+#endif
+ } arm_mfcc_instance_q31 ;
+
+arm_status arm_mfcc_init_q31(
+ arm_mfcc_instance_q31 * S,
+ uint32_t fftLen,
+ uint32_t nbMelFilters,
+ uint32_t nbDctOutputs,
+ const q31_t *dctCoefs,
+ const uint32_t *filterPos,
+ const uint32_t *filterLengths,
+ const q31_t *filterCoefs,
+ const q31_t *windowCoefs
+ );
+
+
+/**
+ @brief MFCC Q31
+ @param[in] S points to the mfcc instance structure
+ @param[in] pSrc points to the input samples
+ @param[out] pDst points to the output MFCC values
+ @param[inout] pTmp points to a temporary buffer of complex
+ @return none
+ */
+ arm_status arm_mfcc_q31(
+ const arm_mfcc_instance_q31 * S,
+ q31_t *pSrc,
+ q31_t *pDst,
+ q31_t *pTmp
+ );
+
+typedef struct
+ {
+ const q15_t *dctCoefs; /**< Internal DCT coefficients */
+ const q15_t *filterCoefs; /**< Internal Mel filter coefficients */
+ const q15_t *windowCoefs; /**< Windowing coefficients */
+ const uint32_t *filterPos; /**< Internal Mel filter positions in spectrum */
+ const uint32_t *filterLengths; /**< Internal Mel filter lengths */
+ uint32_t fftLen; /**< FFT length */
+ uint32_t nbMelFilters; /**< Number of Mel filters */
+ uint32_t nbDctOutputs; /**< Number of DCT outputs */
+#if defined(ARM_MFCC_CFFT_BASED)
+ /* Implementation of the MFCC is using a CFFT */
+ arm_cfft_instance_q15 cfft; /**< Internal CFFT instance */
+#else
+ /* Implementation of the MFCC is using a RFFT (default) */
+ arm_rfft_instance_q15 rfft;
+#endif
+ } arm_mfcc_instance_q15 ;
+
+arm_status arm_mfcc_init_q15(
+ arm_mfcc_instance_q15 * S,
+ uint32_t fftLen,
+ uint32_t nbMelFilters,
+ uint32_t nbDctOutputs,
+ const q15_t *dctCoefs,
+ const uint32_t *filterPos,
+ const uint32_t *filterLengths,
+ const q15_t *filterCoefs,
+ const q15_t *windowCoefs
+ );
+
+
+/**
+ @brief MFCC Q15
+ @param[in] S points to the mfcc instance structure
+ @param[in] pSrc points to the input samples
+ @param[out] pDst points to the output MFCC values in q8.7 format
+ @param[inout] pTmp points to a temporary buffer of complex
+ @return error status
+ */
+ arm_status arm_mfcc_q15(
+ const arm_mfcc_instance_q15 * S,
+ q15_t *pSrc,
+ q15_t *pDst,
+ q31_t *pTmp
+ );
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _TRANSFORM_FUNCTIONS_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/transform_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/transform_functions_f16.h
new file mode 100644
index 0000000..4d8cc22
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/transform_functions_f16.h
@@ -0,0 +1,208 @@
+/******************************************************************************
+ * @file transform_functions_f16.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _TRANSFORM_FUNCTIONS_F16_H_
+#define _TRANSFORM_FUNCTIONS_F16_H_
+
+#include "arm_math_types_f16.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+
+
+#if defined(ARM_FLOAT16_SUPPORTED)
+
+
+ /**
+ * @brief Instance structure for the floating-point CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ const float16_t *pTwiddle; /**< points to the Twiddle factor table. */
+ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ float16_t onebyfftLen; /**< value of 1/fftLen. */
+ } arm_cfft_radix2_instance_f16;
+
+ /**
+ * @brief Instance structure for the floating-point CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ const float16_t *pTwiddle; /**< points to the Twiddle factor table. */
+ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ float16_t onebyfftLen; /**< value of 1/fftLen. */
+ } arm_cfft_radix4_instance_f16;
+
+ /**
+ * @brief Instance structure for the floating-point CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ const float16_t *pTwiddle; /**< points to the Twiddle factor table. */
+ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t bitRevLength; /**< bit reversal table length. */
+#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
+ const uint32_t *rearranged_twiddle_tab_stride1_arr; /**< Per stage reordered twiddle pointer (offset 1) */ \
+ const uint32_t *rearranged_twiddle_tab_stride2_arr; /**< Per stage reordered twiddle pointer (offset 2) */ \
+ const uint32_t *rearranged_twiddle_tab_stride3_arr; /**< Per stage reordered twiddle pointer (offset 3) */ \
+ const float16_t *rearranged_twiddle_stride1; /**< reordered twiddle offset 1 storage */ \
+ const float16_t *rearranged_twiddle_stride2; /**< reordered twiddle offset 2 storage */ \
+ const float16_t *rearranged_twiddle_stride3;
+#endif
+ } arm_cfft_instance_f16;
+
+
+ arm_status arm_cfft_init_f16(
+ arm_cfft_instance_f16 * S,
+ uint16_t fftLen);
+
+ void arm_cfft_f16(
+ const arm_cfft_instance_f16 * S,
+ float16_t * p1,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+ /**
+ * @brief Instance structure for the floating-point RFFT/RIFFT function.
+ */
+typedef struct
+ {
+ arm_cfft_instance_f16 Sint; /**< Internal CFFT structure. */
+ uint16_t fftLenRFFT; /**< length of the real sequence */
+ const float16_t * pTwiddleRFFT; /**< Twiddle factors real stage */
+ } arm_rfft_fast_instance_f16 ;
+
+arm_status arm_rfft_fast_init_f16 (
+ arm_rfft_fast_instance_f16 * S,
+ uint16_t fftLen);
+
+
+ void arm_rfft_fast_f16(
+ const arm_rfft_fast_instance_f16 * S,
+ float16_t * p, float16_t * pOut,
+ uint8_t ifftFlag);
+
+/* Deprecated */
+ arm_status arm_cfft_radix4_init_f16(
+ arm_cfft_radix4_instance_f16 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+/* Deprecated */
+ void arm_cfft_radix4_f16(
+ const arm_cfft_radix4_instance_f16 * S,
+ float16_t * pSrc);
+
+
+/* Deprecated */
+ arm_status arm_cfft_radix2_init_f16(
+ arm_cfft_radix2_instance_f16 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+/* Deprecated */
+ void arm_cfft_radix2_f16(
+ const arm_cfft_radix2_instance_f16 * S,
+ float16_t * pSrc);
+
+ /**
+ * @brief Instance structure for the Floating-point MFCC function.
+ */
+typedef struct
+ {
+ const float16_t *dctCoefs; /**< Internal DCT coefficients */
+ const float16_t *filterCoefs; /**< Internal Mel filter coefficients */
+ const float16_t *windowCoefs; /**< Windowing coefficients */
+ const uint32_t *filterPos; /**< Internal Mel filter positions in spectrum */
+ const uint32_t *filterLengths; /**< Internal Mel filter lengths */
+ uint32_t fftLen; /**< FFT length */
+ uint32_t nbMelFilters; /**< Number of Mel filters */
+ uint32_t nbDctOutputs; /**< Number of DCT outputs */
+#if defined(ARM_MFCC_CFFT_BASED)
+ /* Implementation of the MFCC is using a CFFT */
+ arm_cfft_instance_f16 cfft; /**< Internal CFFT instance */
+#else
+ /* Implementation of the MFCC is using a RFFT (default) */
+ arm_rfft_fast_instance_f16 rfft;
+#endif
+ } arm_mfcc_instance_f16 ;
+
+arm_status arm_mfcc_init_f16(
+ arm_mfcc_instance_f16 * S,
+ uint32_t fftLen,
+ uint32_t nbMelFilters,
+ uint32_t nbDctOutputs,
+ const float16_t *dctCoefs,
+ const uint32_t *filterPos,
+ const uint32_t *filterLengths,
+ const float16_t *filterCoefs,
+ const float16_t *windowCoefs
+ );
+
+
+/**
+ @brief MFCC F16
+ @param[in] S points to the mfcc instance structure
+ @param[in] pSrc points to the input samples
+ @param[out] pDst points to the output MFCC values
+ @param[inout] pTmp points to a temporary buffer of complex
+ @return none
+ */
+ void arm_mfcc_f16(
+ const arm_mfcc_instance_f16 * S,
+ float16_t *pSrc,
+ float16_t *pDst,
+ float16_t *pTmp
+ );
+
+
+#endif /* defined(ARM_FLOAT16_SUPPORTED)*/
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _TRANSFORM_FUNCTIONS_F16_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/utils.h b/Drivers/CMSIS/DSP/Include/dsp/utils.h
new file mode 100644
index 0000000..7f5acb3
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/utils.h
@@ -0,0 +1,240 @@
+/******************************************************************************
+ * @file arm_math_utils.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.9.0
+ * @date 20. July 2020
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef _ARM_MATH_UTILS_H_
+
+#define _ARM_MATH_UTILS_H_
+
+#include "arm_math_types.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+ /**
+ * @brief Macros required for reciprocal calculation in Normalized LMS
+ */
+
+#define INDEX_MASK 0x0000003F
+
+
+#define SQ(x) ((x) * (x))
+
+#define ROUND_UP(N, S) ((((N) + (S) - 1) / (S)) * (S))
+
+
+ /**
+ * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type.
+ */
+ __STATIC_FORCEINLINE uint32_t arm_recip_q31(
+ q31_t in,
+ q31_t * dst,
+ const q31_t * pRecipTable)
+ {
+ q31_t out;
+ uint32_t tempVal;
+ uint32_t index, i;
+ uint32_t signBits;
+
+ if (in > 0)
+ {
+ signBits = ((uint32_t) (__CLZ( in) - 1));
+ }
+ else
+ {
+ signBits = ((uint32_t) (__CLZ(-in) - 1));
+ }
+
+ /* Convert input sample to 1.31 format */
+ in = (in << signBits);
+
+ /* calculation of index for initial approximated Val */
+ index = (uint32_t)(in >> 24);
+ index = (index & INDEX_MASK);
+
+ /* 1.31 with exp 1 */
+ out = pRecipTable[index];
+
+ /* calculation of reciprocal value */
+ /* running approximation for two iterations */
+ for (i = 0U; i < 2U; i++)
+ {
+ tempVal = (uint32_t) (((q63_t) in * out) >> 31);
+ tempVal = 0x7FFFFFFFu - tempVal;
+ /* 1.31 with exp 1 */
+ /* out = (q31_t) (((q63_t) out * tempVal) >> 30); */
+ out = clip_q63_to_q31(((q63_t) out * tempVal) >> 30);
+ }
+
+ /* write output */
+ *dst = out;
+
+ /* return num of signbits of out = 1/in value */
+ return (signBits + 1U);
+ }
+
+
+ /**
+ * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type.
+ */
+ __STATIC_FORCEINLINE uint32_t arm_recip_q15(
+ q15_t in,
+ q15_t * dst,
+ const q15_t * pRecipTable)
+ {
+ q15_t out = 0;
+ uint32_t tempVal = 0;
+ uint32_t index = 0, i = 0;
+ uint32_t signBits = 0;
+
+ if (in > 0)
+ {
+ signBits = ((uint32_t)(__CLZ( in) - 17));
+ }
+ else
+ {
+ signBits = ((uint32_t)(__CLZ(-in) - 17));
+ }
+
+ /* Convert input sample to 1.15 format */
+ in = (in << signBits);
+
+ /* calculation of index for initial approximated Val */
+ index = (uint32_t)(in >> 8);
+ index = (index & INDEX_MASK);
+
+ /* 1.15 with exp 1 */
+ out = pRecipTable[index];
+
+ /* calculation of reciprocal value */
+ /* running approximation for two iterations */
+ for (i = 0U; i < 2U; i++)
+ {
+ tempVal = (uint32_t) (((q31_t) in * out) >> 15);
+ tempVal = 0x7FFFu - tempVal;
+ /* 1.15 with exp 1 */
+ out = (q15_t) (((q31_t) out * tempVal) >> 14);
+ /* out = clip_q31_to_q15(((q31_t) out * tempVal) >> 14); */
+ }
+
+ /* write output */
+ *dst = out;
+
+ /* return num of signbits of out = 1/in value */
+ return (signBits + 1);
+ }
+
+
+/**
+ * @brief 64-bit to 32-bit unsigned normalization
+ * @param[in] in is input unsigned long long value
+ * @param[out] normalized is the 32-bit normalized value
+ * @param[out] norm is norm scale
+ */
+__STATIC_INLINE void arm_norm_64_to_32u(uint64_t in, int32_t * normalized, int32_t *norm)
+{
+ int32_t n1;
+ int32_t hi = (int32_t) (in >> 32);
+ int32_t lo = (int32_t) ((in << 32) >> 32);
+
+ n1 = __CLZ(hi) - 32;
+ if (!n1)
+ {
+ /*
+ * input fits in 32-bit
+ */
+ n1 = __CLZ(lo);
+ if (!n1)
+ {
+ /*
+ * MSB set, need to scale down by 1
+ */
+ *norm = -1;
+ *normalized = (((uint32_t) lo) >> 1);
+ } else
+ {
+ if (n1 == 32)
+ {
+ /*
+ * input is zero
+ */
+ *norm = 0;
+ *normalized = 0;
+ } else
+ {
+ /*
+ * 32-bit normalization
+ */
+ *norm = n1 - 1;
+ *normalized = lo << *norm;
+ }
+ }
+ } else
+ {
+ /*
+ * input fits in 64-bit
+ */
+ n1 = 1 - n1;
+ *norm = -n1;
+ /*
+ * 64 bit normalization
+ */
+ *normalized = (((uint32_t) lo) >> n1) | (hi << (32 - n1));
+ }
+}
+
+__STATIC_INLINE q31_t arm_div_q63_to_q31(q63_t num, q31_t den)
+{
+ q31_t result;
+ uint64_t absNum;
+ int32_t normalized;
+ int32_t norm;
+
+ /*
+ * if sum fits in 32bits
+ * avoid costly 64-bit division
+ */
+ absNum = num > 0 ? num : -num;
+ arm_norm_64_to_32u(absNum, &normalized, &norm);
+ if (norm > 0)
+ /*
+ * 32-bit division
+ */
+ result = (q31_t) num / den;
+ else
+ /*
+ * 64-bit division
+ */
+ result = (q31_t) (num / den);
+
+ return result;
+}
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /*ifndef _ARM_MATH_UTILS_H_ */