diff options
Diffstat (limited to 'Drivers/CMSIS/DSP/Include')
44 files changed, 16041 insertions, 0 deletions
diff --git a/Drivers/CMSIS/DSP/Include/arm_common_tables.h b/Drivers/CMSIS/DSP/Include/arm_common_tables.h new file mode 100644 index 0000000..3e72c80 --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/arm_common_tables.h @@ -0,0 +1,539 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_common_tables.h + * Description: Extern declaration for common tables + * + * @version V1.10.0 + * @date 08 July 2021 + * + * Target Processor: Cortex-M and Cortex-A cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef _ARM_COMMON_TABLES_H +#define _ARM_COMMON_TABLES_H + +#include "arm_math_types.h" +#include "dsp/fast_math_functions.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + +#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES) + /* Double Precision Float CFFT twiddles */ + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREV_1024) + extern const uint16_t armBitRevTable[1024]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_16) + extern const uint64_t twiddleCoefF64_16[32]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_32) + extern const uint64_t twiddleCoefF64_32[64]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_64) + extern const uint64_t twiddleCoefF64_64[128]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_128) + extern const uint64_t twiddleCoefF64_128[256]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_256) + extern const uint64_t twiddleCoefF64_256[512]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_512) + extern const uint64_t twiddleCoefF64_512[1024]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_1024) + extern const uint64_t twiddleCoefF64_1024[2048]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_2048) + extern const uint64_t twiddleCoefF64_2048[4096]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_4096) + extern const uint64_t twiddleCoefF64_4096[8192]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_16) + extern const float32_t twiddleCoef_16[32]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_32) + extern const float32_t twiddleCoef_32[64]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_64) + extern const float32_t twiddleCoef_64[128]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_128) + extern const float32_t twiddleCoef_128[256]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_256) + extern const float32_t twiddleCoef_256[512]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_512) + extern const float32_t twiddleCoef_512[1024]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_1024) + extern const float32_t twiddleCoef_1024[2048]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_2048) + extern const float32_t twiddleCoef_2048[4096]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_4096) + extern const float32_t twiddleCoef_4096[8192]; + #define twiddleCoef twiddleCoef_4096 + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + /* Q31 */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_16) + extern const q31_t twiddleCoef_16_q31[24]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_32) + extern const q31_t twiddleCoef_32_q31[48]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_64) + extern const q31_t twiddleCoef_64_q31[96]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_128) + extern const q31_t twiddleCoef_128_q31[192]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_256) + extern const q31_t twiddleCoef_256_q31[384]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_512) + extern const q31_t twiddleCoef_512_q31[768]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_1024) + extern const q31_t twiddleCoef_1024_q31[1536]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_2048) + extern const q31_t twiddleCoef_2048_q31[3072]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_4096) + extern const q31_t twiddleCoef_4096_q31[6144]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_16) + extern const q15_t twiddleCoef_16_q15[24]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_32) + extern const q15_t twiddleCoef_32_q15[48]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_64) + extern const q15_t twiddleCoef_64_q15[96]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_128) + extern const q15_t twiddleCoef_128_q15[192]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_256) + extern const q15_t twiddleCoef_256_q15[384]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_512) + extern const q15_t twiddleCoef_512_q15[768]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_1024) + extern const q15_t twiddleCoef_1024_q15[1536]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_2048) + extern const q15_t twiddleCoef_2048_q15[3072]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_4096) + extern const q15_t twiddleCoef_4096_q15[6144]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + /* Double Precision Float RFFT twiddles */ + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_32) + extern const uint64_t twiddleCoefF64_rfft_32[32]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_64) + extern const uint64_t twiddleCoefF64_rfft_64[64]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_128) + extern const uint64_t twiddleCoefF64_rfft_128[128]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_256) + extern const uint64_t twiddleCoefF64_rfft_256[256]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_512) + extern const uint64_t twiddleCoefF64_rfft_512[512]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_1024) + extern const uint64_t twiddleCoefF64_rfft_1024[1024]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_2048) + extern const uint64_t twiddleCoefF64_rfft_2048[2048]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_4096) + extern const uint64_t twiddleCoefF64_rfft_4096[4096]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_32) + extern const float32_t twiddleCoef_rfft_32[32]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_64) + extern const float32_t twiddleCoef_rfft_64[64]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_128) + extern const float32_t twiddleCoef_rfft_128[128]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_256) + extern const float32_t twiddleCoef_rfft_256[256]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_512) + extern const float32_t twiddleCoef_rfft_512[512]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_1024) + extern const float32_t twiddleCoef_rfft_1024[1024]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_2048) + extern const float32_t twiddleCoef_rfft_2048[2048]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_4096) + extern const float32_t twiddleCoef_rfft_4096[4096]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + + /* Double precision floating-point bit reversal tables */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_16) + #define ARMBITREVINDEXTABLEF64_16_TABLE_LENGTH ((uint16_t)12) + extern const uint16_t armBitRevIndexTableF64_16[ARMBITREVINDEXTABLEF64_16_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_32) + #define ARMBITREVINDEXTABLEF64_32_TABLE_LENGTH ((uint16_t)24) + extern const uint16_t armBitRevIndexTableF64_32[ARMBITREVINDEXTABLEF64_32_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_64) + #define ARMBITREVINDEXTABLEF64_64_TABLE_LENGTH ((uint16_t)56) + extern const uint16_t armBitRevIndexTableF64_64[ARMBITREVINDEXTABLEF64_64_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_128) + #define ARMBITREVINDEXTABLEF64_128_TABLE_LENGTH ((uint16_t)112) + extern const uint16_t armBitRevIndexTableF64_128[ARMBITREVINDEXTABLEF64_128_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_256) + #define ARMBITREVINDEXTABLEF64_256_TABLE_LENGTH ((uint16_t)240) + extern const uint16_t armBitRevIndexTableF64_256[ARMBITREVINDEXTABLEF64_256_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_512) + #define ARMBITREVINDEXTABLEF64_512_TABLE_LENGTH ((uint16_t)480) + extern const uint16_t armBitRevIndexTableF64_512[ARMBITREVINDEXTABLEF64_512_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_1024) + #define ARMBITREVINDEXTABLEF64_1024_TABLE_LENGTH ((uint16_t)992) + extern const uint16_t armBitRevIndexTableF64_1024[ARMBITREVINDEXTABLEF64_1024_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_2048) + #define ARMBITREVINDEXTABLEF64_2048_TABLE_LENGTH ((uint16_t)1984) + extern const uint16_t armBitRevIndexTableF64_2048[ARMBITREVINDEXTABLEF64_2048_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_4096) + #define ARMBITREVINDEXTABLEF64_4096_TABLE_LENGTH ((uint16_t)4032) + extern const uint16_t armBitRevIndexTableF64_4096[ARMBITREVINDEXTABLEF64_4096_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + /* floating-point bit reversal tables */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_16) + #define ARMBITREVINDEXTABLE_16_TABLE_LENGTH ((uint16_t)20) + extern const uint16_t armBitRevIndexTable16[ARMBITREVINDEXTABLE_16_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_32) + #define ARMBITREVINDEXTABLE_32_TABLE_LENGTH ((uint16_t)48) + extern const uint16_t armBitRevIndexTable32[ARMBITREVINDEXTABLE_32_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_64) + #define ARMBITREVINDEXTABLE_64_TABLE_LENGTH ((uint16_t)56) + extern const uint16_t armBitRevIndexTable64[ARMBITREVINDEXTABLE_64_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_128) + #define ARMBITREVINDEXTABLE_128_TABLE_LENGTH ((uint16_t)208) + extern const uint16_t armBitRevIndexTable128[ARMBITREVINDEXTABLE_128_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_256) + #define ARMBITREVINDEXTABLE_256_TABLE_LENGTH ((uint16_t)440) + extern const uint16_t armBitRevIndexTable256[ARMBITREVINDEXTABLE_256_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_512) + #define ARMBITREVINDEXTABLE_512_TABLE_LENGTH ((uint16_t)448) + extern const uint16_t armBitRevIndexTable512[ARMBITREVINDEXTABLE_512_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_1024) + #define ARMBITREVINDEXTABLE_1024_TABLE_LENGTH ((uint16_t)1800) + extern const uint16_t armBitRevIndexTable1024[ARMBITREVINDEXTABLE_1024_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_2048) + #define ARMBITREVINDEXTABLE_2048_TABLE_LENGTH ((uint16_t)3808) + extern const uint16_t armBitRevIndexTable2048[ARMBITREVINDEXTABLE_2048_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_4096) + #define ARMBITREVINDEXTABLE_4096_TABLE_LENGTH ((uint16_t)4032) + extern const uint16_t armBitRevIndexTable4096[ARMBITREVINDEXTABLE_4096_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + + /* fixed-point bit reversal tables */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_16) + #define ARMBITREVINDEXTABLE_FIXED_16_TABLE_LENGTH ((uint16_t)12) + extern const uint16_t armBitRevIndexTable_fixed_16[ARMBITREVINDEXTABLE_FIXED_16_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_32) + #define ARMBITREVINDEXTABLE_FIXED_32_TABLE_LENGTH ((uint16_t)24) + extern const uint16_t armBitRevIndexTable_fixed_32[ARMBITREVINDEXTABLE_FIXED_32_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_64) + #define ARMBITREVINDEXTABLE_FIXED_64_TABLE_LENGTH ((uint16_t)56) + extern const uint16_t armBitRevIndexTable_fixed_64[ARMBITREVINDEXTABLE_FIXED_64_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_128) + #define ARMBITREVINDEXTABLE_FIXED_128_TABLE_LENGTH ((uint16_t)112) + extern const uint16_t armBitRevIndexTable_fixed_128[ARMBITREVINDEXTABLE_FIXED_128_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_256) + #define ARMBITREVINDEXTABLE_FIXED_256_TABLE_LENGTH ((uint16_t)240) + extern const uint16_t armBitRevIndexTable_fixed_256[ARMBITREVINDEXTABLE_FIXED_256_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_512) + #define ARMBITREVINDEXTABLE_FIXED_512_TABLE_LENGTH ((uint16_t)480) + extern const uint16_t armBitRevIndexTable_fixed_512[ARMBITREVINDEXTABLE_FIXED_512_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_1024) + #define ARMBITREVINDEXTABLE_FIXED_1024_TABLE_LENGTH ((uint16_t)992) + extern const uint16_t armBitRevIndexTable_fixed_1024[ARMBITREVINDEXTABLE_FIXED_1024_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_2048) + #define ARMBITREVINDEXTABLE_FIXED_2048_TABLE_LENGTH ((uint16_t)1984) + extern const uint16_t armBitRevIndexTable_fixed_2048[ARMBITREVINDEXTABLE_FIXED_2048_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_4096) + #define ARMBITREVINDEXTABLE_FIXED_4096_TABLE_LENGTH ((uint16_t)4032) + extern const uint16_t armBitRevIndexTable_fixed_4096[ARMBITREVINDEXTABLE_FIXED_4096_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_REALCOEF_F32) + extern const float32_t realCoefA[8192]; + extern const float32_t realCoefB[8192]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_REALCOEF_Q31) + extern const q31_t realCoefAQ31[8192]; + extern const q31_t realCoefBQ31[8192]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_REALCOEF_Q15) + extern const q15_t realCoefAQ15[8192]; + extern const q15_t realCoefBQ15[8192]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_F32_128) + extern const float32_t Weights_128[256]; + extern const float32_t cos_factors_128[128]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_F32_512) + extern const float32_t Weights_512[1024]; + extern const float32_t cos_factors_512[512]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_F32_2048) + extern const float32_t Weights_2048[4096]; + extern const float32_t cos_factors_2048[2048]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_F32_8192) + extern const float32_t Weights_8192[16384]; + extern const float32_t cos_factors_8192[8192]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q15_128) + extern const q15_t WeightsQ15_128[256]; + extern const q15_t cos_factorsQ15_128[128]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q15_512) + extern const q15_t WeightsQ15_512[1024]; + extern const q15_t cos_factorsQ15_512[512]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q15_2048) + extern const q15_t WeightsQ15_2048[4096]; + extern const q15_t cos_factorsQ15_2048[2048]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q15_8192) + extern const q15_t WeightsQ15_8192[16384]; + extern const q15_t cos_factorsQ15_8192[8192]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q31_128) + extern const q31_t WeightsQ31_128[256]; + extern const q31_t cos_factorsQ31_128[128]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q31_512) + extern const q31_t WeightsQ31_512[1024]; + extern const q31_t cos_factorsQ31_512[512]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q31_2048) + extern const q31_t WeightsQ31_2048[4096]; + extern const q31_t cos_factorsQ31_2048[2048]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q31_8192) + extern const q31_t WeightsQ31_8192[16384]; + extern const q31_t cos_factorsQ31_8192[8192]; + #endif + +#endif /* if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_TABLES) */ + +#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FAST_ALLOW_TABLES) + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_RECIP_Q15) + extern const q15_t armRecipTableQ15[64]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_RECIP_Q31) + extern const q31_t armRecipTableQ31[64]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */ + + /* Tables for Fast Math Sine and Cosine */ + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_SIN_F32) + extern const float32_t sinTable_f32[FAST_MATH_TABLE_SIZE + 1]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_SIN_Q31) + extern const q31_t sinTable_q31[FAST_MATH_TABLE_SIZE + 1]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_SIN_Q15) + extern const q15_t sinTable_q15[FAST_MATH_TABLE_SIZE + 1]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */ + + /* Fast vector sqrt */ + #if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE) + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_FAST_SQRT_Q31_MVE) + extern const q31_t sqrtTable_Q31[256]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */ + #endif + + /* Accurate scalar sqrt */ + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_SQRT_Q31) + extern const q31_t sqrt_initial_lut_q31[32]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_SQRT_Q15) + extern const q15_t sqrt_initial_lut_q15[16]; + #endif + + #if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE) + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_FAST_SQRT_Q15_MVE) + extern const q15_t sqrtTable_Q15[256]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */ + #endif + +#endif /* if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FAST_TABLES) */ + +#if (defined(ARM_MATH_MVEF) || defined(ARM_MATH_HELIUM)) && !defined(ARM_MATH_AUTOVECTORIZE) + extern const float32_t exp_tab[8]; + extern const float32_t __logf_lut_f32[8]; +#endif /* (defined(ARM_MATH_MVEF) || defined(ARM_MATH_HELIUM)) && !defined(ARM_MATH_AUTOVECTORIZE) */ + +#if (defined(ARM_MATH_MVEI) || defined(ARM_MATH_HELIUM)) && !defined(ARM_MATH_AUTOVECTORIZE) +extern const unsigned char hwLUT[256]; +#endif /* (defined(ARM_MATH_MVEI) || defined(ARM_MATH_HELIUM)) */ + +#ifdef __cplusplus +} +#endif + +#endif /* ARM_COMMON_TABLES_H */ + diff --git a/Drivers/CMSIS/DSP/Include/arm_common_tables_f16.h b/Drivers/CMSIS/DSP/Include/arm_common_tables_f16.h new file mode 100644 index 0000000..f9a63fe --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/arm_common_tables_f16.h @@ -0,0 +1,132 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_common_tables_f16.h + * Description: Extern declaration for common tables + * + * @version V1.10.0 + * @date 08 July 2021 + * + * Target Processor: Cortex-M and Cortex-A cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef _ARM_COMMON_TABLES_F16_H +#define _ARM_COMMON_TABLES_F16_H + +#include "arm_math_types_f16.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + +#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES) + + /* F16 */ + #if !defined(__CC_ARM) && defined(ARM_FLOAT16_SUPPORTED) + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_16) + extern const float16_t twiddleCoefF16_16[32]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_32) + extern const float16_t twiddleCoefF16_32[64]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_64) + extern const float16_t twiddleCoefF16_64[128]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_128) + extern const float16_t twiddleCoefF16_128[256]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_256) + extern const float16_t twiddleCoefF16_256[512]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_512) + extern const float16_t twiddleCoefF16_512[1024]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_1024) + extern const float16_t twiddleCoefF16_1024[2048]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_2048) + extern const float16_t twiddleCoefF16_2048[4096]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_4096) + extern const float16_t twiddleCoefF16_4096[8192]; + #define twiddleCoefF16 twiddleCoefF16_4096 + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_32) + extern const float16_t twiddleCoefF16_rfft_32[32]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_64) + extern const float16_t twiddleCoefF16_rfft_64[64]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_128) + extern const float16_t twiddleCoefF16_rfft_128[128]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_256) + extern const float16_t twiddleCoefF16_rfft_256[256]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_512) + extern const float16_t twiddleCoefF16_rfft_512[512]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_1024) + extern const float16_t twiddleCoefF16_rfft_1024[1024]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_2048) + extern const float16_t twiddleCoefF16_rfft_2048[2048]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_4096) + extern const float16_t twiddleCoefF16_rfft_4096[4096]; + #endif + + #endif /* ARMAC5 */ + +#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES) */ + +#if !defined(__CC_ARM) && defined(ARM_FLOAT16_SUPPORTED) + +#if (defined(ARM_MATH_MVEF) || defined(ARM_MATH_HELIUM)) && !defined(ARM_MATH_AUTOVECTORIZE) + extern const float16_t exp_tab_f16[8]; + extern const float16_t __logf_lut_f16[8]; +#endif /* (defined(ARM_MATH_MVEF) || defined(ARM_MATH_HELIUM)) && !defined(ARM_MATH_AUTOVECTORIZE) */ +#endif + + +#ifdef __cplusplus +} +#endif + +#endif /* _ARM_COMMON_TABLES_F16_H */ + + diff --git a/Drivers/CMSIS/DSP/Include/arm_const_structs.h b/Drivers/CMSIS/DSP/Include/arm_const_structs.h new file mode 100644 index 0000000..59026db --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/arm_const_structs.h @@ -0,0 +1,86 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_const_structs.h + * Description: Constant structs that are initialized for user convenience. + * For example, some can be given as arguments to the arm_cfft_f32() function. + * + * @version V1.10.0 + * @date 08 July 2021 + * + * Target Processor: Cortex-M and Cortex-A cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef _ARM_CONST_STRUCTS_H +#define _ARM_CONST_STRUCTS_H + +#include "arm_math_types.h" +#include "arm_common_tables.h" +#include "dsp/transform_functions.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + extern const arm_cfft_instance_f64 arm_cfft_sR_f64_len16; + extern const arm_cfft_instance_f64 arm_cfft_sR_f64_len32; + extern const arm_cfft_instance_f64 arm_cfft_sR_f64_len64; + extern const arm_cfft_instance_f64 arm_cfft_sR_f64_len128; + extern const arm_cfft_instance_f64 arm_cfft_sR_f64_len256; + extern const arm_cfft_instance_f64 arm_cfft_sR_f64_len512; + extern const arm_cfft_instance_f64 arm_cfft_sR_f64_len1024; + extern const arm_cfft_instance_f64 arm_cfft_sR_f64_len2048; + extern const arm_cfft_instance_f64 arm_cfft_sR_f64_len4096; + + extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len16; + extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len32; + extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len64; + extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len128; + extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len256; + extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len512; + extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len1024; + extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len2048; + extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len4096; + + extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len16; + extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len32; + extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len64; + extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len128; + extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len256; + extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len512; + extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len1024; + extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len2048; + extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len4096; + + extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len16; + extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len32; + extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len64; + extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len128; + extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len256; + extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len512; + extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len1024; + extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len2048; + extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len4096; + +#ifdef __cplusplus +} +#endif + +#endif + diff --git a/Drivers/CMSIS/DSP/Include/arm_const_structs_f16.h b/Drivers/CMSIS/DSP/Include/arm_const_structs_f16.h new file mode 100644 index 0000000..0984d74 --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/arm_const_structs_f16.h @@ -0,0 +1,77 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_const_structs_f16.h + * Description: Constant structs that are initialized for user convenience. + * For example, some can be given as arguments to the arm_cfft_f16() function. + * + * @version V1.10.0 + * @date 08 July 2021 + * + * Target Processor: Cortex-M and Cortex-A cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef _ARM_CONST_STRUCTS_F16_H +#define _ARM_CONST_STRUCTS_F16_H + +#include "arm_math_types_f16.h" +#include "arm_common_tables.h" +#include "arm_common_tables_f16.h" +#include "dsp/transform_functions_f16.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + +#if !defined(__CC_ARM) && defined(ARM_FLOAT16_SUPPORTED) + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_16) && defined(ARM_TABLE_BITREVIDX_FLT_16)) + extern const arm_cfft_instance_f16 arm_cfft_sR_f16_len16; + #endif + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_32) && defined(ARM_TABLE_BITREVIDX_FLT_32)) + extern const arm_cfft_instance_f16 arm_cfft_sR_f16_len32; + #endif + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_64) && defined(ARM_TABLE_BITREVIDX_FLT_64)) + extern const arm_cfft_instance_f16 arm_cfft_sR_f16_len64; + #endif + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_128) && defined(ARM_TABLE_BITREVIDX_FLT_128)) + extern const arm_cfft_instance_f16 arm_cfft_sR_f16_len128; + #endif + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_256) && defined(ARM_TABLE_BITREVIDX_FLT_256)) + extern const arm_cfft_instance_f16 arm_cfft_sR_f16_len256; + #endif + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_512) && defined(ARM_TABLE_BITREVIDX_FLT_512)) + extern const arm_cfft_instance_f16 arm_cfft_sR_f16_len512; + #endif + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_1024) && defined(ARM_TABLE_BITREVIDX_FLT_1024)) + extern const arm_cfft_instance_f16 arm_cfft_sR_f16_len1024; + #endif + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_2048) && defined(ARM_TABLE_BITREVIDX_FLT_2048)) + extern const arm_cfft_instance_f16 arm_cfft_sR_f16_len2048; + #endif + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_4096) && defined(ARM_TABLE_BITREVIDX_FLT_4096)) + extern const arm_cfft_instance_f16 arm_cfft_sR_f16_len4096; + #endif +#endif + +#ifdef __cplusplus +} +#endif + +#endif diff --git a/Drivers/CMSIS/DSP/Include/arm_helium_utils.h b/Drivers/CMSIS/DSP/Include/arm_helium_utils.h new file mode 100644 index 0000000..ae9037c --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/arm_helium_utils.h @@ -0,0 +1,753 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_helium_utils.h + * Description: Utility functions for Helium development + * + * @version V1.10.0 + * @date 08 July 2021 + * + * Target Processor: Cortex-M and Cortex-A cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef _ARM_UTILS_HELIUM_H_ +#define _ARM_UTILS_HELIUM_H_ + + +#ifdef __cplusplus +extern "C" +{ +#endif +/*************************************** + +Definitions available for MVEF and MVEI + +***************************************/ +#if (defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF) || defined(ARM_MATH_MVEI)) && !defined(ARM_MATH_AUTOVECTORIZE) + +#define INACTIVELANE 0 /* inactive lane content */ + + +#endif /* defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF) || defined(ARM_MATH_MVEI) */ + +/*************************************** + +Definitions available for MVEF only + +***************************************/ +#if (defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF)) && !defined(ARM_MATH_AUTOVECTORIZE) + +__STATIC_FORCEINLINE float32_t vecAddAcrossF32Mve(float32x4_t in) +{ + float32_t acc; + + acc = vgetq_lane(in, 0) + vgetq_lane(in, 1) + + vgetq_lane(in, 2) + vgetq_lane(in, 3); + + return acc; +} + + + + +/* newton initial guess */ +#define INVSQRT_MAGIC_F32 0x5f3759df +#define INV_NEWTON_INIT_F32 0x7EF127EA + + +#define INVSQRT_NEWTON_MVE_F32(invSqrt, xHalf, xStart)\ +{ \ + float32x4_t tmp; \ + \ + /* tmp = xhalf * x * x */ \ + tmp = vmulq(xStart, xStart); \ + tmp = vmulq(tmp, xHalf); \ + /* (1.5f - xhalf * x * x) */ \ + tmp = vsubq(vdupq_n_f32(1.5f), tmp); \ + /* x = x*(1.5f-xhalf*x*x); */ \ + invSqrt = vmulq(tmp, xStart); \ +} +#endif /* defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF) */ + + +/*************************************** + +Definitions available for f16 datatype with HW acceleration only + +***************************************/ +#if defined(ARM_FLOAT16_SUPPORTED) +#if defined (ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE) + +__STATIC_FORCEINLINE float16_t vecAddAcrossF16Mve(float16x8_t in) +{ + float16x8_t tmpVec; + _Float16 acc; + + tmpVec = (float16x8_t) vrev32q_s16((int16x8_t) in); + in = vaddq_f16(tmpVec, in); + tmpVec = (float16x8_t) vrev64q_s32((int32x4_t) in); + in = vaddq_f16(tmpVec, in); + acc = (_Float16)vgetq_lane_f16(in, 0) + (_Float16)vgetq_lane_f16(in, 4); + + return acc; +} + +__STATIC_FORCEINLINE float16x8_t __mve_cmplx_sum_intra_vec_f16( + float16x8_t vecIn) +{ + float16x8_t vecTmp, vecOut; + uint32_t tmp; + + vecTmp = (float16x8_t) vrev64q_s32((int32x4_t) vecIn); + // TO TRACK : using canonical addition leads to unefficient code generation for f16 + // vecTmp = vecTmp + vecAccCpx0; + /* + * Compute + * re0+re1 | im0+im1 | re0+re1 | im0+im1 + * re2+re3 | im2+im3 | re2+re3 | im2+im3 + */ + vecTmp = vaddq_f16(vecTmp, vecIn); + vecOut = vecTmp; + /* + * shift left, random tmp insertion in bottom + */ + vecOut = vreinterpretq_f16_s32(vshlcq_s32(vreinterpretq_s32_f16(vecOut) , &tmp, 32)); + /* + * Compute: + * DONTCARE | DONTCARE | re0+re1+re0+re1 |im0+im1+im0+im1 + * re0+re1+re2+re3 | im0+im1+im2+im3 | re2+re3+re2+re3 |im2+im3+im2+im3 + */ + vecOut = vaddq_f16(vecOut, vecTmp); + /* + * Cmplx sum is in 4rd & 5th f16 elt + * return full vector + */ + return vecOut; +} + + +#define mve_cmplx_sum_intra_r_i_f16(vec, Re, Im) \ +{ \ + float16x8_t vecOut = __mve_cmplx_sum_intra_vec_f16(vec); \ + Re = vgetq_lane(vecOut, 4); \ + Im = vgetq_lane(vecOut, 5); \ +} + +__STATIC_FORCEINLINE void mve_cmplx_sum_intra_vec_f16( + float16x8_t vecIn, + float16_t *pOut) +{ + float16x8_t vecOut = __mve_cmplx_sum_intra_vec_f16(vecIn); + /* + * Cmplx sum is in 4rd & 5th f16 elt + * use 32-bit extraction + */ + *(float32_t *) pOut = ((float32x4_t) vecOut)[2]; +} + + +#define INVSQRT_MAGIC_F16 0x59ba /* ( 0x1ba = 0x3759df >> 13) */ + +/* canonical version of INVSQRT_NEWTON_MVE_F16 leads to bad performance */ +#define INVSQRT_NEWTON_MVE_F16(invSqrt, xHalf, xStart) \ +{ \ + float16x8_t tmp; \ + \ + /* tmp = xhalf * x * x */ \ + tmp = vmulq(xStart, xStart); \ + tmp = vmulq(tmp, xHalf); \ + /* (1.5f - xhalf * x * x) */ \ + tmp = vsubq(vdupq_n_f16((float16_t)1.5), tmp); \ + /* x = x*(1.5f-xhalf*x*x); */ \ + invSqrt = vmulq(tmp, xStart); \ +} + +#endif +#endif + +/*************************************** + +Definitions available for MVEI and MVEF only + +***************************************/ +#if (defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF) || defined(ARM_MATH_MVEI)) && !defined(ARM_MATH_AUTOVECTORIZE) +/* Following functions are used to transpose matrix in f32 and q31 cases */ +__STATIC_INLINE arm_status arm_mat_trans_32bit_2x2_mve( + uint32_t * pDataSrc, + uint32_t * pDataDest) +{ + static const uint32x4_t vecOffs = { 0, 2, 1, 3 }; + /* + * + * | 0 1 | => | 0 2 | + * | 2 3 | | 1 3 | + * + */ + uint32x4_t vecIn = vldrwq_u32((uint32_t const *)pDataSrc); + vstrwq_scatter_shifted_offset_u32(pDataDest, vecOffs, vecIn); + + return (ARM_MATH_SUCCESS); +} + +__STATIC_INLINE arm_status arm_mat_trans_32bit_3x3_mve( + uint32_t * pDataSrc, + uint32_t * pDataDest) +{ + const uint32x4_t vecOffs1 = { 0, 3, 6, 1}; + const uint32x4_t vecOffs2 = { 4, 7, 2, 5}; + /* + * + * | 0 1 2 | | 0 3 6 | 4 x 32 flattened version | 0 3 6 1 | + * | 3 4 5 | => | 1 4 7 | => | 4 7 2 5 | + * | 6 7 8 | | 2 5 8 | (row major) | 8 . . . | + * + */ + uint32x4_t vecIn1 = vldrwq_u32((uint32_t const *) pDataSrc); + uint32x4_t vecIn2 = vldrwq_u32((uint32_t const *) &pDataSrc[4]); + + vstrwq_scatter_shifted_offset_u32(pDataDest, vecOffs1, vecIn1); + vstrwq_scatter_shifted_offset_u32(pDataDest, vecOffs2, vecIn2); + + pDataDest[8] = pDataSrc[8]; + + return (ARM_MATH_SUCCESS); +} + +__STATIC_INLINE arm_status arm_mat_trans_32bit_4x4_mve(uint32_t * pDataSrc, uint32_t * pDataDest) +{ + /* + * 4x4 Matrix transposition + * is 4 x de-interleave operation + * + * 0 1 2 3 0 4 8 12 + * 4 5 6 7 1 5 9 13 + * 8 9 10 11 2 6 10 14 + * 12 13 14 15 3 7 11 15 + */ + + uint32x4x4_t vecIn; + + vecIn = vld4q((uint32_t const *) pDataSrc); + vstrwq(pDataDest, vecIn.val[0]); + pDataDest += 4; + vstrwq(pDataDest, vecIn.val[1]); + pDataDest += 4; + vstrwq(pDataDest, vecIn.val[2]); + pDataDest += 4; + vstrwq(pDataDest, vecIn.val[3]); + + return (ARM_MATH_SUCCESS); +} + + +__STATIC_INLINE arm_status arm_mat_trans_32bit_generic_mve( + uint16_t srcRows, + uint16_t srcCols, + uint32_t * pDataSrc, + uint32_t * pDataDest) +{ + uint32x4_t vecOffs; + uint32_t i; + uint32_t blkCnt; + uint32_t const *pDataC; + uint32_t *pDataDestR; + uint32x4_t vecIn; + + vecOffs = vidupq_u32((uint32_t)0, 1); + vecOffs = vecOffs * srcCols; + + i = srcCols; + do + { + pDataC = (uint32_t const *) pDataSrc; + pDataDestR = pDataDest; + + blkCnt = srcRows >> 2; + while (blkCnt > 0U) + { + vecIn = vldrwq_gather_shifted_offset_u32(pDataC, vecOffs); + vstrwq(pDataDestR, vecIn); + pDataDestR += 4; + pDataC = pDataC + srcCols * 4; + /* + * Decrement the blockSize loop counter + */ + blkCnt--; + } + + /* + * tail + */ + blkCnt = srcRows & 3; + if (blkCnt > 0U) + { + mve_pred16_t p0 = vctp32q(blkCnt); + vecIn = vldrwq_gather_shifted_offset_u32(pDataC, vecOffs); + vstrwq_p(pDataDestR, vecIn, p0); + } + + pDataSrc += 1; + pDataDest += srcRows; + } + while (--i); + + return (ARM_MATH_SUCCESS); +} + +__STATIC_INLINE arm_status arm_mat_cmplx_trans_32bit( + uint16_t srcRows, + uint16_t srcCols, + uint32_t *pDataSrc, + uint16_t dstRows, + uint16_t dstCols, + uint32_t *pDataDest) +{ + uint32_t i; + uint32_t const *pDataC; + uint32_t *pDataRow; + uint32_t *pDataDestR, *pDataDestRow; + uint32x4_t vecOffsRef, vecOffsCur; + uint32_t blkCnt; + uint32x4_t vecIn; + +#ifdef ARM_MATH_MATRIX_CHECK + /* + * Check for matrix mismatch condition + */ + if ((srcRows != dstCols) || (srcCols != dstRows)) + { + /* + * Set status as ARM_MATH_SIZE_MISMATCH + */ + return ARM_MATH_SIZE_MISMATCH; + } +#else + (void)dstRows; + (void)dstCols; +#endif + + /* 2x2, 3x3 and 4x4 specialization to be added */ + + vecOffsRef[0] = 0; + vecOffsRef[1] = 1; + vecOffsRef[2] = srcCols << 1; + vecOffsRef[3] = (srcCols << 1) + 1; + + pDataRow = pDataSrc; + pDataDestRow = pDataDest; + i = srcCols; + do + { + pDataC = (uint32_t const *) pDataRow; + pDataDestR = pDataDestRow; + vecOffsCur = vecOffsRef; + + blkCnt = (srcRows * CMPLX_DIM) >> 2; + while (blkCnt > 0U) + { + vecIn = vldrwq_gather_shifted_offset(pDataC, vecOffsCur); + vstrwq(pDataDestR, vecIn); + pDataDestR += 4; + vecOffsCur = vaddq(vecOffsCur, (srcCols << 2)); + /* + * Decrement the blockSize loop counter + */ + blkCnt--; + } + /* + * tail + * (will be merged thru tail predication) + */ + blkCnt = (srcRows * CMPLX_DIM) & 3; + if (blkCnt > 0U) + { + mve_pred16_t p0 = vctp32q(blkCnt); + vecIn = vldrwq_gather_shifted_offset(pDataC, vecOffsCur); + vstrwq_p(pDataDestR, vecIn, p0); + } + + pDataRow += CMPLX_DIM; + pDataDestRow += (srcRows * CMPLX_DIM); + } + while (--i); + + return (ARM_MATH_SUCCESS); +} + +__STATIC_INLINE arm_status arm_mat_trans_16bit_2x2(uint16_t * pDataSrc, uint16_t * pDataDest) +{ + pDataDest[0] = pDataSrc[0]; + pDataDest[3] = pDataSrc[3]; + pDataDest[2] = pDataSrc[1]; + pDataDest[1] = pDataSrc[2]; + + return (ARM_MATH_SUCCESS); +} + +__STATIC_INLINE arm_status arm_mat_trans_16bit_3x3_mve(uint16_t * pDataSrc, uint16_t * pDataDest) +{ + static const uint16_t stridesTr33[8] = { 0, 3, 6, 1, 4, 7, 2, 5 }; + uint16x8_t vecOffs1; + uint16x8_t vecIn1; + /* + * + * | 0 1 2 | | 0 3 6 | 8 x 16 flattened version | 0 3 6 1 4 7 2 5 | + * | 3 4 5 | => | 1 4 7 | => | 8 . . . . . . . | + * | 6 7 8 | | 2 5 8 | (row major) + * + */ + vecOffs1 = vldrhq_u16((uint16_t const *) stridesTr33); + vecIn1 = vldrhq_u16((uint16_t const *) pDataSrc); + + vstrhq_scatter_shifted_offset_u16(pDataDest, vecOffs1, vecIn1); + + pDataDest[8] = pDataSrc[8]; + + return (ARM_MATH_SUCCESS); +} + + +__STATIC_INLINE arm_status arm_mat_trans_16bit_4x4_mve(uint16_t * pDataSrc, uint16_t * pDataDest) +{ + static const uint16_t stridesTr44_1[8] = { 0, 4, 8, 12, 1, 5, 9, 13 }; + static const uint16_t stridesTr44_2[8] = { 2, 6, 10, 14, 3, 7, 11, 15 }; + uint16x8_t vecOffs1, vecOffs2; + uint16x8_t vecIn1, vecIn2; + uint16_t const * pDataSrcVec = (uint16_t const *) pDataSrc; + + /* + * 4x4 Matrix transposition + * + * | 0 1 2 3 | | 0 4 8 12 | 8 x 16 flattened version + * | 4 5 6 7 | => | 1 5 9 13 | => [0 4 8 12 1 5 9 13] + * | 8 9 10 11 | | 2 6 10 14 | [2 6 10 14 3 7 11 15] + * | 12 13 14 15 | | 3 7 11 15 | + */ + + vecOffs1 = vldrhq_u16((uint16_t const *) stridesTr44_1); + vecOffs2 = vldrhq_u16((uint16_t const *) stridesTr44_2); + vecIn1 = vldrhq_u16(pDataSrcVec); + pDataSrcVec += 8; + vecIn2 = vldrhq_u16(pDataSrcVec); + + vstrhq_scatter_shifted_offset_u16(pDataDest, vecOffs1, vecIn1); + vstrhq_scatter_shifted_offset_u16(pDataDest, vecOffs2, vecIn2); + + + return (ARM_MATH_SUCCESS); +} + + + +__STATIC_INLINE arm_status arm_mat_trans_16bit_generic( + uint16_t srcRows, + uint16_t srcCols, + uint16_t * pDataSrc, + uint16_t * pDataDest) +{ + uint16x8_t vecOffs; + uint32_t i; + uint32_t blkCnt; + uint16_t const *pDataC; + uint16_t *pDataDestR; + uint16x8_t vecIn; + + vecOffs = vidupq_u16((uint32_t)0, 1); + vecOffs = vecOffs * srcCols; + + i = srcCols; + while(i > 0U) + { + pDataC = (uint16_t const *) pDataSrc; + pDataDestR = pDataDest; + + blkCnt = srcRows >> 3; + while (blkCnt > 0U) + { + vecIn = vldrhq_gather_shifted_offset_u16(pDataC, vecOffs); + vstrhq_u16(pDataDestR, vecIn); + pDataDestR += 8; + pDataC = pDataC + srcCols * 8; + /* + * Decrement the blockSize loop counter + */ + blkCnt--; + } + + /* + * tail + */ + blkCnt = srcRows & 7; + if (blkCnt > 0U) + { + mve_pred16_t p0 = vctp16q(blkCnt); + vecIn = vldrhq_gather_shifted_offset_u16(pDataC, vecOffs); + vstrhq_p_u16(pDataDestR, vecIn, p0); + } + pDataSrc += 1; + pDataDest += srcRows; + i--; + } + + return (ARM_MATH_SUCCESS); +} + + +__STATIC_INLINE arm_status arm_mat_cmplx_trans_16bit( + uint16_t srcRows, + uint16_t srcCols, + uint16_t *pDataSrc, + uint16_t dstRows, + uint16_t dstCols, + uint16_t *pDataDest) +{ + static const uint16_t loadCmplxCol[8] = { 0, 0, 1, 1, 2, 2, 3, 3 }; + int i; + uint16x8_t vecOffsRef, vecOffsCur; + uint16_t const *pDataC; + uint16_t *pDataRow; + uint16_t *pDataDestR, *pDataDestRow; + uint32_t blkCnt; + uint16x8_t vecIn; + +#ifdef ARM_MATH_MATRIX_CHECK + /* + * Check for matrix mismatch condition + */ + if ((srcRows != dstCols) || (srcCols != dstRows)) + { + /* + * Set status as ARM_MATH_SIZE_MISMATCH + */ + return ARM_MATH_SIZE_MISMATCH; + } +#else + (void)dstRows; + (void)dstCols; +#endif + + /* + * 2x2, 3x3 and 4x4 specialization to be added + */ + + + /* + * build [0, 1, 2xcol, 2xcol+1, 4xcol, 4xcol+1, 6xcol, 6xcol+1] + */ + vecOffsRef = vldrhq_u16((uint16_t const *) loadCmplxCol); + vecOffsRef = vmulq(vecOffsRef, (uint16_t) (srcCols * CMPLX_DIM)) + + viwdupq_u16((uint32_t)0, (uint16_t) 2, 1); + + pDataRow = pDataSrc; + pDataDestRow = pDataDest; + i = srcCols; + do + { + pDataC = (uint16_t const *) pDataRow; + pDataDestR = pDataDestRow; + vecOffsCur = vecOffsRef; + + blkCnt = (srcRows * CMPLX_DIM) >> 3; + while (blkCnt > 0U) + { + vecIn = vldrhq_gather_shifted_offset(pDataC, vecOffsCur); + vstrhq(pDataDestR, vecIn); + pDataDestR+= 8; // VEC_LANES_U16 + vecOffsCur = vaddq(vecOffsCur, (srcCols << 3)); + /* + * Decrement the blockSize loop counter + */ + blkCnt--; + } + /* + * tail + * (will be merged thru tail predication) + */ + blkCnt = (srcRows * CMPLX_DIM) & 0x7; + if (blkCnt > 0U) + { + mve_pred16_t p0 = vctp16q(blkCnt); + vecIn = vldrhq_gather_shifted_offset(pDataC, vecOffsCur); + vstrhq_p(pDataDestR, vecIn, p0); + } + + pDataRow += CMPLX_DIM; + pDataDestRow += (srcRows * CMPLX_DIM); + } + while (--i); + + return (ARM_MATH_SUCCESS); +} +#endif /* MVEF and MVEI */ + +/*************************************** + +Definitions available for MVEI only + +***************************************/ +#if (defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEI)) && !defined(ARM_MATH_AUTOVECTORIZE) + +#include "arm_common_tables.h" + +#define MVE_ASRL_SAT16(acc, shift) ((sqrshrl_sat48(acc, -(32-shift)) >> 32) & 0xffffffff) +#define MVE_ASRL_SAT32(acc, shift) ((sqrshrl(acc, -(32-shift)) >> 32) & 0xffffffff) + + +#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_FAST_SQRT_Q31_MVE) +__STATIC_INLINE q31x4_t FAST_VSQRT_Q31(q31x4_t vecIn) +{ + q63x2_t vecTmpLL; + q31x4_t vecTmp0, vecTmp1; + q31_t scale; + q63_t tmp64; + q31x4_t vecNrm, vecDst, vecIdx, vecSignBits; + + + vecSignBits = vclsq(vecIn); + vecSignBits = vbicq_n_s32(vecSignBits, 1); + /* + * in = in << no_of_sign_bits; + */ + vecNrm = vshlq(vecIn, vecSignBits); + /* + * index = in >> 24; + */ + vecIdx = vecNrm >> 24; + vecIdx = vecIdx << 1; + + vecTmp0 = vldrwq_gather_shifted_offset_s32(sqrtTable_Q31, (uint32x4_t)vecIdx); + + vecIdx = vecIdx + 1; + + vecTmp1 = vldrwq_gather_shifted_offset_s32(sqrtTable_Q31, (uint32x4_t)vecIdx); + + vecTmp1 = vqrdmulhq(vecTmp1, vecNrm); + vecTmp0 = vecTmp0 - vecTmp1; + vecTmp1 = vqrdmulhq(vecTmp0, vecTmp0); + vecTmp1 = vqrdmulhq(vecNrm, vecTmp1); + vecTmp1 = vdupq_n_s32(0x18000000) - vecTmp1; + vecTmp0 = vqrdmulhq(vecTmp0, vecTmp1); + vecTmpLL = vmullbq_int(vecNrm, vecTmp0); + + /* + * scale elements 0, 2 + */ + scale = 26 + (vecSignBits[0] >> 1); + tmp64 = asrl(vecTmpLL[0], scale); + vecDst[0] = (q31_t) tmp64; + + scale = 26 + (vecSignBits[2] >> 1); + tmp64 = asrl(vecTmpLL[1], scale); + vecDst[2] = (q31_t) tmp64; + + vecTmpLL = vmulltq_int(vecNrm, vecTmp0); + + /* + * scale elements 1, 3 + */ + scale = 26 + (vecSignBits[1] >> 1); + tmp64 = asrl(vecTmpLL[0], scale); + vecDst[1] = (q31_t) tmp64; + + scale = 26 + (vecSignBits[3] >> 1); + tmp64 = asrl(vecTmpLL[1], scale); + vecDst[3] = (q31_t) tmp64; + /* + * set negative values to 0 + */ + vecDst = vdupq_m(vecDst, 0, vcmpltq_n_s32(vecIn, 0)); + + return vecDst; +} +#endif + +#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_FAST_SQRT_Q15_MVE) +__STATIC_INLINE q15x8_t FAST_VSQRT_Q15(q15x8_t vecIn) +{ + q31x4_t vecTmpLev, vecTmpLodd, vecSignL; + q15x8_t vecTmp0, vecTmp1; + q15x8_t vecNrm, vecDst, vecIdx, vecSignBits; + + vecDst = vuninitializedq_s16(); + + vecSignBits = vclsq(vecIn); + vecSignBits = vbicq_n_s16(vecSignBits, 1); + /* + * in = in << no_of_sign_bits; + */ + vecNrm = vshlq(vecIn, vecSignBits); + + vecIdx = vecNrm >> 8; + vecIdx = vecIdx << 1; + + vecTmp0 = vldrhq_gather_shifted_offset_s16(sqrtTable_Q15, (uint16x8_t)vecIdx); + + vecIdx = vecIdx + 1; + + vecTmp1 = vldrhq_gather_shifted_offset_s16(sqrtTable_Q15, (uint16x8_t)vecIdx); + + vecTmp1 = vqrdmulhq(vecTmp1, vecNrm); + vecTmp0 = vecTmp0 - vecTmp1; + vecTmp1 = vqrdmulhq(vecTmp0, vecTmp0); + vecTmp1 = vqrdmulhq(vecNrm, vecTmp1); + vecTmp1 = vdupq_n_s16(0x1800) - vecTmp1; + vecTmp0 = vqrdmulhq(vecTmp0, vecTmp1); + + vecSignBits = vecSignBits >> 1; + + vecTmpLev = vmullbq_int(vecNrm, vecTmp0); + vecTmpLodd = vmulltq_int(vecNrm, vecTmp0); + + vecTmp0 = vecSignBits + 10; + /* + * negate sign to apply register based vshl + */ + vecTmp0 = -vecTmp0; + + /* + * shift even elements + */ + vecSignL = vmovlbq(vecTmp0); + vecTmpLev = vshlq(vecTmpLev, vecSignL); + /* + * shift odd elements + */ + vecSignL = vmovltq(vecTmp0); + vecTmpLodd = vshlq(vecTmpLodd, vecSignL); + /* + * merge and narrow odd and even parts + */ + vecDst = vmovnbq_s32(vecDst, vecTmpLev); + vecDst = vmovntq_s32(vecDst, vecTmpLodd); + /* + * set negative values to 0 + */ + vecDst = vdupq_m(vecDst, 0, vcmpltq_n_s16(vecIn, 0)); + + return vecDst; +} +#endif + +#endif /* defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEI) */ + +#ifdef __cplusplus +} +#endif + +#endif diff --git a/Drivers/CMSIS/DSP/Include/arm_math.h b/Drivers/CMSIS/DSP/Include/arm_math.h new file mode 100644 index 0000000..300c5cf --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/arm_math.h @@ -0,0 +1,236 @@ +/****************************************************************************** + * @file arm_math.h + * @brief Public header file for CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2021 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/** + \mainpage CMSIS DSP Software Library + * + * \section intro Introduction + * + * This user manual describes the CMSIS DSP software library, + * a suite of common signal processing functions for use on Cortex-M and Cortex-A processor + * based devices. + * + * The library is divided into a number of functions each covering a specific category: + * - Basic math functions + * - Fast math functions + * - Complex math functions + * - Filtering functions + * - Matrix functions + * - Transform functions + * - Motor control functions + * - Statistical functions + * - Support functions + * - Interpolation functions + * - Support Vector Machine functions (SVM) + * - Bayes classifier functions + * - Distance functions + * - Quaternion functions + * + * The library has generally separate functions for operating on 8-bit integers, 16-bit integers, + * 32-bit integer and 32-bit floating-point values. + * + * The library is providing vectorized versions of most algorthms for Helium + * and of most f32 algorithms for Neon. + * + * When using a vectorized version, provide a little bit of padding after the end of + * a buffer (3 words) because the vectorized code may read a little bit after the end + * of a buffer. You don't have to modify your buffers but just ensure that the + * end of buffer + padding is not outside of a memory region. + * + * \section using Using the Library + * + * The library is released in source form. It is strongly advised to compile the library using -Ofast to + * have the best performances. + * + * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder. + * Simply include this file. If you don't want to include everything, you can also rely + * on headers in Include/dsp folder and use only what you need. + * + * \section example Examples + * + * The library ships with a number of examples which demonstrate how to use the library functions. + * + * \section toolchain Toolchain Support + * + * The library is now tested on Fast Models building with cmake. + * Core M0, M4, M7, M33, M55, A32 are tested. + * + * + * \section preprocessor Preprocessor Macros + * + * Each library project have different preprocessor macros. + * + * - ARM_MATH_BIG_ENDIAN: + * + * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets. + * + * - ARM_MATH_MATRIX_CHECK: + * + * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices + * + * - ARM_MATH_ROUNDING: + * + * Define macro ARM_MATH_ROUNDING for rounding on support functions + * + * - ARM_MATH_LOOPUNROLL: + * + * Define macro ARM_MATH_LOOPUNROLL to enable manual loop unrolling in DSP functions + * + * - ARM_MATH_NEON: + * + * Define macro ARM_MATH_NEON to enable Neon versions of the DSP functions. + * It is not enabled by default when Neon is available because performances are + * dependent on the compiler and target architecture. + * + * - ARM_MATH_NEON_EXPERIMENTAL: + * + * Define macro ARM_MATH_NEON_EXPERIMENTAL to enable experimental Neon versions of + * of some DSP functions. Experimental Neon versions currently do not have better + * performances than the scalar versions. + * + * - ARM_MATH_HELIUM: + * + * It implies the flags ARM_MATH_MVEF and ARM_MATH_MVEI and ARM_MATH_MVE_FLOAT16. + * + * - ARM_MATH_HELIUM_EXPERIMENTAL: + * + * Only taken into account when ARM_MATH_MVEF, ARM_MATH_MVEI or ARM_MATH_MVE_FLOAT16 are defined. + * Enable some vector versions which may have worse performance than scalar + * depending on the core / compiler configuration. + * + * - ARM_MATH_MVEF: + * + * Select Helium versions of the f32 algorithms. + * It implies ARM_MATH_FLOAT16 and ARM_MATH_MVEI. + * + * - ARM_MATH_MVEI: + * + * Select Helium versions of the int and fixed point algorithms. + * + * - ARM_MATH_MVE_FLOAT16: + * + * MVE Float16 implementations of some algorithms (Requires MVE extension). + * + * - DISABLEFLOAT16: + * + * Disable float16 algorithms when __fp16 is not supported for a + * specific compiler / core configuration. + * This is only valid for scalar. When vector architecture is + * supporting f16 then it can't be disabled. + * + * - ARM_MATH_AUTOVECTORIZE: + * + * With Helium or Neon, disable the use of vectorized code with C intrinsics + * and use pure C instead. The vectorization is then done by the compiler. + * + * <hr> + * \section pack CMSIS-DSP in ARM::CMSIS Pack + * + * The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories: + * |File/Folder |Content | + * |---------------------------------|------------------------------------------------------------------------| + * |\b CMSIS\\Documentation\\DSP | This documentation | + * |\b CMSIS\\DSP\\Examples | Example projects demonstrating the usage of the library functions | + * |\b CMSIS\\DSP\\Include | DSP_Lib include files for using and building the lib + * |\b CMSIS\\DSP\\PrivateInclude | DSP_Lib private include files for building the lib | + * |\b CMSIS\\DSP\\Lib | DSP_Lib binaries | + * |\b CMSIS\\DSP\\Source | DSP_Lib source files | + * + * <hr> + * \section rev Revision History of CMSIS-DSP + * Please refer to \ref ChangeLog_pg. + */ + + + + + + + + + + + +/** + * @defgroup groupExamples Examples + */ + + + + + +#ifndef _ARM_MATH_H +#define _ARM_MATH_H + + +#include "arm_math_types.h" +#include "arm_math_memory.h" + +#include "dsp/none.h" +#include "dsp/utils.h" + +#include "dsp/basic_math_functions.h" +#include "dsp/interpolation_functions.h" +#include "dsp/bayes_functions.h" +#include "dsp/matrix_functions.h" +#include "dsp/complex_math_functions.h" +#include "dsp/statistics_functions.h" +#include "dsp/controller_functions.h" +#include "dsp/support_functions.h" +#include "dsp/distance_functions.h" +#include "dsp/svm_functions.h" +#include "dsp/fast_math_functions.h" +#include "dsp/transform_functions.h" +#include "dsp/filtering_functions.h" +#include "dsp/quaternion_math_functions.h" + + + +#ifdef __cplusplus +extern "C" +{ +#endif + + + + +//#define TABLE_SPACING_Q31 0x400000 +//#define TABLE_SPACING_Q15 0x80 + + + + + +#ifdef __cplusplus +} +#endif + + +#endif /* _ARM_MATH_H */ + +/** + * + * End of file. + */ diff --git a/Drivers/CMSIS/DSP/Include/arm_math_f16.h b/Drivers/CMSIS/DSP/Include/arm_math_f16.h new file mode 100644 index 0000000..daf0c53 --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/arm_math_f16.h @@ -0,0 +1,59 @@ +/****************************************************************************** + * @file arm_math_f16.h + * @brief Public header file for f16 function of the CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2021 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef _ARM_MATH_F16_H +#define _ARM_MATH_F16_H + +#include "arm_math.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + +#include "arm_math_types_f16.h" +#include "dsp/none.h" +#include "dsp/utils.h" +#include "dsp/basic_math_functions_f16.h" +#include "dsp/interpolation_functions_f16.h" +#include "dsp/bayes_functions_f16.h" +#include "dsp/matrix_functions_f16.h" +#include "dsp/complex_math_functions_f16.h" +#include "dsp/statistics_functions_f16.h" +#include "dsp/controller_functions_f16.h" +#include "dsp/support_functions_f16.h" +#include "dsp/distance_functions_f16.h" +#include "dsp/svm_functions_f16.h" +#include "dsp/fast_math_functions_f16.h" +#include "dsp/transform_functions_f16.h" +#include "dsp/filtering_functions_f16.h" + +#ifdef __cplusplus +} +#endif + +#endif /* _ARM_MATH_F16_H */ + + diff --git a/Drivers/CMSIS/DSP/Include/arm_math_memory.h b/Drivers/CMSIS/DSP/Include/arm_math_memory.h new file mode 100644 index 0000000..7bd83dc --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/arm_math_memory.h @@ -0,0 +1,206 @@ +/****************************************************************************** + * @file arm_math_memory.h + * @brief Public header file for CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2021 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef _ARM_MATH_MEMORY_H_ + +#define _ARM_MATH_MEMORY_H_ + +#include "arm_math_types.h" + + +#ifdef __cplusplus +extern "C" +{ +#endif + +/** + @brief definition to read/write two 16 bit values. + @deprecated + */ +#if defined ( __CC_ARM ) + #define __SIMD32_TYPE int32_t __packed +#elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 ) + #define __SIMD32_TYPE int32_t +#elif defined ( __GNUC__ ) + #define __SIMD32_TYPE int32_t +#elif defined ( __ICCARM__ ) + #define __SIMD32_TYPE int32_t __packed +#elif defined ( __TI_ARM__ ) + #define __SIMD32_TYPE int32_t +#elif defined ( __CSMC__ ) + #define __SIMD32_TYPE int32_t +#elif defined ( __TASKING__ ) + #define __SIMD32_TYPE __un(aligned) int32_t +#elif defined(_MSC_VER ) + #define __SIMD32_TYPE int32_t +#else + #error Unknown compiler +#endif + +#define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr)) +#define __SIMD32_CONST(addr) ( (__SIMD32_TYPE * ) (addr)) +#define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE * ) (addr)) +#define __SIMD64(addr) (*( int64_t **) & (addr)) + + +/* SIMD replacement */ + + +/** + @brief Read 2 Q15 from Q15 pointer. + @param[in] pQ15 points to input value + @return Q31 value + */ +__STATIC_FORCEINLINE q31_t read_q15x2 ( + q15_t const * pQ15) +{ + q31_t val; + +#ifdef __ARM_FEATURE_UNALIGNED + memcpy (&val, pQ15, 4); +#else + val = (pQ15[1] << 16) | (pQ15[0] & 0x0FFFF) ; +#endif + + return (val); +} + +/** + @brief Read 2 Q15 from Q15 pointer and increment pointer afterwards. + @param[in] pQ15 points to input value + @return Q31 value + */ +#define read_q15x2_ia(pQ15) read_q15x2((*(pQ15) += 2) - 2) + +/** + @brief Read 2 Q15 from Q15 pointer and decrement pointer afterwards. + @param[in] pQ15 points to input value + @return Q31 value + */ +#define read_q15x2_da(pQ15) read_q15x2((*(pQ15) -= 2) + 2) + +/** + @brief Write 2 Q15 to Q15 pointer and increment pointer afterwards. + @param[in] pQ15 points to input value + @param[in] value Q31 value + @return none + */ +__STATIC_FORCEINLINE void write_q15x2_ia ( + q15_t ** pQ15, + q31_t value) +{ + q31_t val = value; +#ifdef __ARM_FEATURE_UNALIGNED + memcpy (*pQ15, &val, 4); +#else + (*pQ15)[0] = (q15_t)(val & 0x0FFFF); + (*pQ15)[1] = (q15_t)((val >> 16) & 0x0FFFF); +#endif + + *pQ15 += 2; +} + +/** + @brief Write 2 Q15 to Q15 pointer. + @param[in] pQ15 points to input value + @param[in] value Q31 value + @return none + */ +__STATIC_FORCEINLINE void write_q15x2 ( + q15_t * pQ15, + q31_t value) +{ + q31_t val = value; + +#ifdef __ARM_FEATURE_UNALIGNED + memcpy (pQ15, &val, 4); +#else + pQ15[0] = (q15_t)(val & 0x0FFFF); + pQ15[1] = (q15_t)(val >> 16); +#endif +} + + +/** + @brief Read 4 Q7 from Q7 pointer + @param[in] pQ7 points to input value + @return Q31 value + */ +__STATIC_FORCEINLINE q31_t read_q7x4 ( + q7_t const * pQ7) +{ + q31_t val; + +#ifdef __ARM_FEATURE_UNALIGNED + memcpy (&val, pQ7, 4); +#else + val =((pQ7[3] & 0x0FF) << 24) | ((pQ7[2] & 0x0FF) << 16) | ((pQ7[1] & 0x0FF) << 8) | (pQ7[0] & 0x0FF); +#endif + return (val); +} + +/** + @brief Read 4 Q7 from Q7 pointer and increment pointer afterwards. + @param[in] pQ7 points to input value + @return Q31 value + */ +#define read_q7x4_ia(pQ7) read_q7x4((*(pQ7) += 4) - 4) + +/** + @brief Read 4 Q7 from Q7 pointer and decrement pointer afterwards. + @param[in] pQ7 points to input value + @return Q31 value + */ +#define read_q7x4_da(pQ7) read_q7x4((*(pQ7) -= 4) + 4) + +/** + @brief Write 4 Q7 to Q7 pointer and increment pointer afterwards. + @param[in] pQ7 points to input value + @param[in] value Q31 value + @return none + */ +__STATIC_FORCEINLINE void write_q7x4_ia ( + q7_t ** pQ7, + q31_t value) +{ + q31_t val = value; +#ifdef __ARM_FEATURE_UNALIGNED + memcpy (*pQ7, &val, 4); +#else + (*pQ7)[0] = (q7_t)(val & 0x0FF); + (*pQ7)[1] = (q7_t)((val >> 8) & 0x0FF); + (*pQ7)[2] = (q7_t)((val >> 16) & 0x0FF); + (*pQ7)[3] = (q7_t)((val >> 24) & 0x0FF); + +#endif + *pQ7 += 4; +} + + +#ifdef __cplusplus +} +#endif + +#endif /*ifndef _ARM_MATH_MEMORY_H_ */ diff --git a/Drivers/CMSIS/DSP/Include/arm_math_types.h b/Drivers/CMSIS/DSP/Include/arm_math_types.h new file mode 100644 index 0000000..c615e66 --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/arm_math_types.h @@ -0,0 +1,616 @@ +/****************************************************************************** + * @file arm_math_types.h + * @brief Public header file for CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2021 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef _ARM_MATH_TYPES_H_ + +#define _ARM_MATH_TYPES_H_ + +#ifdef __cplusplus +extern "C" +{ +#endif + +/* Compiler specific diagnostic adjustment */ +#if defined ( __CC_ARM ) + +#elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 ) + +#elif defined ( __APPLE_CC__ ) + #pragma GCC diagnostic ignored "-Wold-style-cast" + +#elif defined ( __GNUC__ ) + #pragma GCC diagnostic push + #pragma GCC diagnostic ignored "-Wsign-conversion" + #pragma GCC diagnostic ignored "-Wconversion" + #pragma GCC diagnostic ignored "-Wunused-parameter" + +#elif defined ( __ICCARM__ ) + +#elif defined ( __TI_ARM__ ) + +#elif defined ( __CSMC__ ) + +#elif defined ( __TASKING__ ) + +#elif defined ( _MSC_VER ) + +#else + #error Unknown compiler +#endif + + +/* Included for instrinsics definitions */ +#if defined (_MSC_VER ) +#include <stdint.h> +#define __STATIC_FORCEINLINE static __forceinline +#define __STATIC_INLINE static __inline +#define __ALIGNED(x) __declspec(align(x)) +#elif defined ( __APPLE_CC__ ) +#include <stdint.h> +#define __ALIGNED(x) __attribute__((aligned(x))) +#define __STATIC_FORCEINLINE static inline __attribute__((always_inline)) +#define __STATIC_INLINE static inline +#elif defined (__GNUC_PYTHON__) +#include <stdint.h> +#define __ALIGNED(x) __attribute__((aligned(x))) +#define __STATIC_FORCEINLINE static inline __attribute__((always_inline)) +#define __STATIC_INLINE static inline + +#else +#include "cmsis_compiler.h" +#endif + + + +#include <string.h> +#include <math.h> +#include <float.h> +#include <limits.h> + +/* evaluate ARM DSP feature */ +#if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1)) + #define ARM_MATH_DSP 1 +#endif + +#if defined(ARM_MATH_NEON) + #if defined(_MSC_VER) && defined(_M_ARM64EC) + #include <arm64_neon.h> + #else + #include <arm_neon.h> + #endif + #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && __ARM_FEATURE_FP16_VECTOR_ARITHMETIC + #if !defined(ARM_MATH_NEON_FLOAT16) + #define ARM_MATH_NEON_FLOAT16 + #endif + #endif +#endif + +#if !defined(ARM_MATH_AUTOVECTORIZE) + + +#if defined(__ARM_FEATURE_MVE) +#if __ARM_FEATURE_MVE + #if !defined(ARM_MATH_MVEI) + #define ARM_MATH_MVEI + #endif +#endif + +#if (__ARM_FEATURE_MVE & 2) + #if !defined(ARM_MATH_MVEF) + #define ARM_MATH_MVEF + #endif + #if !defined(ARM_MATH_MVE_FLOAT16) + #define ARM_MATH_MVE_FLOAT16 + #endif +#endif + +#endif /*defined(__ARM_FEATURE_MVE)*/ +#endif /*!defined(ARM_MATH_AUTOVECTORIZE)*/ + + +#if defined (ARM_MATH_HELIUM) + #if !defined(ARM_MATH_MVEF) + #define ARM_MATH_MVEF + #endif + + #if !defined(ARM_MATH_MVEI) + #define ARM_MATH_MVEI + #endif + + #if !defined(ARM_MATH_MVE_FLOAT16) + #define ARM_MATH_MVE_FLOAT16 + #endif +#endif + + + +#if defined ( __CC_ARM ) + /* Enter low optimization region - place directly above function definition */ + #if defined( __ARM_ARCH_7EM__ ) + #define LOW_OPTIMIZATION_ENTER \ + _Pragma ("push") \ + _Pragma ("O1") + #else + #define LOW_OPTIMIZATION_ENTER + #endif + + /* Exit low optimization region - place directly after end of function definition */ + #if defined ( __ARM_ARCH_7EM__ ) + #define LOW_OPTIMIZATION_EXIT \ + _Pragma ("pop") + #else + #define LOW_OPTIMIZATION_EXIT + #endif + + /* Enter low optimization region - place directly above function definition */ + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + + /* Exit low optimization region - place directly after end of function definition */ + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined (__ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 ) + #define LOW_OPTIMIZATION_ENTER + #define LOW_OPTIMIZATION_EXIT + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined ( __APPLE_CC__ ) + #define LOW_OPTIMIZATION_ENTER + #define LOW_OPTIMIZATION_EXIT + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined ( __GNUC__ ) + #define LOW_OPTIMIZATION_ENTER \ + __attribute__(( optimize("-O1") )) + #define LOW_OPTIMIZATION_EXIT + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined ( __ICCARM__ ) + /* Enter low optimization region - place directly above function definition */ + #if defined ( __ARM_ARCH_7EM__ ) + #define LOW_OPTIMIZATION_ENTER \ + _Pragma ("optimize=low") + #else + #define LOW_OPTIMIZATION_ENTER + #endif + + /* Exit low optimization region - place directly after end of function definition */ + #define LOW_OPTIMIZATION_EXIT + + /* Enter low optimization region - place directly above function definition */ + #if defined ( __ARM_ARCH_7EM__ ) + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \ + _Pragma ("optimize=low") + #else + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #endif + + /* Exit low optimization region - place directly after end of function definition */ + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined ( __TI_ARM__ ) + #define LOW_OPTIMIZATION_ENTER + #define LOW_OPTIMIZATION_EXIT + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined ( __CSMC__ ) + #define LOW_OPTIMIZATION_ENTER + #define LOW_OPTIMIZATION_EXIT + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined ( __TASKING__ ) + #define LOW_OPTIMIZATION_ENTER + #define LOW_OPTIMIZATION_EXIT + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined ( _MSC_VER ) || defined(__GNUC_PYTHON__) + #define LOW_OPTIMIZATION_ENTER + #define LOW_OPTIMIZATION_EXIT + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT +#endif + + + +/* Compiler specific diagnostic adjustment */ +#if defined ( __CC_ARM ) + +#elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 ) + +#elif defined ( __APPLE_CC__ ) + +#elif defined ( __GNUC__ ) +#pragma GCC diagnostic pop + +#elif defined ( __ICCARM__ ) + +#elif defined ( __TI_ARM__ ) + +#elif defined ( __CSMC__ ) + +#elif defined ( __TASKING__ ) + +#elif defined ( _MSC_VER ) + +#else + #error Unknown compiler +#endif + +#ifdef __cplusplus +} +#endif + +#if defined(__ARM_FEATURE_MVE) && __ARM_FEATURE_MVE +#include <arm_mve.h> +#endif + +#ifdef __cplusplus +extern "C" +{ +#endif + + /** + * @brief 8-bit fractional data type in 1.7 format. + */ + typedef int8_t q7_t; + + /** + * @brief 16-bit fractional data type in 1.15 format. + */ + typedef int16_t q15_t; + + /** + * @brief 32-bit fractional data type in 1.31 format. + */ + typedef int32_t q31_t; + + /** + * @brief 64-bit fractional data type in 1.63 format. + */ + typedef int64_t q63_t; + + /** + * @brief 32-bit floating-point type definition. + */ +#if !defined(__ICCARM__) || !(__ARM_FEATURE_MVE & 2) + typedef float float32_t; +#endif + + /** + * @brief 64-bit floating-point type definition. + */ + typedef double float64_t; + + /** + * @brief vector types + */ +#if defined(ARM_MATH_NEON) || (defined (ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)) + /** + * @brief 64-bit fractional 128-bit vector data type in 1.63 format + */ + typedef int64x2_t q63x2_t; + + /** + * @brief 32-bit fractional 128-bit vector data type in 1.31 format. + */ + typedef int32x4_t q31x4_t; + + /** + * @brief 16-bit fractional 128-bit vector data type with 16-bit alignment in 1.15 format. + */ + typedef __ALIGNED(2) int16x8_t q15x8_t; + + /** + * @brief 8-bit fractional 128-bit vector data type with 8-bit alignment in 1.7 format. + */ + typedef __ALIGNED(1) int8x16_t q7x16_t; + + /** + * @brief 32-bit fractional 128-bit vector pair data type in 1.31 format. + */ + typedef int32x4x2_t q31x4x2_t; + + /** + * @brief 32-bit fractional 128-bit vector quadruplet data type in 1.31 format. + */ + typedef int32x4x4_t q31x4x4_t; + + /** + * @brief 16-bit fractional 128-bit vector pair data type in 1.15 format. + */ + typedef int16x8x2_t q15x8x2_t; + + /** + * @brief 16-bit fractional 128-bit vector quadruplet data type in 1.15 format. + */ + typedef int16x8x4_t q15x8x4_t; + + /** + * @brief 8-bit fractional 128-bit vector pair data type in 1.7 format. + */ + typedef int8x16x2_t q7x16x2_t; + + /** + * @brief 8-bit fractional 128-bit vector quadruplet data type in 1.7 format. + */ + typedef int8x16x4_t q7x16x4_t; + + /** + * @brief 32-bit fractional data type in 9.23 format. + */ + typedef int32_t q23_t; + + /** + * @brief 32-bit fractional 128-bit vector data type in 9.23 format. + */ + typedef int32x4_t q23x4_t; + + /** + * @brief 64-bit status 128-bit vector data type. + */ + typedef int64x2_t status64x2_t; + + /** + * @brief 32-bit status 128-bit vector data type. + */ + typedef int32x4_t status32x4_t; + + /** + * @brief 16-bit status 128-bit vector data type. + */ + typedef int16x8_t status16x8_t; + + /** + * @brief 8-bit status 128-bit vector data type. + */ + typedef int8x16_t status8x16_t; + + +#endif + +#if defined(ARM_MATH_NEON) || (defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)) /* floating point vector*/ + /** + * @brief 32-bit floating-point 128-bit vector type + */ + typedef float32x4_t f32x4_t; + + /** + * @brief 32-bit floating-point 128-bit vector pair data type + */ + typedef float32x4x2_t f32x4x2_t; + + /** + * @brief 32-bit floating-point 128-bit vector quadruplet data type + */ + typedef float32x4x4_t f32x4x4_t; + + /** + * @brief 32-bit ubiquitous 128-bit vector data type + */ + typedef union _any32x4_t + { + float32x4_t f; + int32x4_t i; + } any32x4_t; + +#endif + +#if defined(ARM_MATH_NEON) + /** + * @brief 32-bit fractional 64-bit vector data type in 1.31 format. + */ + typedef int32x2_t q31x2_t; + + /** + * @brief 16-bit fractional 64-bit vector data type in 1.15 format. + */ + typedef __ALIGNED(2) int16x4_t q15x4_t; + + /** + * @brief 8-bit fractional 64-bit vector data type in 1.7 format. + */ + typedef __ALIGNED(1) int8x8_t q7x8_t; + + /** + * @brief 32-bit float 64-bit vector data type. + */ + typedef float32x2_t f32x2_t; + + /** + * @brief 32-bit floating-point 128-bit vector triplet data type + */ + typedef float32x4x3_t f32x4x3_t; + + + /** + * @brief 32-bit fractional 128-bit vector triplet data type in 1.31 format + */ + typedef int32x4x3_t q31x4x3_t; + + /** + * @brief 16-bit fractional 128-bit vector triplet data type in 1.15 format + */ + typedef int16x8x3_t q15x8x3_t; + + /** + * @brief 8-bit fractional 128-bit vector triplet data type in 1.7 format + */ + typedef int8x16x3_t q7x16x3_t; + + /** + * @brief 32-bit floating-point 64-bit vector pair data type + */ + typedef float32x2x2_t f32x2x2_t; + + /** + * @brief 32-bit floating-point 64-bit vector triplet data type + */ + typedef float32x2x3_t f32x2x3_t; + + /** + * @brief 32-bit floating-point 64-bit vector quadruplet data type + */ + typedef float32x2x4_t f32x2x4_t; + + + /** + * @brief 32-bit fractional 64-bit vector pair data type in 1.31 format + */ + typedef int32x2x2_t q31x2x2_t; + + /** + * @brief 32-bit fractional 64-bit vector triplet data type in 1.31 format + */ + typedef int32x2x3_t q31x2x3_t; + + /** + * @brief 32-bit fractional 64-bit vector quadruplet data type in 1.31 format + */ + typedef int32x4x3_t q31x2x4_t; + + /** + * @brief 16-bit fractional 64-bit vector pair data type in 1.15 format + */ + typedef int16x4x2_t q15x4x2_t; + + /** + * @brief 16-bit fractional 64-bit vector triplet data type in 1.15 format + */ + typedef int16x4x2_t q15x4x3_t; + + /** + * @brief 16-bit fractional 64-bit vector quadruplet data type in 1.15 format + */ + typedef int16x4x3_t q15x4x4_t; + + /** + * @brief 8-bit fractional 64-bit vector pair data type in 1.7 format + */ + typedef int8x8x2_t q7x8x2_t; + + /** + * @brief 8-bit fractional 64-bit vector triplet data type in 1.7 format + */ + typedef int8x8x3_t q7x8x3_t; + + /** + * @brief 8-bit fractional 64-bit vector quadruplet data type in 1.7 format + */ + typedef int8x8x4_t q7x8x4_t; + + /** + * @brief 32-bit ubiquitous 64-bit vector data type + */ + typedef union _any32x2_t + { + float32x2_t f; + int32x2_t i; + } any32x2_t; + + + /** + * @brief 32-bit status 64-bit vector data type. + */ + typedef int32x4_t status32x2_t; + + /** + * @brief 16-bit status 64-bit vector data type. + */ + typedef int16x8_t status16x4_t; + + /** + * @brief 8-bit status 64-bit vector data type. + */ + typedef int8x16_t status8x8_t; + +#endif + + + + + +#define F64_MAX ((float64_t)DBL_MAX) +#define F32_MAX ((float32_t)FLT_MAX) + + + +#define F64_MIN (-DBL_MAX) +#define F32_MIN (-FLT_MAX) + + + +#define F64_ABSMAX ((float64_t)DBL_MAX) +#define F32_ABSMAX ((float32_t)FLT_MAX) + + + +#define F64_ABSMIN ((float64_t)0.0) +#define F32_ABSMIN ((float32_t)0.0) + + +#define Q31_MAX ((q31_t)(0x7FFFFFFFL)) +#define Q15_MAX ((q15_t)(0x7FFF)) +#define Q7_MAX ((q7_t)(0x7F)) +#define Q31_MIN ((q31_t)(0x80000000L)) +#define Q15_MIN ((q15_t)(0x8000)) +#define Q7_MIN ((q7_t)(0x80)) + +#define Q31_ABSMAX ((q31_t)(0x7FFFFFFFL)) +#define Q15_ABSMAX ((q15_t)(0x7FFF)) +#define Q7_ABSMAX ((q7_t)(0x7F)) +#define Q31_ABSMIN ((q31_t)0) +#define Q15_ABSMIN ((q15_t)0) +#define Q7_ABSMIN ((q7_t)0) + + /* Dimension C vector space */ + #define CMPLX_DIM 2 + + /** + * @brief Error status returned by some functions in the library. + */ + + typedef enum + { + ARM_MATH_SUCCESS = 0, /**< No error */ + ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */ + ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */ + ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation */ + ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */ + ARM_MATH_SINGULAR = -5, /**< Input matrix is singular and cannot be inverted */ + ARM_MATH_TEST_FAILURE = -6, /**< Test Failed */ + ARM_MATH_DECOMPOSITION_FAILURE = -7 /**< Decomposition Failed */ + } arm_status; + + +#ifdef __cplusplus +} +#endif + +#endif /*ifndef _ARM_MATH_TYPES_H_ */ diff --git a/Drivers/CMSIS/DSP/Include/arm_math_types_f16.h b/Drivers/CMSIS/DSP/Include/arm_math_types_f16.h new file mode 100644 index 0000000..744dc38 --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/arm_math_types_f16.h @@ -0,0 +1,163 @@ +/****************************************************************************** + * @file arm_math_types_f16.h + * @brief Public header file for f16 function of the CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2021 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef _ARM_MATH_TYPES_F16_H +#define _ARM_MATH_TYPES_F16_H + +#include "arm_math_types.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + +#if !defined( __CC_ARM ) + +/** + * @brief 16-bit floating-point type definition. + * This is already defined in arm_mve.h + * + * This is not fully supported on ARM AC5. + */ + +/* + +Check if the type __fp16 is available. +If it is not available, f16 version of the kernels +won't be built. + +*/ +#if !(__ARM_FEATURE_MVE & 2) + #if !defined(DISABLEFLOAT16) + #if defined(__ARM_FP16_FORMAT_IEEE) || defined(__ARM_FP16_FORMAT_ALTERNATIVE) + typedef __fp16 float16_t; + #define ARM_FLOAT16_SUPPORTED + #endif + #endif +#else + /* When Vector float16, this flag is always defined and can't be disabled */ + #define ARM_FLOAT16_SUPPORTED +#endif + +#if defined(ARM_MATH_NEON) || (defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)) /* floating point vector*/ + +#if defined(ARM_MATH_MVE_FLOAT16) || defined(ARM_MATH_NEON_FLOAT16) + + /** + * @brief 16-bit floating-point 128-bit vector data type + */ + typedef __ALIGNED(2) float16x8_t f16x8_t; + + /** + * @brief 16-bit floating-point 128-bit vector pair data type + */ + typedef float16x8x2_t f16x8x2_t; + + /** + * @brief 16-bit floating-point 128-bit vector quadruplet data type + */ + typedef float16x8x4_t f16x8x4_t; + + /** + * @brief 16-bit ubiquitous 128-bit vector data type + */ + typedef union _any16x8_t + { + float16x8_t f; + int16x8_t i; + } any16x8_t; +#endif + +#endif + +#if defined(ARM_MATH_NEON) + + +#if defined(ARM_MATH_NEON_FLOAT16) + /** + * @brief 16-bit float 64-bit vector data type. + */ + typedef __ALIGNED(2) float16x4_t f16x4_t; + + /** + * @brief 16-bit floating-point 128-bit vector triplet data type + */ + typedef float16x8x3_t f16x8x3_t; + + /** + * @brief 16-bit floating-point 64-bit vector pair data type + */ + typedef float16x4x2_t f16x4x2_t; + + /** + * @brief 16-bit floating-point 64-bit vector triplet data type + */ + typedef float16x4x3_t f16x4x3_t; + + /** + * @brief 16-bit floating-point 64-bit vector quadruplet data type + */ + typedef float16x4x4_t f16x4x4_t; + + /** + * @brief 16-bit ubiquitous 64-bit vector data type + */ + typedef union _any16x4_t + { + float16x4_t f; + int16x4_t i; + } any16x4_t; +#endif + +#endif + + + +#if defined(ARM_FLOAT16_SUPPORTED) + +#if defined(__ICCARM__) + +#define F16INFINITY ((float16_t) INFINITY) + +#else + +#define F16INFINITY ((float16_t)__builtin_inf()) + +#endif + +#define F16_MAX ((float16_t)__FLT16_MAX__) +#define F16_MIN (-(_Float16)__FLT16_MAX__) + +#define F16_ABSMAX ((float16_t)__FLT16_MAX__) +#define F16_ABSMIN ((float16_t)0.0f16) + +#endif /* ARM_FLOAT16_SUPPORTED*/ +#endif /* !defined( __CC_ARM ) */ + +#ifdef __cplusplus +} +#endif + +#endif /* _ARM_MATH_F16_H */ diff --git a/Drivers/CMSIS/DSP/Include/arm_mve_tables.h b/Drivers/CMSIS/DSP/Include/arm_mve_tables.h new file mode 100644 index 0000000..c4f8bf0 --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/arm_mve_tables.h @@ -0,0 +1,231 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_mve_tables.h + * Description: common tables like fft twiddle factors, Bitreverse, reciprocal etc + * used for MVE implementation only + * + * @version V1.10.0 + * @date 04 October 2021 + * + * Target Processor: Cortex-M and Cortex-A cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + + #ifndef _ARM_MVE_TABLES_H + #define _ARM_MVE_TABLES_H + +#include "arm_math_types.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + + + + +#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) + +#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES) + +#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_16) || defined(ARM_TABLE_TWIDDLECOEF_F32_32) + +extern uint32_t rearranged_twiddle_tab_stride1_arr_16_f32[2]; +extern uint32_t rearranged_twiddle_tab_stride2_arr_16_f32[2]; +extern uint32_t rearranged_twiddle_tab_stride3_arr_16_f32[2]; +extern float32_t rearranged_twiddle_stride1_16_f32[8]; +extern float32_t rearranged_twiddle_stride2_16_f32[8]; +extern float32_t rearranged_twiddle_stride3_16_f32[8]; +#endif + +#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_64) || defined(ARM_TABLE_TWIDDLECOEF_F32_128) + +extern uint32_t rearranged_twiddle_tab_stride1_arr_64_f32[3]; +extern uint32_t rearranged_twiddle_tab_stride2_arr_64_f32[3]; +extern uint32_t rearranged_twiddle_tab_stride3_arr_64_f32[3]; +extern float32_t rearranged_twiddle_stride1_64_f32[40]; +extern float32_t rearranged_twiddle_stride2_64_f32[40]; +extern float32_t rearranged_twiddle_stride3_64_f32[40]; +#endif + +#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_256) || defined(ARM_TABLE_TWIDDLECOEF_F32_512) + +extern uint32_t rearranged_twiddle_tab_stride1_arr_256_f32[4]; +extern uint32_t rearranged_twiddle_tab_stride2_arr_256_f32[4]; +extern uint32_t rearranged_twiddle_tab_stride3_arr_256_f32[4]; +extern float32_t rearranged_twiddle_stride1_256_f32[168]; +extern float32_t rearranged_twiddle_stride2_256_f32[168]; +extern float32_t rearranged_twiddle_stride3_256_f32[168]; +#endif + +#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_1024) || defined(ARM_TABLE_TWIDDLECOEF_F32_2048) + +extern uint32_t rearranged_twiddle_tab_stride1_arr_1024_f32[5]; +extern uint32_t rearranged_twiddle_tab_stride2_arr_1024_f32[5]; +extern uint32_t rearranged_twiddle_tab_stride3_arr_1024_f32[5]; +extern float32_t rearranged_twiddle_stride1_1024_f32[680]; +extern float32_t rearranged_twiddle_stride2_1024_f32[680]; +extern float32_t rearranged_twiddle_stride3_1024_f32[680]; +#endif + +#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_4096) || defined(ARM_TABLE_TWIDDLECOEF_F32_8192) + +extern uint32_t rearranged_twiddle_tab_stride1_arr_4096_f32[6]; +extern uint32_t rearranged_twiddle_tab_stride2_arr_4096_f32[6]; +extern uint32_t rearranged_twiddle_tab_stride3_arr_4096_f32[6]; +extern float32_t rearranged_twiddle_stride1_4096_f32[2728]; +extern float32_t rearranged_twiddle_stride2_4096_f32[2728]; +extern float32_t rearranged_twiddle_stride3_4096_f32[2728]; +#endif + + +#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES) */ + +#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */ + + + +#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE) + +#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES) + +#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_16) || defined(ARM_TABLE_TWIDDLECOEF_Q31_32) + +extern uint32_t rearranged_twiddle_tab_stride1_arr_16_q31[2]; +extern uint32_t rearranged_twiddle_tab_stride2_arr_16_q31[2]; +extern uint32_t rearranged_twiddle_tab_stride3_arr_16_q31[2]; +extern q31_t rearranged_twiddle_stride1_16_q31[8]; +extern q31_t rearranged_twiddle_stride2_16_q31[8]; +extern q31_t rearranged_twiddle_stride3_16_q31[8]; +#endif + +#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_64) || defined(ARM_TABLE_TWIDDLECOEF_Q31_128) + +extern uint32_t rearranged_twiddle_tab_stride1_arr_64_q31[3]; +extern uint32_t rearranged_twiddle_tab_stride2_arr_64_q31[3]; +extern uint32_t rearranged_twiddle_tab_stride3_arr_64_q31[3]; +extern q31_t rearranged_twiddle_stride1_64_q31[40]; +extern q31_t rearranged_twiddle_stride2_64_q31[40]; +extern q31_t rearranged_twiddle_stride3_64_q31[40]; +#endif + +#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_256) || defined(ARM_TABLE_TWIDDLECOEF_Q31_512) + +extern uint32_t rearranged_twiddle_tab_stride1_arr_256_q31[4]; +extern uint32_t rearranged_twiddle_tab_stride2_arr_256_q31[4]; +extern uint32_t rearranged_twiddle_tab_stride3_arr_256_q31[4]; +extern q31_t rearranged_twiddle_stride1_256_q31[168]; +extern q31_t rearranged_twiddle_stride2_256_q31[168]; +extern q31_t rearranged_twiddle_stride3_256_q31[168]; +#endif + +#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_1024) || defined(ARM_TABLE_TWIDDLECOEF_Q31_2048) + +extern uint32_t rearranged_twiddle_tab_stride1_arr_1024_q31[5]; +extern uint32_t rearranged_twiddle_tab_stride2_arr_1024_q31[5]; +extern uint32_t rearranged_twiddle_tab_stride3_arr_1024_q31[5]; +extern q31_t rearranged_twiddle_stride1_1024_q31[680]; +extern q31_t rearranged_twiddle_stride2_1024_q31[680]; +extern q31_t rearranged_twiddle_stride3_1024_q31[680]; +#endif + +#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_4096) || defined(ARM_TABLE_TWIDDLECOEF_Q31_8192) + +extern uint32_t rearranged_twiddle_tab_stride1_arr_4096_q31[6]; +extern uint32_t rearranged_twiddle_tab_stride2_arr_4096_q31[6]; +extern uint32_t rearranged_twiddle_tab_stride3_arr_4096_q31[6]; +extern q31_t rearranged_twiddle_stride1_4096_q31[2728]; +extern q31_t rearranged_twiddle_stride2_4096_q31[2728]; +extern q31_t rearranged_twiddle_stride3_4096_q31[2728]; +#endif + + +#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES) */ + +#endif /* defined(ARM_MATH_MVEI) */ + + + +#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE) + +#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES) + +#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_16) || defined(ARM_TABLE_TWIDDLECOEF_Q15_32) + +extern uint32_t rearranged_twiddle_tab_stride1_arr_16_q15[2]; +extern uint32_t rearranged_twiddle_tab_stride2_arr_16_q15[2]; +extern uint32_t rearranged_twiddle_tab_stride3_arr_16_q15[2]; +extern q15_t rearranged_twiddle_stride1_16_q15[8]; +extern q15_t rearranged_twiddle_stride2_16_q15[8]; +extern q15_t rearranged_twiddle_stride3_16_q15[8]; +#endif + +#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_64) || defined(ARM_TABLE_TWIDDLECOEF_Q15_128) + +extern uint32_t rearranged_twiddle_tab_stride1_arr_64_q15[3]; +extern uint32_t rearranged_twiddle_tab_stride2_arr_64_q15[3]; +extern uint32_t rearranged_twiddle_tab_stride3_arr_64_q15[3]; +extern q15_t rearranged_twiddle_stride1_64_q15[40]; +extern q15_t rearranged_twiddle_stride2_64_q15[40]; +extern q15_t rearranged_twiddle_stride3_64_q15[40]; +#endif + +#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_256) || defined(ARM_TABLE_TWIDDLECOEF_Q15_512) + +extern uint32_t rearranged_twiddle_tab_stride1_arr_256_q15[4]; +extern uint32_t rearranged_twiddle_tab_stride2_arr_256_q15[4]; +extern uint32_t rearranged_twiddle_tab_stride3_arr_256_q15[4]; +extern q15_t rearranged_twiddle_stride1_256_q15[168]; +extern q15_t rearranged_twiddle_stride2_256_q15[168]; +extern q15_t rearranged_twiddle_stride3_256_q15[168]; +#endif + +#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_1024) || defined(ARM_TABLE_TWIDDLECOEF_Q15_2048) + +extern uint32_t rearranged_twiddle_tab_stride1_arr_1024_q15[5]; +extern uint32_t rearranged_twiddle_tab_stride2_arr_1024_q15[5]; +extern uint32_t rearranged_twiddle_tab_stride3_arr_1024_q15[5]; +extern q15_t rearranged_twiddle_stride1_1024_q15[680]; +extern q15_t rearranged_twiddle_stride2_1024_q15[680]; +extern q15_t rearranged_twiddle_stride3_1024_q15[680]; +#endif + +#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_4096) || defined(ARM_TABLE_TWIDDLECOEF_Q15_8192) + +extern uint32_t rearranged_twiddle_tab_stride1_arr_4096_q15[6]; +extern uint32_t rearranged_twiddle_tab_stride2_arr_4096_q15[6]; +extern uint32_t rearranged_twiddle_tab_stride3_arr_4096_q15[6]; +extern q15_t rearranged_twiddle_stride1_4096_q15[2728]; +extern q15_t rearranged_twiddle_stride2_4096_q15[2728]; +extern q15_t rearranged_twiddle_stride3_4096_q15[2728]; +#endif + + +#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES) */ + +#endif /* defined(ARM_MATH_MVEI) */ + + + +#ifdef __cplusplus +} +#endif + +#endif /*_ARM_MVE_TABLES_H*/ + diff --git a/Drivers/CMSIS/DSP/Include/arm_mve_tables_f16.h b/Drivers/CMSIS/DSP/Include/arm_mve_tables_f16.h new file mode 100644 index 0000000..dc95203 --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/arm_mve_tables_f16.h @@ -0,0 +1,109 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_mve_tables_f16.h + * Description: common tables like fft twiddle factors, Bitreverse, reciprocal etc + * used for MVE implementation only + * + * @version V1.10.0 + * @date 04 October 2021 + * + * Target Processor: Cortex-M and Cortex-A cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + + #ifndef _ARM_MVE_TABLES_F16_H + #define _ARM_MVE_TABLES_F16_H + +#include "arm_math_types_f16.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + + + + +#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE) + +#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES) + +#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_16) || defined(ARM_TABLE_TWIDDLECOEF_F16_32) + +extern uint32_t rearranged_twiddle_tab_stride1_arr_16_f16[2]; +extern uint32_t rearranged_twiddle_tab_stride2_arr_16_f16[2]; +extern uint32_t rearranged_twiddle_tab_stride3_arr_16_f16[2]; +extern float16_t rearranged_twiddle_stride1_16_f16[8]; +extern float16_t rearranged_twiddle_stride2_16_f16[8]; +extern float16_t rearranged_twiddle_stride3_16_f16[8]; +#endif + +#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_64) || defined(ARM_TABLE_TWIDDLECOEF_F16_128) + +extern uint32_t rearranged_twiddle_tab_stride1_arr_64_f16[3]; +extern uint32_t rearranged_twiddle_tab_stride2_arr_64_f16[3]; +extern uint32_t rearranged_twiddle_tab_stride3_arr_64_f16[3]; +extern float16_t rearranged_twiddle_stride1_64_f16[40]; +extern float16_t rearranged_twiddle_stride2_64_f16[40]; +extern float16_t rearranged_twiddle_stride3_64_f16[40]; +#endif + +#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_256) || defined(ARM_TABLE_TWIDDLECOEF_F16_512) + +extern uint32_t rearranged_twiddle_tab_stride1_arr_256_f16[4]; +extern uint32_t rearranged_twiddle_tab_stride2_arr_256_f16[4]; +extern uint32_t rearranged_twiddle_tab_stride3_arr_256_f16[4]; +extern float16_t rearranged_twiddle_stride1_256_f16[168]; +extern float16_t rearranged_twiddle_stride2_256_f16[168]; +extern float16_t rearranged_twiddle_stride3_256_f16[168]; +#endif + +#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_1024) || defined(ARM_TABLE_TWIDDLECOEF_F16_2048) + +extern uint32_t rearranged_twiddle_tab_stride1_arr_1024_f16[5]; +extern uint32_t rearranged_twiddle_tab_stride2_arr_1024_f16[5]; +extern uint32_t rearranged_twiddle_tab_stride3_arr_1024_f16[5]; +extern float16_t rearranged_twiddle_stride1_1024_f16[680]; +extern float16_t rearranged_twiddle_stride2_1024_f16[680]; +extern float16_t rearranged_twiddle_stride3_1024_f16[680]; +#endif + +#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_4096) || defined(ARM_TABLE_TWIDDLECOEF_F16_8192) + +extern uint32_t rearranged_twiddle_tab_stride1_arr_4096_f16[6]; +extern uint32_t rearranged_twiddle_tab_stride2_arr_4096_f16[6]; +extern uint32_t rearranged_twiddle_tab_stride3_arr_4096_f16[6]; +extern float16_t rearranged_twiddle_stride1_4096_f16[2728]; +extern float16_t rearranged_twiddle_stride2_4096_f16[2728]; +extern float16_t rearranged_twiddle_stride3_4096_f16[2728]; +#endif + + +#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES) */ + +#endif /* defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE) */ + + + +#ifdef __cplusplus +} +#endif + +#endif /*_ARM_MVE_TABLES_F16_H*/ + diff --git a/Drivers/CMSIS/DSP/Include/arm_vec_math.h b/Drivers/CMSIS/DSP/Include/arm_vec_math.h new file mode 100644 index 0000000..d9134c5 --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/arm_vec_math.h @@ -0,0 +1,373 @@ +/****************************************************************************** + * @file arm_vec_math.h + * @brief Public header file for CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2021 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef _ARM_VEC_MATH_H +#define _ARM_VEC_MATH_H + +#include "arm_math_types.h" +#include "arm_common_tables.h" +#include "arm_helium_utils.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + +#if (defined(ARM_MATH_MVEF) || defined(ARM_MATH_HELIUM)) && !defined(ARM_MATH_AUTOVECTORIZE) + +#define INV_NEWTON_INIT_F32 0x7EF127EA + +static const float32_t __logf_rng_f32=0.693147180f; + + +/* fast inverse approximation (3x newton) */ +__STATIC_INLINE f32x4_t vrecip_medprec_f32( + f32x4_t x) +{ + q31x4_t m; + f32x4_t b; + any32x4_t xinv; + f32x4_t ax = vabsq(x); + + xinv.f = ax; + m = 0x3F800000 - (xinv.i & 0x7F800000); + xinv.i = xinv.i + m; + xinv.f = 1.41176471f - 0.47058824f * xinv.f; + xinv.i = xinv.i + m; + + b = 2.0f - xinv.f * ax; + xinv.f = xinv.f * b; + + b = 2.0f - xinv.f * ax; + xinv.f = xinv.f * b; + + b = 2.0f - xinv.f * ax; + xinv.f = xinv.f * b; + + xinv.f = vdupq_m(xinv.f, INFINITY, vcmpeqq(x, 0.0f)); + /* + * restore sign + */ + xinv.f = vnegq_m(xinv.f, xinv.f, vcmpltq(x, 0.0f)); + + return xinv.f; +} + +/* fast inverse approximation (4x newton) */ +__STATIC_INLINE f32x4_t vrecip_hiprec_f32( + f32x4_t x) +{ + q31x4_t m; + f32x4_t b; + any32x4_t xinv; + f32x4_t ax = vabsq(x); + + xinv.f = ax; + + m = 0x3F800000 - (xinv.i & 0x7F800000); + xinv.i = xinv.i + m; + xinv.f = 1.41176471f - 0.47058824f * xinv.f; + xinv.i = xinv.i + m; + + b = 2.0f - xinv.f * ax; + xinv.f = xinv.f * b; + + b = 2.0f - xinv.f * ax; + xinv.f = xinv.f * b; + + b = 2.0f - xinv.f * ax; + xinv.f = xinv.f * b; + + b = 2.0f - xinv.f * ax; + xinv.f = xinv.f * b; + + xinv.f = vdupq_m(xinv.f, INFINITY, vcmpeqq(x, 0.0f)); + /* + * restore sign + */ + xinv.f = vnegq_m(xinv.f, xinv.f, vcmpltq(x, 0.0f)); + + return xinv.f; +} + +__STATIC_INLINE f32x4_t vdiv_f32( + f32x4_t num, f32x4_t den) +{ + return vmulq(num, vrecip_hiprec_f32(den)); +} + +/** + @brief Single-precision taylor dev. + @param[in] x f32 quad vector input + @param[in] coeffs f32 quad vector coeffs + @return destination f32 quad vector + */ + +__STATIC_INLINE f32x4_t vtaylor_polyq_f32( + f32x4_t x, + const float32_t * coeffs) +{ + f32x4_t A = vfmasq(vdupq_n_f32(coeffs[4]), x, coeffs[0]); + f32x4_t B = vfmasq(vdupq_n_f32(coeffs[6]), x, coeffs[2]); + f32x4_t C = vfmasq(vdupq_n_f32(coeffs[5]), x, coeffs[1]); + f32x4_t D = vfmasq(vdupq_n_f32(coeffs[7]), x, coeffs[3]); + f32x4_t x2 = vmulq(x, x); + f32x4_t x4 = vmulq(x2, x2); + f32x4_t res = vfmaq(vfmaq_f32(A, B, x2), vfmaq_f32(C, D, x2), x4); + + return res; +} + +__STATIC_INLINE f32x4_t vmant_exp_f32( + f32x4_t x, + int32x4_t * e) +{ + any32x4_t r; + int32x4_t n; + + r.f = x; + n = r.i >> 23; + n = n - 127; + r.i = r.i - (n << 23); + + *e = n; + return r.f; +} + + +__STATIC_INLINE f32x4_t vlogq_f32(f32x4_t vecIn) +{ + q31x4_t vecExpUnBiased; + f32x4_t vecTmpFlt0, vecTmpFlt1; + f32x4_t vecAcc0, vecAcc1, vecAcc2, vecAcc3; + f32x4_t vecExpUnBiasedFlt; + + /* + * extract exponent + */ + vecTmpFlt1 = vmant_exp_f32(vecIn, &vecExpUnBiased); + + vecTmpFlt0 = vecTmpFlt1 * vecTmpFlt1; + /* + * a = (__logf_lut_f32[4] * r.f) + (__logf_lut_f32[0]); + */ + vecAcc0 = vdupq_n_f32(__logf_lut_f32[0]); + vecAcc0 = vfmaq(vecAcc0, vecTmpFlt1, __logf_lut_f32[4]); + /* + * b = (__logf_lut_f32[6] * r.f) + (__logf_lut_f32[2]); + */ + vecAcc1 = vdupq_n_f32(__logf_lut_f32[2]); + vecAcc1 = vfmaq(vecAcc1, vecTmpFlt1, __logf_lut_f32[6]); + /* + * c = (__logf_lut_f32[5] * r.f) + (__logf_lut_f32[1]); + */ + vecAcc2 = vdupq_n_f32(__logf_lut_f32[1]); + vecAcc2 = vfmaq(vecAcc2, vecTmpFlt1, __logf_lut_f32[5]); + /* + * d = (__logf_lut_f32[7] * r.f) + (__logf_lut_f32[3]); + */ + vecAcc3 = vdupq_n_f32(__logf_lut_f32[3]); + vecAcc3 = vfmaq(vecAcc3, vecTmpFlt1, __logf_lut_f32[7]); + /* + * a = a + b * xx; + */ + vecAcc0 = vfmaq(vecAcc0, vecAcc1, vecTmpFlt0); + /* + * c = c + d * xx; + */ + vecAcc2 = vfmaq(vecAcc2, vecAcc3, vecTmpFlt0); + /* + * xx = xx * xx; + */ + vecTmpFlt0 = vecTmpFlt0 * vecTmpFlt0; + vecExpUnBiasedFlt = vcvtq_f32_s32(vecExpUnBiased); + /* + * r.f = a + c * xx; + */ + vecAcc0 = vfmaq(vecAcc0, vecAcc2, vecTmpFlt0); + /* + * add exponent + * r.f = r.f + ((float32_t) m) * __logf_rng_f32; + */ + vecAcc0 = vfmaq(vecAcc0, vecExpUnBiasedFlt, __logf_rng_f32); + // set log0 down to -inf + vecAcc0 = vdupq_m(vecAcc0, -INFINITY, vcmpeqq(vecIn, 0.0f)); + return vecAcc0; +} + +__STATIC_INLINE f32x4_t vexpq_f32( + f32x4_t x) +{ + // Perform range reduction [-log(2),log(2)] + int32x4_t m = vcvtq_s32_f32(vmulq_n_f32(x, 1.4426950408f)); + f32x4_t val = vfmsq_f32(x, vcvtq_f32_s32(m), vdupq_n_f32(0.6931471805f)); + + // Polynomial Approximation + f32x4_t poly = vtaylor_polyq_f32(val, exp_tab); + + // Reconstruct + poly = (f32x4_t) (vqaddq_s32((q31x4_t) (poly), vqshlq_n_s32(m, 23))); + + poly = vdupq_m(poly, 0.0f, vcmpltq_n_s32(m, -126)); + return poly; +} + +__STATIC_INLINE f32x4_t arm_vec_exponent_f32(f32x4_t x, int32_t nb) +{ + f32x4_t r = x; + nb--; + while (nb > 0) { + r = vmulq(r, x); + nb--; + } + return (r); +} + +__STATIC_INLINE f32x4_t vrecip_f32(f32x4_t vecIn) +{ + f32x4_t vecSx, vecW, vecTmp; + any32x4_t v; + + vecSx = vabsq(vecIn); + + v.f = vecIn; + v.i = vsubq(vdupq_n_s32(INV_NEWTON_INIT_F32), v.i); + + vecW = vmulq(vecSx, v.f); + + // v.f = v.f * (8 + w * (-28 + w * (56 + w * (-70 + w *(56 + w * (-28 + w * (8 - w))))))); + vecTmp = vsubq(vdupq_n_f32(8.0f), vecW); + vecTmp = vfmasq(vecW, vecTmp, -28.0f); + vecTmp = vfmasq(vecW, vecTmp, 56.0f); + vecTmp = vfmasq(vecW, vecTmp, -70.0f); + vecTmp = vfmasq(vecW, vecTmp, 56.0f); + vecTmp = vfmasq(vecW, vecTmp, -28.0f); + vecTmp = vfmasq(vecW, vecTmp, 8.0f); + v.f = vmulq(v.f, vecTmp); + + v.f = vdupq_m(v.f, INFINITY, vcmpeqq(vecIn, 0.0f)); + /* + * restore sign + */ + v.f = vnegq_m(v.f, v.f, vcmpltq(vecIn, 0.0f)); + return v.f; +} + +__STATIC_INLINE f32x4_t vtanhq_f32( + f32x4_t val) +{ + f32x4_t x = + vminnmq_f32(vmaxnmq_f32(val, vdupq_n_f32(-10.f)), vdupq_n_f32(10.0f)); + f32x4_t exp2x = vexpq_f32(vmulq_n_f32(x, 2.f)); + f32x4_t num = vsubq_n_f32(exp2x, 1.f); + f32x4_t den = vaddq_n_f32(exp2x, 1.f); + f32x4_t tanh = vmulq_f32(num, vrecip_f32(den)); + return tanh; +} + +__STATIC_INLINE f32x4_t vpowq_f32( + f32x4_t val, + f32x4_t n) +{ + return vexpq_f32(vmulq_f32(n, vlogq_f32(val))); +} + +#endif /* (defined(ARM_MATH_MVEF) || defined(ARM_MATH_HELIUM)) && !defined(ARM_MATH_AUTOVECTORIZE)*/ + +#if (defined(ARM_MATH_MVEI) || defined(ARM_MATH_HELIUM)) && !defined(ARM_MATH_AUTOVECTORIZE) +#endif /* (defined(ARM_MATH_MVEI) || defined(ARM_MATH_HELIUM)) */ + +#if (defined(ARM_MATH_NEON) || defined(ARM_MATH_NEON_EXPERIMENTAL)) && !defined(ARM_MATH_AUTOVECTORIZE) + +#include "NEMath.h" +/** + * @brief Vectorized integer exponentiation + * @param[in] x value + * @param[in] nb integer exponent >= 1 + * @return x^nb + * + */ +__STATIC_INLINE float32x4_t arm_vec_exponent_f32(float32x4_t x, int32_t nb) +{ + float32x4_t r = x; + nb --; + while(nb > 0) + { + r = vmulq_f32(r , x); + nb--; + } + return(r); +} + + +__STATIC_INLINE float32x4_t __arm_vec_sqrt_f32_neon(float32x4_t x) +{ + float32x4_t x1 = vmaxq_f32(x, vdupq_n_f32(FLT_MIN)); + float32x4_t e = vrsqrteq_f32(x1); + e = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x1, e), e), e); + e = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x1, e), e), e); + return vmulq_f32(x, e); +} + +__STATIC_INLINE int16x8_t __arm_vec_sqrt_q15_neon(int16x8_t vec) +{ + float32x4_t tempF; + int32x4_t tempHI,tempLO; + + tempLO = vmovl_s16(vget_low_s16(vec)); + tempF = vcvtq_n_f32_s32(tempLO,15); + tempF = __arm_vec_sqrt_f32_neon(tempF); + tempLO = vcvtq_n_s32_f32(tempF,15); + + tempHI = vmovl_s16(vget_high_s16(vec)); + tempF = vcvtq_n_f32_s32(tempHI,15); + tempF = __arm_vec_sqrt_f32_neon(tempF); + tempHI = vcvtq_n_s32_f32(tempF,15); + + return(vcombine_s16(vqmovn_s32(tempLO),vqmovn_s32(tempHI))); +} + +__STATIC_INLINE int32x4_t __arm_vec_sqrt_q31_neon(int32x4_t vec) +{ + float32x4_t temp; + + temp = vcvtq_n_f32_s32(vec,31); + temp = __arm_vec_sqrt_f32_neon(temp); + return(vcvtq_n_s32_f32(temp,31)); +} + +#endif /* (defined(ARM_MATH_NEON) || defined(ARM_MATH_NEON_EXPERIMENTAL)) && !defined(ARM_MATH_AUTOVECTORIZE) */ + +#ifdef __cplusplus +} +#endif + + +#endif /* _ARM_VEC_MATH_H */ + +/** + * + * End of file. + */ diff --git a/Drivers/CMSIS/DSP/Include/arm_vec_math_f16.h b/Drivers/CMSIS/DSP/Include/arm_vec_math_f16.h new file mode 100644 index 0000000..91bd28a --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/arm_vec_math_f16.h @@ -0,0 +1,312 @@ +/****************************************************************************** + * @file arm_vec_math_f16.h + * @brief Public header file for CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2021 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef _ARM_VEC_MATH_F16_H +#define _ARM_VEC_MATH_F16_H + +#include "arm_math_types_f16.h" +#include "arm_common_tables_f16.h" +#include "arm_helium_utils.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + +#if defined(ARM_FLOAT16_SUPPORTED) + + +#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE) + + +static const float16_t __logf_rng_f16=0.693147180f16; + +/* fast inverse approximation (3x newton) */ +__STATIC_INLINE f16x8_t vrecip_medprec_f16( + f16x8_t x) +{ + q15x8_t m; + f16x8_t b; + any16x8_t xinv; + f16x8_t ax = vabsq(x); + + xinv.f = ax; + + m = 0x03c00 - (xinv.i & 0x07c00); + xinv.i = xinv.i + m; + xinv.f = 1.41176471f16 - 0.47058824f16 * xinv.f; + xinv.i = xinv.i + m; + + b = 2.0f16 - xinv.f * ax; + xinv.f = xinv.f * b; + + b = 2.0f16 - xinv.f * ax; + xinv.f = xinv.f * b; + + b = 2.0f16 - xinv.f * ax; + xinv.f = xinv.f * b; + + xinv.f = vdupq_m_n_f16(xinv.f, F16INFINITY, vcmpeqq_n_f16(x, 0.0f)); + /* + * restore sign + */ + xinv.f = vnegq_m(xinv.f, xinv.f, vcmpltq_n_f16(x, 0.0f)); + + return xinv.f; +} + +/* fast inverse approximation (4x newton) */ +__STATIC_INLINE f16x8_t vrecip_hiprec_f16( + f16x8_t x) +{ + q15x8_t m; + f16x8_t b; + any16x8_t xinv; + f16x8_t ax = vabsq(x); + + xinv.f = ax; + + m = 0x03c00 - (xinv.i & 0x07c00); + xinv.i = xinv.i + m; + xinv.f = 1.41176471f16 - 0.47058824f16 * xinv.f; + xinv.i = xinv.i + m; + + b = 2.0f16 - xinv.f * ax; + xinv.f = xinv.f * b; + + b = 2.0f16 - xinv.f * ax; + xinv.f = xinv.f * b; + + b = 2.0f16 - xinv.f * ax; + xinv.f = xinv.f * b; + + b = 2.0f16 - xinv.f * ax; + xinv.f = xinv.f * b; + + xinv.f = vdupq_m_n_f16(xinv.f, F16INFINITY, vcmpeqq_n_f16(x, 0.0f)); + /* + * restore sign + */ + xinv.f = vnegq_m(xinv.f, xinv.f, vcmpltq_n_f16(x, 0.0f)); + + return xinv.f; +} + +__STATIC_INLINE f16x8_t vdiv_f16( + f16x8_t num, f16x8_t den) +{ + return vmulq(num, vrecip_hiprec_f16(den)); +} + + +/** + @brief Single-precision taylor dev. + @param[in] x f16 vector input + @param[in] coeffs f16 vector coeffs + @return destination f16 vector + */ + +__STATIC_INLINE float16x8_t vtaylor_polyq_f16( + float16x8_t x, + const float16_t * coeffs) +{ + float16x8_t A = vfmasq(vdupq_n_f16(coeffs[4]), x, coeffs[0]); + float16x8_t B = vfmasq(vdupq_n_f16(coeffs[6]), x, coeffs[2]); + float16x8_t C = vfmasq(vdupq_n_f16(coeffs[5]), x, coeffs[1]); + float16x8_t D = vfmasq(vdupq_n_f16(coeffs[7]), x, coeffs[3]); + float16x8_t x2 = vmulq(x, x); + float16x8_t x4 = vmulq(x2, x2); + float16x8_t res = vfmaq(vfmaq_f16(A, B, x2), vfmaq_f16(C, D, x2), x4); + + return res; +} + +#define VMANT_EXP_F16(x) \ + any16x8_t r; \ + int16x8_t n; \ + \ + r.f = x; \ + n = r.i >> 10; \ + n = n - 15; \ + r.i = r.i - (n << 10);\ + \ + vecExpUnBiased = n; \ + vecTmpFlt1 = r.f; + +__STATIC_INLINE float16x8_t vlogq_f16(float16x8_t vecIn) +{ + q15x8_t vecExpUnBiased; + float16x8_t vecTmpFlt0, vecTmpFlt1; + float16x8_t vecAcc0, vecAcc1, vecAcc2, vecAcc3; + float16x8_t vecExpUnBiasedFlt; + + /* + * extract exponent + */ + VMANT_EXP_F16(vecIn); + + vecTmpFlt0 = vecTmpFlt1 * vecTmpFlt1; + /* + * a = (__logf_lut_f16[4] * r.f) + (__logf_lut_f16[0]); + */ + vecAcc0 = vdupq_n_f16(__logf_lut_f16[0]); + vecAcc0 = vfmaq(vecAcc0, vecTmpFlt1, __logf_lut_f16[4]); + /* + * b = (__logf_lut_f16[6] * r.f) + (__logf_lut_f16[2]); + */ + vecAcc1 = vdupq_n_f16(__logf_lut_f16[2]); + vecAcc1 = vfmaq(vecAcc1, vecTmpFlt1, __logf_lut_f16[6]); + /* + * c = (__logf_lut_f16[5] * r.f) + (__logf_lut_f16[1]); + */ + vecAcc2 = vdupq_n_f16(__logf_lut_f16[1]); + vecAcc2 = vfmaq(vecAcc2, vecTmpFlt1, __logf_lut_f16[5]); + /* + * d = (__logf_lut_f16[7] * r.f) + (__logf_lut_f16[3]); + */ + vecAcc3 = vdupq_n_f16(__logf_lut_f16[3]); + vecAcc3 = vfmaq(vecAcc3, vecTmpFlt1, __logf_lut_f16[7]); + /* + * a = a + b * xx; + */ + vecAcc0 = vfmaq(vecAcc0, vecAcc1, vecTmpFlt0); + /* + * c = c + d * xx; + */ + vecAcc2 = vfmaq(vecAcc2, vecAcc3, vecTmpFlt0); + /* + * xx = xx * xx; + */ + vecTmpFlt0 = vecTmpFlt0 * vecTmpFlt0; + vecExpUnBiasedFlt = vcvtq_f16_s16(vecExpUnBiased); + /* + * r.f = a + c * xx; + */ + vecAcc0 = vfmaq(vecAcc0, vecAcc2, vecTmpFlt0); + /* + * add exponent + * r.f = r.f + ((float32_t) m) * __logf_rng_f16; + */ + vecAcc0 = vfmaq(vecAcc0, vecExpUnBiasedFlt, __logf_rng_f16); + // set log0 down to -inf + vecAcc0 = vdupq_m_n_f16(vecAcc0, -(_Float16)F16INFINITY, vcmpeqq_n_f16(vecIn, 0.0f)); + return vecAcc0; +} + +__STATIC_INLINE float16x8_t vexpq_f16( + float16x8_t x) +{ + // Perform range reduction [-log(2),log(2)] + int16x8_t m = vcvtq_s16_f16(vmulq_n_f16(x, 1.4426950408f16)); + float16x8_t val = vfmsq_f16(x, vcvtq_f16_s16(m), vdupq_n_f16(0.6931471805f16)); + + // Polynomial Approximation + float16x8_t poly = vtaylor_polyq_f16(val, exp_tab_f16); + + // Reconstruct + poly = (float16x8_t) (vqaddq_s16((int16x8_t) (poly), vqshlq_n_s16(m, 10))); + + poly = vdupq_m_n_f16(poly, 0.0f16, vcmpltq_n_s16(m, -14)); + return poly; +} + +__STATIC_INLINE float16x8_t arm_vec_exponent_f16(float16x8_t x, int16_t nb) +{ + float16x8_t r = x; + nb--; + while (nb > 0) { + r = vmulq(r, x); + nb--; + } + return (r); +} + +__STATIC_INLINE f16x8_t vpowq_f16( + f16x8_t val, + f16x8_t n) +{ + return vexpq_f16(vmulq_f16(n, vlogq_f16(val))); +} + +#define INV_NEWTON_INIT_F16 0x7773 + +__STATIC_INLINE f16x8_t vrecip_f16(f16x8_t vecIn) +{ + f16x8_t vecSx, vecW, vecTmp; + any16x8_t v; + + vecSx = vabsq(vecIn); + + v.f = vecIn; + v.i = vsubq(vdupq_n_s16(INV_NEWTON_INIT_F16), v.i); + + vecW = vmulq(vecSx, v.f); + + // v.f = v.f * (8 + w * (-28 + w * (56 + w * (-70 + w *(56 + w * (-28 + w * (8 - w))))))); + vecTmp = vsubq(vdupq_n_f16(8.0f16), vecW); + vecTmp = vfmasq_n_f16(vecW, vecTmp, -28.0f16); + vecTmp = vfmasq_n_f16(vecW, vecTmp, 56.0f16); + vecTmp = vfmasq_n_f16(vecW, vecTmp, -70.0f16); + vecTmp = vfmasq_n_f16(vecW, vecTmp, 56.0f16); + vecTmp = vfmasq_n_f16(vecW, vecTmp, -28.0f16); + vecTmp = vfmasq_n_f16(vecW, vecTmp, 8.0f16); + v.f = vmulq(v.f, vecTmp); + + v.f = vdupq_m_n_f16(v.f, F16INFINITY, vcmpeqq_n_f16(vecIn, 0.0f)); + /* + * restore sign + */ + v.f = vnegq_m(v.f, v.f, vcmpltq_n_f16(vecIn, 0.0f)); + return v.f; +} + +__STATIC_INLINE f16x8_t vtanhq_f16( + f16x8_t val) +{ + f16x8_t x = + vminnmq_f16(vmaxnmq_f16(val, vdupq_n_f16(-10.f16)), vdupq_n_f16(10.0f16)); + f16x8_t exp2x = vexpq_f16(vmulq_n_f16(x, 2.f16)); + f16x8_t num = vsubq_n_f16(exp2x, 1.f16); + f16x8_t den = vaddq_n_f16(exp2x, 1.f16); + f16x8_t tanh = vmulq_f16(num, vrecip_f16(den)); + return tanh; +} + +#endif /* defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)*/ + + + +#ifdef __cplusplus +} +#endif + +#endif /* ARM FLOAT16 SUPPORTED */ + +#endif /* _ARM_VEC_MATH_F16_H */ + +/** + * + * End of file. + */ diff --git a/Drivers/CMSIS/DSP/Include/dsp/basic_math_functions.h b/Drivers/CMSIS/DSP/Include/dsp/basic_math_functions.h new file mode 100644 index 0000000..dcc1f2a --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/dsp/basic_math_functions.h @@ -0,0 +1,880 @@ +/****************************************************************************** + * @file basic_math_functions.h + * @brief Public header file for CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + + +#ifndef _BASIC_MATH_FUNCTIONS_H_ +#define _BASIC_MATH_FUNCTIONS_H_ + +#include "arm_math_types.h" +#include "arm_math_memory.h" + +#include "dsp/none.h" +#include "dsp/utils.h" + + +#ifdef __cplusplus +extern "C" +{ +#endif + +/** + * @defgroup groupMath Basic Math Functions + */ + + /** + * @brief Q7 vector multiplication. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ + void arm_mult_q7( + const q7_t * pSrcA, + const q7_t * pSrcB, + q7_t * pDst, + uint32_t blockSize); + + + /** + * @brief Q15 vector multiplication. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ + void arm_mult_q15( + const q15_t * pSrcA, + const q15_t * pSrcB, + q15_t * pDst, + uint32_t blockSize); + + + /** + * @brief Q31 vector multiplication. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ + void arm_mult_q31( + const q31_t * pSrcA, + const q31_t * pSrcB, + q31_t * pDst, + uint32_t blockSize); + + + /** + * @brief Floating-point vector multiplication. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ + void arm_mult_f32( + const float32_t * pSrcA, + const float32_t * pSrcB, + float32_t * pDst, + uint32_t blockSize); + + + +/** + * @brief Floating-point vector multiplication. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ +void arm_mult_f64( +const float64_t * pSrcA, +const float64_t * pSrcB, + float64_t * pDst, + uint32_t blockSize); + + + + /** + * @brief Floating-point vector addition. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ + void arm_add_f32( + const float32_t * pSrcA, + const float32_t * pSrcB, + float32_t * pDst, + uint32_t blockSize); + + + +/** + * @brief Floating-point vector addition. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ + void arm_add_f64( + const float64_t * pSrcA, + const float64_t * pSrcB, + float64_t * pDst, + uint32_t blockSize); + + + + /** + * @brief Q7 vector addition. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ + void arm_add_q7( + const q7_t * pSrcA, + const q7_t * pSrcB, + q7_t * pDst, + uint32_t blockSize); + + + /** + * @brief Q15 vector addition. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ + void arm_add_q15( + const q15_t * pSrcA, + const q15_t * pSrcB, + q15_t * pDst, + uint32_t blockSize); + + + /** + * @brief Q31 vector addition. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ + void arm_add_q31( + const q31_t * pSrcA, + const q31_t * pSrcB, + q31_t * pDst, + uint32_t blockSize); + + + /** + * @brief Floating-point vector subtraction. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ + void arm_sub_f32( + const float32_t * pSrcA, + const float32_t * pSrcB, + float32_t * pDst, + uint32_t blockSize); + + + + /** + * @brief Floating-point vector subtraction. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ + void arm_sub_f64( + const float64_t * pSrcA, + const float64_t * pSrcB, + float64_t * pDst, + uint32_t blockSize); + + + + /** + * @brief Q7 vector subtraction. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ + void arm_sub_q7( + const q7_t * pSrcA, + const q7_t * pSrcB, + q7_t * pDst, + uint32_t blockSize); + + + /** + * @brief Q15 vector subtraction. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ + void arm_sub_q15( + const q15_t * pSrcA, + const q15_t * pSrcB, + q15_t * pDst, + uint32_t blockSize); + + + /** + * @brief Q31 vector subtraction. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ + void arm_sub_q31( + const q31_t * pSrcA, + const q31_t * pSrcB, + q31_t * pDst, + uint32_t blockSize); + + + /** + * @brief Multiplies a floating-point vector by a scalar. + * @param[in] pSrc points to the input vector + * @param[in] scale scale factor to be applied + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ + void arm_scale_f32( + const float32_t * pSrc, + float32_t scale, + float32_t * pDst, + uint32_t blockSize); + + + + /** + * @brief Multiplies a floating-point vector by a scalar. + * @param[in] pSrc points to the input vector + * @param[in] scale scale factor to be applied + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ + void arm_scale_f64( + const float64_t * pSrc, + float64_t scale, + float64_t * pDst, + uint32_t blockSize); + + + + /** + * @brief Multiplies a Q7 vector by a scalar. + * @param[in] pSrc points to the input vector + * @param[in] scaleFract fractional portion of the scale value + * @param[in] shift number of bits to shift the result by + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ + void arm_scale_q7( + const q7_t * pSrc, + q7_t scaleFract, + int8_t shift, + q7_t * pDst, + uint32_t blockSize); + + + /** + * @brief Multiplies a Q15 vector by a scalar. + * @param[in] pSrc points to the input vector + * @param[in] scaleFract fractional portion of the scale value + * @param[in] shift number of bits to shift the result by + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ + void arm_scale_q15( + const q15_t * pSrc, + q15_t scaleFract, + int8_t shift, + q15_t * pDst, + uint32_t blockSize); + + + /** + * @brief Multiplies a Q31 vector by a scalar. + * @param[in] pSrc points to the input vector + * @param[in] scaleFract fractional portion of the scale value + * @param[in] shift number of bits to shift the result by + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ + void arm_scale_q31( + const q31_t * pSrc, + q31_t scaleFract, + int8_t shift, + q31_t * pDst, + uint32_t blockSize); + + + /** + * @brief Q7 vector absolute value. + * @param[in] pSrc points to the input buffer + * @param[out] pDst points to the output buffer + * @param[in] blockSize number of samples in each vector + */ + void arm_abs_q7( + const q7_t * pSrc, + q7_t * pDst, + uint32_t blockSize); + + + /** + * @brief Floating-point vector absolute value. + * @param[in] pSrc points to the input buffer + * @param[out] pDst points to the output buffer + * @param[in] blockSize number of samples in each vector + */ + void arm_abs_f32( + const float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + + +/** + * @brief Floating-point vector absolute value. + * @param[in] pSrc points to the input buffer + * @param[out] pDst points to the output buffer + * @param[in] blockSize number of samples in each vector + */ +void arm_abs_f64( +const float64_t * pSrc, + float64_t * pDst, + uint32_t blockSize); + + + + /** + * @brief Q15 vector absolute value. + * @param[in] pSrc points to the input buffer + * @param[out] pDst points to the output buffer + * @param[in] blockSize number of samples in each vector + */ + void arm_abs_q15( + const q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + + /** + * @brief Q31 vector absolute value. + * @param[in] pSrc points to the input buffer + * @param[out] pDst points to the output buffer + * @param[in] blockSize number of samples in each vector + */ + void arm_abs_q31( + const q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + + /** + * @brief Dot product of floating-point vectors. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[in] blockSize number of samples in each vector + * @param[out] result output result returned here + */ + void arm_dot_prod_f32( + const float32_t * pSrcA, + const float32_t * pSrcB, + uint32_t blockSize, + float32_t * result); + + + +/** + * @brief Dot product of floating-point vectors. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[in] blockSize number of samples in each vector + * @param[out] result output result returned here + */ +void arm_dot_prod_f64( +const float64_t * pSrcA, +const float64_t * pSrcB, + uint32_t blockSize, + float64_t * result); + + + + /** + * @brief Dot product of Q7 vectors. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[in] blockSize number of samples in each vector + * @param[out] result output result returned here + */ + void arm_dot_prod_q7( + const q7_t * pSrcA, + const q7_t * pSrcB, + uint32_t blockSize, + q31_t * result); + + + /** + * @brief Dot product of Q15 vectors. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[in] blockSize number of samples in each vector + * @param[out] result output result returned here + */ + void arm_dot_prod_q15( + const q15_t * pSrcA, + const q15_t * pSrcB, + uint32_t blockSize, + q63_t * result); + + + /** + * @brief Dot product of Q31 vectors. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[in] blockSize number of samples in each vector + * @param[out] result output result returned here + */ + void arm_dot_prod_q31( + const q31_t * pSrcA, + const q31_t * pSrcB, + uint32_t blockSize, + q63_t * result); + + + /** + * @brief Shifts the elements of a Q7 vector a specified number of bits. + * @param[in] pSrc points to the input vector + * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ + void arm_shift_q7( + const q7_t * pSrc, + int8_t shiftBits, + q7_t * pDst, + uint32_t blockSize); + + + /** + * @brief Shifts the elements of a Q15 vector a specified number of bits. + * @param[in] pSrc points to the input vector + * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ + void arm_shift_q15( + const q15_t * pSrc, + int8_t shiftBits, + q15_t * pDst, + uint32_t blockSize); + + + /** + * @brief Shifts the elements of a Q31 vector a specified number of bits. + * @param[in] pSrc points to the input vector + * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ + void arm_shift_q31( + const q31_t * pSrc, + int8_t shiftBits, + q31_t * pDst, + uint32_t blockSize); + + +/** + * @brief Adds a constant offset to a floating-point vector. + * @param[in] pSrc points to the input vector + * @param[in] offset is the offset to be added + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ +void arm_offset_f64( +const float64_t * pSrc, + float64_t offset, + float64_t * pDst, + uint32_t blockSize); + + + + /** + * @brief Adds a constant offset to a floating-point vector. + * @param[in] pSrc points to the input vector + * @param[in] offset is the offset to be added + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ + void arm_offset_f32( + const float32_t * pSrc, + float32_t offset, + float32_t * pDst, + uint32_t blockSize); + + + + /** + * @brief Adds a constant offset to a Q7 vector. + * @param[in] pSrc points to the input vector + * @param[in] offset is the offset to be added + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ + void arm_offset_q7( + const q7_t * pSrc, + q7_t offset, + q7_t * pDst, + uint32_t blockSize); + + + /** + * @brief Adds a constant offset to a Q15 vector. + * @param[in] pSrc points to the input vector + * @param[in] offset is the offset to be added + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ + void arm_offset_q15( + const q15_t * pSrc, + q15_t offset, + q15_t * pDst, + uint32_t blockSize); + + + /** + * @brief Adds a constant offset to a Q31 vector. + * @param[in] pSrc points to the input vector + * @param[in] offset is the offset to be added + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ + void arm_offset_q31( + const q31_t * pSrc, + q31_t offset, + q31_t * pDst, + uint32_t blockSize); + + + /** + * @brief Negates the elements of a floating-point vector. + * @param[in] pSrc points to the input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ + void arm_negate_f32( + const float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + + +/** + * @brief Negates the elements of a floating-point vector. + * @param[in] pSrc points to the input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ +void arm_negate_f64( +const float64_t * pSrc, + float64_t * pDst, + uint32_t blockSize); + + + + /** + * @brief Negates the elements of a Q7 vector. + * @param[in] pSrc points to the input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ + void arm_negate_q7( + const q7_t * pSrc, + q7_t * pDst, + uint32_t blockSize); + + + /** + * @brief Negates the elements of a Q15 vector. + * @param[in] pSrc points to the input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ + void arm_negate_q15( + const q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + + /** + * @brief Negates the elements of a Q31 vector. + * @param[in] pSrc points to the input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ + void arm_negate_q31( + const q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + +/** + * @brief Compute the logical bitwise AND of two fixed-point vectors. + * @param[in] pSrcA points to input vector A + * @param[in] pSrcB points to input vector B + * @param[out] pDst points to output vector + * @param[in] blockSize number of samples in each vector + * @return none + */ + void arm_and_u16( + const uint16_t * pSrcA, + const uint16_t * pSrcB, + uint16_t * pDst, + uint32_t blockSize); + + /** + * @brief Compute the logical bitwise AND of two fixed-point vectors. + * @param[in] pSrcA points to input vector A + * @param[in] pSrcB points to input vector B + * @param[out] pDst points to output vector + * @param[in] blockSize number of samples in each vector + * @return none + */ + void arm_and_u32( + const uint32_t * pSrcA, + const uint32_t * pSrcB, + uint32_t * pDst, + uint32_t blockSize); + + /** + * @brief Compute the logical bitwise AND of two fixed-point vectors. + * @param[in] pSrcA points to input vector A + * @param[in] pSrcB points to input vector B + * @param[out] pDst points to output vector + * @param[in] blockSize number of samples in each vector + * @return none + */ + void arm_and_u8( + const uint8_t * pSrcA, + const uint8_t * pSrcB, + uint8_t * pDst, + uint32_t blockSize); + + /** + * @brief Compute the logical bitwise OR of two fixed-point vectors. + * @param[in] pSrcA points to input vector A + * @param[in] pSrcB points to input vector B + * @param[out] pDst points to output vector + * @param[in] blockSize number of samples in each vector + * @return none + */ + void arm_or_u16( + const uint16_t * pSrcA, + const uint16_t * pSrcB, + uint16_t * pDst, + uint32_t blockSize); + + /** + * @brief Compute the logical bitwise OR of two fixed-point vectors. + * @param[in] pSrcA points to input vector A + * @param[in] pSrcB points to input vector B + * @param[out] pDst points to output vector + * @param[in] blockSize number of samples in each vector + * @return none + */ + void arm_or_u32( + const uint32_t * pSrcA, + const uint32_t * pSrcB, + uint32_t * pDst, + uint32_t blockSize); + + /** + * @brief Compute the logical bitwise OR of two fixed-point vectors. + * @param[in] pSrcA points to input vector A + * @param[in] pSrcB points to input vector B + * @param[out] pDst points to output vector + * @param[in] blockSize number of samples in each vector + * @return none + */ + void arm_or_u8( + const uint8_t * pSrcA, + const uint8_t * pSrcB, + uint8_t * pDst, + uint32_t blockSize); + + /** + * @brief Compute the logical bitwise NOT of a fixed-point vector. + * @param[in] pSrc points to input vector + * @param[out] pDst points to output vector + * @param[in] blockSize number of samples in each vector + * @return none + */ + void arm_not_u16( + const uint16_t * pSrc, + uint16_t * pDst, + uint32_t blockSize); + + /** + * @brief Compute the logical bitwise NOT of a fixed-point vector. + * @param[in] pSrc points to input vector + * @param[out] pDst points to output vector + * @param[in] blockSize number of samples in each vector + * @return none + */ + void arm_not_u32( + const uint32_t * pSrc, + uint32_t * pDst, + uint32_t blockSize); + + /** + * @brief Compute the logical bitwise NOT of a fixed-point vector. + * @param[in] pSrc points to input vector + * @param[out] pDst points to output vector + * @param[in] blockSize number of samples in each vector + * @return none + */ + void arm_not_u8( + const uint8_t * pSrc, + uint8_t * pDst, + uint32_t blockSize); + +/** + * @brief Compute the logical bitwise XOR of two fixed-point vectors. + * @param[in] pSrcA points to input vector A + * @param[in] pSrcB points to input vector B + * @param[out] pDst points to output vector + * @param[in] blockSize number of samples in each vector + * @return none + */ + void arm_xor_u16( + const uint16_t * pSrcA, + const uint16_t * pSrcB, + uint16_t * pDst, + uint32_t blockSize); + + /** + * @brief Compute the logical bitwise XOR of two fixed-point vectors. + * @param[in] pSrcA points to input vector A + * @param[in] pSrcB points to input vector B + * @param[out] pDst points to output vector + * @param[in] blockSize number of samples in each vector + * @return none + */ + void arm_xor_u32( + const uint32_t * pSrcA, + const uint32_t * pSrcB, + uint32_t * pDst, + uint32_t blockSize); + + /** + * @brief Compute the logical bitwise XOR of two fixed-point vectors. + * @param[in] pSrcA points to input vector A + * @param[in] pSrcB points to input vector B + * @param[out] pDst points to output vector + * @param[in] blockSize number of samples in each vector + * @return none + */ + void arm_xor_u8( + const uint8_t * pSrcA, + const uint8_t * pSrcB, + uint8_t * pDst, + uint32_t blockSize); + + /** + @brief Elementwise floating-point clipping + @param[in] pSrc points to input values + @param[out] pDst points to output clipped values + @param[in] low lower bound + @param[in] high higher bound + @param[in] numSamples number of samples to clip + @return none + */ + +void arm_clip_f32(const float32_t * pSrc, + float32_t * pDst, + float32_t low, + float32_t high, + uint32_t numSamples); + + /** + @brief Elementwise fixed-point clipping + @param[in] pSrc points to input values + @param[out] pDst points to output clipped values + @param[in] low lower bound + @param[in] high higher bound + @param[in] numSamples number of samples to clip + @return none + */ + +void arm_clip_q31(const q31_t * pSrc, + q31_t * pDst, + q31_t low, + q31_t high, + uint32_t numSamples); + + /** + @brief Elementwise fixed-point clipping + @param[in] pSrc points to input values + @param[out] pDst points to output clipped values + @param[in] low lower bound + @param[in] high higher bound + @param[in] numSamples number of samples to clip + @return none + */ + +void arm_clip_q15(const q15_t * pSrc, + q15_t * pDst, + q15_t low, + q15_t high, + uint32_t numSamples); + + /** + @brief Elementwise fixed-point clipping + @param[in] pSrc points to input values + @param[out] pDst points to output clipped values + @param[in] low lower bound + @param[in] high higher bound + @param[in] numSamples number of samples to clip + @return none + */ + +void arm_clip_q7(const q7_t * pSrc, + q7_t * pDst, + q7_t low, + q7_t high, + uint32_t numSamples); + + +#ifdef __cplusplus +} +#endif + +#endif /* ifndef _BASIC_MATH_FUNCTIONS_H_ */ diff --git a/Drivers/CMSIS/DSP/Include/dsp/basic_math_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/basic_math_functions_f16.h new file mode 100644 index 0000000..de9f58b --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/dsp/basic_math_functions_f16.h @@ -0,0 +1,168 @@ +/****************************************************************************** + * @file basic_math_functions_f16.h + * @brief Public header file for CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + + +#ifndef _BASIC_MATH_FUNCTIONS_F16_H_ +#define _BASIC_MATH_FUNCTIONS_F16_H_ + +#ifdef __cplusplus +extern "C" +{ +#endif + +#include "arm_math_types_f16.h" +#include "arm_math_memory.h" + +#include "dsp/none.h" +#include "dsp/utils.h" + + +#if defined(ARM_FLOAT16_SUPPORTED) + + + /** + * @brief Floating-point vector addition. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ + void arm_add_f16( + const float16_t * pSrcA, + const float16_t * pSrcB, + float16_t * pDst, + uint32_t blockSize); + + /** + * @brief Floating-point vector subtraction. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ + void arm_sub_f16( + const float16_t * pSrcA, + const float16_t * pSrcB, + float16_t * pDst, + uint32_t blockSize); + + /** + * @brief Multiplies a floating-point vector by a scalar. + * @param[in] pSrc points to the input vector + * @param[in] scale scale factor to be applied + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ + void arm_scale_f16( + const float16_t * pSrc, + float16_t scale, + float16_t * pDst, + uint32_t blockSize); + + /** + * @brief Floating-point vector absolute value. + * @param[in] pSrc points to the input buffer + * @param[out] pDst points to the output buffer + * @param[in] blockSize number of samples in each vector + */ + void arm_abs_f16( + const float16_t * pSrc, + float16_t * pDst, + uint32_t blockSize); + + + /** + * @brief Adds a constant offset to a floating-point vector. + * @param[in] pSrc points to the input vector + * @param[in] offset is the offset to be added + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ + void arm_offset_f16( + const float16_t * pSrc, + float16_t offset, + float16_t * pDst, + uint32_t blockSize); + + /** + * @brief Dot product of floating-point vectors. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[in] blockSize number of samples in each vector + * @param[out] result output result returned here + */ + void arm_dot_prod_f16( + const float16_t * pSrcA, + const float16_t * pSrcB, + uint32_t blockSize, + float16_t * result); + + /** + * @brief Floating-point vector multiplication. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ + void arm_mult_f16( + const float16_t * pSrcA, + const float16_t * pSrcB, + float16_t * pDst, + uint32_t blockSize); + + /** + * @brief Negates the elements of a floating-point vector. + * @param[in] pSrc points to the input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ + void arm_negate_f16( + const float16_t * pSrc, + float16_t * pDst, + uint32_t blockSize); + + /** + @brief Elementwise floating-point clipping + @param[in] pSrc points to input values + @param[out] pDst points to output clipped values + @param[in] low lower bound + @param[in] high higher bound + @param[in] numSamples number of samples to clip + @return none + */ + +void arm_clip_f16(const float16_t * pSrc, + float16_t * pDst, + float16_t low, + float16_t high, + uint32_t numSamples); + +#endif /* defined(ARM_FLOAT16_SUPPORTED)*/ + +#ifdef __cplusplus +} +#endif + +#endif /* ifndef _BASIC_MATH_FUNCTIONS_F16_H_ */ diff --git a/Drivers/CMSIS/DSP/Include/dsp/bayes_functions.h b/Drivers/CMSIS/DSP/Include/dsp/bayes_functions.h new file mode 100644 index 0000000..824c50e --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/dsp/bayes_functions.h @@ -0,0 +1,89 @@ +/****************************************************************************** + * @file bayes_functions.h + * @brief Public header file for CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + + +#ifndef _BAYES_FUNCTIONS_H_ +#define _BAYES_FUNCTIONS_H_ + +#include "arm_math_types.h" +#include "arm_math_memory.h" + +#include "dsp/none.h" +#include "dsp/utils.h" + +#include "dsp/statistics_functions.h" + +/** + * @defgroup groupBayes Bayesian estimators + * + * Implement the naive gaussian Bayes estimator. + * The training must be done from scikit-learn. + * + * The parameters can be easily + * generated from the scikit-learn object. Some examples are given in + * DSP/Testing/PatternGeneration/Bayes.py + */ + +#ifdef __cplusplus +extern "C" +{ +#endif + +/** + * @brief Instance structure for Naive Gaussian Bayesian estimator. + */ +typedef struct +{ + uint32_t vectorDimension; /**< Dimension of vector space */ + uint32_t numberOfClasses; /**< Number of different classes */ + const float32_t *theta; /**< Mean values for the Gaussians */ + const float32_t *sigma; /**< Variances for the Gaussians */ + const float32_t *classPriors; /**< Class prior probabilities */ + float32_t epsilon; /**< Additive value to variances */ +} arm_gaussian_naive_bayes_instance_f32; + +/** + * @brief Naive Gaussian Bayesian Estimator + * + * @param[in] S points to a naive bayes instance structure + * @param[in] in points to the elements of the input vector. + * @param[out] *pOutputProbabilities points to a buffer of length numberOfClasses containing estimated probabilities + * @param[out] *pBufferB points to a temporary buffer of length numberOfClasses + * @return The predicted class + * + */ + + +uint32_t arm_gaussian_naive_bayes_predict_f32(const arm_gaussian_naive_bayes_instance_f32 *S, + const float32_t * in, + float32_t *pOutputProbabilities, + float32_t *pBufferB); + + +#ifdef __cplusplus +} +#endif + +#endif /* ifndef _BAYES_FUNCTIONS_H_ */ diff --git a/Drivers/CMSIS/DSP/Include/dsp/bayes_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/bayes_functions_f16.h new file mode 100644 index 0000000..5c4ae42 --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/dsp/bayes_functions_f16.h @@ -0,0 +1,80 @@ +/****************************************************************************** + * @file bayes_functions_f16.h + * @brief Public header file for CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + + +#ifndef _BAYES_FUNCTIONS_F16_H_ +#define _BAYES_FUNCTIONS_F16_H_ + +#include "arm_math_types_f16.h" +#include "arm_math_memory.h" + +#include "dsp/none.h" +#include "dsp/utils.h" + +#include "dsp/statistics_functions_f16.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + +#if defined(ARM_FLOAT16_SUPPORTED) + +/** + * @brief Instance structure for Naive Gaussian Bayesian estimator. + */ +typedef struct +{ + uint32_t vectorDimension; /**< Dimension of vector space */ + uint32_t numberOfClasses; /**< Number of different classes */ + const float16_t *theta; /**< Mean values for the Gaussians */ + const float16_t *sigma; /**< Variances for the Gaussians */ + const float16_t *classPriors; /**< Class prior probabilities */ + float16_t epsilon; /**< Additive value to variances */ +} arm_gaussian_naive_bayes_instance_f16; + +/** + * @brief Naive Gaussian Bayesian Estimator + * + * @param[in] S points to a naive bayes instance structure + * @param[in] in points to the elements of the input vector. + * @param[out] *pOutputProbabilities points to a buffer of length numberOfClasses containing estimated probabilities + * @param[out] *pBufferB points to a temporary buffer of length numberOfClasses + * @return The predicted class + * + */ + + +uint32_t arm_gaussian_naive_bayes_predict_f16(const arm_gaussian_naive_bayes_instance_f16 *S, + const float16_t * in, + float16_t *pOutputProbabilities, + float16_t *pBufferB); + +#endif /*defined(ARM_FLOAT16_SUPPORTED)*/ +#ifdef __cplusplus +} +#endif + +#endif /* ifndef _BAYES_FUNCTIONS_F16_H_ */ diff --git a/Drivers/CMSIS/DSP/Include/dsp/complex_math_functions.h b/Drivers/CMSIS/DSP/Include/dsp/complex_math_functions.h new file mode 100644 index 0000000..1339eba --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/dsp/complex_math_functions.h @@ -0,0 +1,345 @@ +/****************************************************************************** + * @file complex_math_functions.h + * @brief Public header file for CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + + +#ifndef _COMPLEX_MATH_FUNCTIONS_H_ +#define _COMPLEX_MATH_FUNCTIONS_H_ + +#include "arm_math_types.h" +#include "arm_math_memory.h" + +#include "dsp/none.h" +#include "dsp/utils.h" +#include "dsp/fast_math_functions.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + +/** + * @defgroup groupCmplxMath Complex Math Functions + * This set of functions operates on complex data vectors. + * The data in the complex arrays is stored in an interleaved fashion + * (real, imag, real, imag, ...). + * In the API functions, the number of samples in a complex array refers + * to the number of complex values; the array contains twice this number of + * real values. + */ + + /** + * @brief Floating-point complex conjugate. + * @param[in] pSrc points to the input vector + * @param[out] pDst points to the output vector + * @param[in] numSamples number of complex samples in each vector + */ + void arm_cmplx_conj_f32( + const float32_t * pSrc, + float32_t * pDst, + uint32_t numSamples); + + /** + * @brief Q31 complex conjugate. + * @param[in] pSrc points to the input vector + * @param[out] pDst points to the output vector + * @param[in] numSamples number of complex samples in each vector + */ + void arm_cmplx_conj_q31( + const q31_t * pSrc, + q31_t * pDst, + uint32_t numSamples); + + + /** + * @brief Q15 complex conjugate. + * @param[in] pSrc points to the input vector + * @param[out] pDst points to the output vector + * @param[in] numSamples number of complex samples in each vector + */ + void arm_cmplx_conj_q15( + const q15_t * pSrc, + q15_t * pDst, + uint32_t numSamples); + + + /** + * @brief Floating-point complex magnitude squared + * @param[in] pSrc points to the complex input vector + * @param[out] pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + */ + void arm_cmplx_mag_squared_f32( + const float32_t * pSrc, + float32_t * pDst, + uint32_t numSamples); + + + /** + * @brief Floating-point complex magnitude squared + * @param[in] pSrc points to the complex input vector + * @param[out] pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + */ + void arm_cmplx_mag_squared_f64( + const float64_t * pSrc, + float64_t * pDst, + uint32_t numSamples); + + + /** + * @brief Q31 complex magnitude squared + * @param[in] pSrc points to the complex input vector + * @param[out] pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + */ + void arm_cmplx_mag_squared_q31( + const q31_t * pSrc, + q31_t * pDst, + uint32_t numSamples); + + + /** + * @brief Q15 complex magnitude squared + * @param[in] pSrc points to the complex input vector + * @param[out] pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + */ + void arm_cmplx_mag_squared_q15( + const q15_t * pSrc, + q15_t * pDst, + uint32_t numSamples); + + +/** + * @brief Floating-point complex magnitude + * @param[in] pSrc points to the complex input vector + * @param[out] pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + */ + void arm_cmplx_mag_f32( + const float32_t * pSrc, + float32_t * pDst, + uint32_t numSamples); + + +/** + * @brief Floating-point complex magnitude + * @param[in] pSrc points to the complex input vector + * @param[out] pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + */ + void arm_cmplx_mag_f64( + const float64_t * pSrc, + float64_t * pDst, + uint32_t numSamples); + + + /** + * @brief Q31 complex magnitude + * @param[in] pSrc points to the complex input vector + * @param[out] pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + */ + void arm_cmplx_mag_q31( + const q31_t * pSrc, + q31_t * pDst, + uint32_t numSamples); + + + /** + * @brief Q15 complex magnitude + * @param[in] pSrc points to the complex input vector + * @param[out] pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + */ + void arm_cmplx_mag_q15( + const q15_t * pSrc, + q15_t * pDst, + uint32_t numSamples); + + /** + * @brief Q15 complex magnitude + * @param[in] pSrc points to the complex input vector + * @param[out] pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + */ + void arm_cmplx_mag_fast_q15( + const q15_t * pSrc, + q15_t * pDst, + uint32_t numSamples); + + + /** + * @brief Q15 complex dot product + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[in] numSamples number of complex samples in each vector + * @param[out] realResult real part of the result returned here + * @param[out] imagResult imaginary part of the result returned here + */ + void arm_cmplx_dot_prod_q15( + const q15_t * pSrcA, + const q15_t * pSrcB, + uint32_t numSamples, + q31_t * realResult, + q31_t * imagResult); + + + /** + * @brief Q31 complex dot product + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[in] numSamples number of complex samples in each vector + * @param[out] realResult real part of the result returned here + * @param[out] imagResult imaginary part of the result returned here + */ + void arm_cmplx_dot_prod_q31( + const q31_t * pSrcA, + const q31_t * pSrcB, + uint32_t numSamples, + q63_t * realResult, + q63_t * imagResult); + + + /** + * @brief Floating-point complex dot product + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[in] numSamples number of complex samples in each vector + * @param[out] realResult real part of the result returned here + * @param[out] imagResult imaginary part of the result returned here + */ + void arm_cmplx_dot_prod_f32( + const float32_t * pSrcA, + const float32_t * pSrcB, + uint32_t numSamples, + float32_t * realResult, + float32_t * imagResult); + + + /** + * @brief Q15 complex-by-real multiplication + * @param[in] pSrcCmplx points to the complex input vector + * @param[in] pSrcReal points to the real input vector + * @param[out] pCmplxDst points to the complex output vector + * @param[in] numSamples number of samples in each vector + */ + void arm_cmplx_mult_real_q15( + const q15_t * pSrcCmplx, + const q15_t * pSrcReal, + q15_t * pCmplxDst, + uint32_t numSamples); + + + /** + * @brief Q31 complex-by-real multiplication + * @param[in] pSrcCmplx points to the complex input vector + * @param[in] pSrcReal points to the real input vector + * @param[out] pCmplxDst points to the complex output vector + * @param[in] numSamples number of samples in each vector + */ + void arm_cmplx_mult_real_q31( + const q31_t * pSrcCmplx, + const q31_t * pSrcReal, + q31_t * pCmplxDst, + uint32_t numSamples); + + + /** + * @brief Floating-point complex-by-real multiplication + * @param[in] pSrcCmplx points to the complex input vector + * @param[in] pSrcReal points to the real input vector + * @param[out] pCmplxDst points to the complex output vector + * @param[in] numSamples number of samples in each vector + */ + void arm_cmplx_mult_real_f32( + const float32_t * pSrcCmplx, + const float32_t * pSrcReal, + float32_t * pCmplxDst, + uint32_t numSamples); + + /** + * @brief Q15 complex-by-complex multiplication + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] numSamples number of complex samples in each vector + */ + void arm_cmplx_mult_cmplx_q15( + const q15_t * pSrcA, + const q15_t * pSrcB, + q15_t * pDst, + uint32_t numSamples); + + + /** + * @brief Q31 complex-by-complex multiplication + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] numSamples number of complex samples in each vector + */ + void arm_cmplx_mult_cmplx_q31( + const q31_t * pSrcA, + const q31_t * pSrcB, + q31_t * pDst, + uint32_t numSamples); + + + /** + * @brief Floating-point complex-by-complex multiplication + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] numSamples number of complex samples in each vector + */ + void arm_cmplx_mult_cmplx_f32( + const float32_t * pSrcA, + const float32_t * pSrcB, + float32_t * pDst, + uint32_t numSamples); + + + +/** + * @brief Floating-point complex-by-complex multiplication + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] numSamples number of complex samples in each vector + */ +void arm_cmplx_mult_cmplx_f64( +const float64_t * pSrcA, +const float64_t * pSrcB, + float64_t * pDst, + uint32_t numSamples); + + + +#ifdef __cplusplus +} +#endif + +#endif /* ifndef _COMPLEX_MATH_FUNCTIONS_H_ */ diff --git a/Drivers/CMSIS/DSP/Include/dsp/complex_math_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/complex_math_functions_f16.h new file mode 100644 index 0000000..b17f931 --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/dsp/complex_math_functions_f16.h @@ -0,0 +1,123 @@ +/****************************************************************************** + * @file complex_math_functions_f16.h + * @brief Public header file for CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + + +#ifndef _COMPLEX_MATH_FUNCTIONS_F16_H_ +#define _COMPLEX_MATH_FUNCTIONS_F16_H_ + +#include "arm_math_types_f16.h" +#include "arm_math_memory.h" + +#include "dsp/none.h" +#include "dsp/utils.h" +#include "dsp/fast_math_functions_f16.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + +#if defined(ARM_FLOAT16_SUPPORTED) + + /** + * @brief Floating-point complex conjugate. + * @param[in] pSrc points to the input vector + * @param[out] pDst points to the output vector + * @param[in] numSamples number of complex samples in each vector + */ + void arm_cmplx_conj_f16( + const float16_t * pSrc, + float16_t * pDst, + uint32_t numSamples); + + /** + * @brief Floating-point complex magnitude squared + * @param[in] pSrc points to the complex input vector + * @param[out] pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + */ + void arm_cmplx_mag_squared_f16( + const float16_t * pSrc, + float16_t * pDst, + uint32_t numSamples); + + /** + * @brief Floating-point complex magnitude + * @param[in] pSrc points to the complex input vector + * @param[out] pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + */ + void arm_cmplx_mag_f16( + const float16_t * pSrc, + float16_t * pDst, + uint32_t numSamples); + + /** + * @brief Floating-point complex dot product + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[in] numSamples number of complex samples in each vector + * @param[out] realResult real part of the result returned here + * @param[out] imagResult imaginary part of the result returned here + */ + void arm_cmplx_dot_prod_f16( + const float16_t * pSrcA, + const float16_t * pSrcB, + uint32_t numSamples, + float16_t * realResult, + float16_t * imagResult); + + /** + * @brief Floating-point complex-by-real multiplication + * @param[in] pSrcCmplx points to the complex input vector + * @param[in] pSrcReal points to the real input vector + * @param[out] pCmplxDst points to the complex output vector + * @param[in] numSamples number of samples in each vector + */ + void arm_cmplx_mult_real_f16( + const float16_t * pSrcCmplx, + const float16_t * pSrcReal, + float16_t * pCmplxDst, + uint32_t numSamples); + + /** + * @brief Floating-point complex-by-complex multiplication + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] numSamples number of complex samples in each vector + */ + void arm_cmplx_mult_cmplx_f16( + const float16_t * pSrcA, + const float16_t * pSrcB, + float16_t * pDst, + uint32_t numSamples); + +#endif /*defined(ARM_FLOAT16_SUPPORTED)*/ +#ifdef __cplusplus +} +#endif + +#endif /* ifndef _COMPLEX_MATH_FUNCTIONS_F16_H_ */ diff --git a/Drivers/CMSIS/DSP/Include/dsp/controller_functions.h b/Drivers/CMSIS/DSP/Include/dsp/controller_functions.h new file mode 100644 index 0000000..7c08c24 --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/dsp/controller_functions.h @@ -0,0 +1,791 @@ +/****************************************************************************** + * @file controller_functions.h + * @brief Public header file for CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + + +#ifndef _CONTROLLER_FUNCTIONS_H_ +#define _CONTROLLER_FUNCTIONS_H_ + +#include "arm_math_types.h" +#include "arm_math_memory.h" + +#include "dsp/none.h" +#include "dsp/utils.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + + /** + * @brief Macros required for SINE and COSINE Controller functions + */ + +#define CONTROLLER_Q31_SHIFT (32 - 9) + /* 1.31(q31) Fixed value of 2/360 */ + /* -1 to +1 is divided into 360 values so total spacing is (2/360) */ +#define INPUT_SPACING 0xB60B61 + +/** + * @defgroup groupController Controller Functions + */ + + + /** + * @ingroup groupController + */ + + /** + * @addtogroup SinCos + * @{ + */ + +/** + * @brief Floating-point sin_cos function. + * @param[in] theta input value in degrees + * @param[out] pSinVal points to the processed sine output. + * @param[out] pCosVal points to the processed cos output. + */ + void arm_sin_cos_f32( + float32_t theta, + float32_t * pSinVal, + float32_t * pCosVal); + + + /** + * @brief Q31 sin_cos function. + * @param[in] theta scaled input value in degrees + * @param[out] pSinVal points to the processed sine output. + * @param[out] pCosVal points to the processed cosine output. + */ + void arm_sin_cos_q31( + q31_t theta, + q31_t * pSinVal, + q31_t * pCosVal); + + /** + * @} end of SinCos group + */ + + /** + * @ingroup groupController + */ + +/** + * @defgroup PID PID Motor Control + * + * A Proportional Integral Derivative (PID) controller is a generic feedback control + * loop mechanism widely used in industrial control systems. + * A PID controller is the most commonly used type of feedback controller. + * + * This set of functions implements (PID) controllers + * for Q15, Q31, and floating-point data types. The functions operate on a single sample + * of data and each call to the function returns a single processed value. + * <code>S</code> points to an instance of the PID control data structure. <code>in</code> + * is the input sample value. The functions return the output value. + * + * \par Algorithm: + * <pre> + * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] + * A0 = Kp + Ki + Kd + * A1 = (-Kp ) - (2 * Kd ) + * A2 = Kd + * </pre> + * + * \par + * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant + * + * \par + * \image html PID.gif "Proportional Integral Derivative Controller" + * + * \par + * The PID controller calculates an "error" value as the difference between + * the measured output and the reference input. + * The controller attempts to minimize the error by adjusting the process control inputs. + * The proportional value determines the reaction to the current error, + * the integral value determines the reaction based on the sum of recent errors, + * and the derivative value determines the reaction based on the rate at which the error has been changing. + * + * \par Instance Structure + * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure. + * A separate instance structure must be defined for each PID Controller. + * There are separate instance structure declarations for each of the 3 supported data types. + * + * \par Reset Functions + * There is also an associated reset function for each data type which clears the state array. + * + * \par Initialization Functions + * There is also an associated initialization function for each data type. + * The initialization function performs the following operations: + * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains. + * - Zeros out the values in the state buffer. + * + * \par + * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function. + * + * \par Fixed-Point Behavior + * Care must be taken when using the fixed-point versions of the PID Controller functions. + * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered. + * Refer to the function specific documentation below for usage guidelines. + */ + + + /** + * @brief Instance structure for the Q15 PID Control. + */ + typedef struct + { + q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ +#if !defined (ARM_MATH_DSP) + q15_t A1; /**< The derived gain A1 = -Kp - 2Kd */ + q15_t A2; /**< The derived gain A1 = Kd. */ +#else + q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/ +#endif + q15_t state[3]; /**< The state array of length 3. */ + q15_t Kp; /**< The proportional gain. */ + q15_t Ki; /**< The integral gain. */ + q15_t Kd; /**< The derivative gain. */ + } arm_pid_instance_q15; + + /** + * @brief Instance structure for the Q31 PID Control. + */ + typedef struct + { + q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ + q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ + q31_t A2; /**< The derived gain, A2 = Kd . */ + q31_t state[3]; /**< The state array of length 3. */ + q31_t Kp; /**< The proportional gain. */ + q31_t Ki; /**< The integral gain. */ + q31_t Kd; /**< The derivative gain. */ + } arm_pid_instance_q31; + + /** + * @brief Instance structure for the floating-point PID Control. + */ + typedef struct + { + float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ + float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ + float32_t A2; /**< The derived gain, A2 = Kd . */ + float32_t state[3]; /**< The state array of length 3. */ + float32_t Kp; /**< The proportional gain. */ + float32_t Ki; /**< The integral gain. */ + float32_t Kd; /**< The derivative gain. */ + } arm_pid_instance_f32; + + + + /** + * @brief Initialization function for the floating-point PID Control. + * @param[in,out] S points to an instance of the PID structure. + * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. + */ + void arm_pid_init_f32( + arm_pid_instance_f32 * S, + int32_t resetStateFlag); + + + /** + * @brief Reset function for the floating-point PID Control. + * @param[in,out] S is an instance of the floating-point PID Control structure + */ + void arm_pid_reset_f32( + arm_pid_instance_f32 * S); + + + /** + * @brief Initialization function for the Q31 PID Control. + * @param[in,out] S points to an instance of the Q15 PID structure. + * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. + */ + void arm_pid_init_q31( + arm_pid_instance_q31 * S, + int32_t resetStateFlag); + + + /** + * @brief Reset function for the Q31 PID Control. + * @param[in,out] S points to an instance of the Q31 PID Control structure + */ + + void arm_pid_reset_q31( + arm_pid_instance_q31 * S); + + + /** + * @brief Initialization function for the Q15 PID Control. + * @param[in,out] S points to an instance of the Q15 PID structure. + * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. + */ + void arm_pid_init_q15( + arm_pid_instance_q15 * S, + int32_t resetStateFlag); + + + /** + * @brief Reset function for the Q15 PID Control. + * @param[in,out] S points to an instance of the q15 PID Control structure + */ + void arm_pid_reset_q15( + arm_pid_instance_q15 * S); + + + + /** + * @addtogroup PID + * @{ + */ + + /** + * @brief Process function for the floating-point PID Control. + * @param[in,out] S is an instance of the floating-point PID Control structure + * @param[in] in input sample to process + * @return processed output sample. + */ + __STATIC_FORCEINLINE float32_t arm_pid_f32( + arm_pid_instance_f32 * S, + float32_t in) + { + float32_t out; + + /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */ + out = (S->A0 * in) + + (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]); + + /* Update state */ + S->state[1] = S->state[0]; + S->state[0] = in; + S->state[2] = out; + + /* return to application */ + return (out); + + } + +/** + @brief Process function for the Q31 PID Control. + @param[in,out] S points to an instance of the Q31 PID Control structure + @param[in] in input sample to process + @return processed output sample. + + \par Scaling and Overflow Behavior + The function is implemented using an internal 64-bit accumulator. + The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit. + Thus, if the accumulator result overflows it wraps around rather than clip. + In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions. + After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format. + */ +__STATIC_FORCEINLINE q31_t arm_pid_q31( + arm_pid_instance_q31 * S, + q31_t in) + { + q63_t acc; + q31_t out; + + /* acc = A0 * x[n] */ + acc = (q63_t) S->A0 * in; + + /* acc += A1 * x[n-1] */ + acc += (q63_t) S->A1 * S->state[0]; + + /* acc += A2 * x[n-2] */ + acc += (q63_t) S->A2 * S->state[1]; + + /* convert output to 1.31 format to add y[n-1] */ + out = (q31_t) (acc >> 31U); + + /* out += y[n-1] */ + out += S->state[2]; + + /* Update state */ + S->state[1] = S->state[0]; + S->state[0] = in; + S->state[2] = out; + + /* return to application */ + return (out); + } + + +/** + @brief Process function for the Q15 PID Control. + @param[in,out] S points to an instance of the Q15 PID Control structure + @param[in] in input sample to process + @return processed output sample. + + \par Scaling and Overflow Behavior + The function is implemented using a 64-bit internal accumulator. + Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result. + The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. + There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved. + After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits. + Lastly, the accumulator is saturated to yield a result in 1.15 format. + */ +__STATIC_FORCEINLINE q15_t arm_pid_q15( + arm_pid_instance_q15 * S, + q15_t in) + { + q63_t acc; + q15_t out; + +#if defined (ARM_MATH_DSP) + /* Implementation of PID controller */ + + /* acc = A0 * x[n] */ + acc = (q31_t) __SMUAD((uint32_t)S->A0, (uint32_t)in); + + /* acc += A1 * x[n-1] + A2 * x[n-2] */ + acc = (q63_t)__SMLALD((uint32_t)S->A1, (uint32_t)read_q15x2 (S->state), (uint64_t)acc); +#else + /* acc = A0 * x[n] */ + acc = ((q31_t) S->A0) * in; + + /* acc += A1 * x[n-1] + A2 * x[n-2] */ + acc += (q31_t) S->A1 * S->state[0]; + acc += (q31_t) S->A2 * S->state[1]; +#endif + + /* acc += y[n-1] */ + acc += (q31_t) S->state[2] << 15; + + /* saturate the output */ + out = (q15_t) (__SSAT((q31_t)(acc >> 15), 16)); + + /* Update state */ + S->state[1] = S->state[0]; + S->state[0] = in; + S->state[2] = out; + + /* return to application */ + return (out); + } + + /** + * @} end of PID group + */ + + /** + * @ingroup groupController + */ + + /** + * @defgroup park Vector Park Transform + * + * Forward Park transform converts the input two-coordinate vector to flux and torque components. + * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents + * from the stationary to the moving reference frame and control the spatial relationship between + * the stator vector current and rotor flux vector. + * If we consider the d axis aligned with the rotor flux, the diagram below shows the + * current vector and the relationship from the two reference frames: + * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame" + * + * The function operates on a single sample of data and each call to the function returns the processed output. + * The library provides separate functions for Q31 and floating-point data types. + * \par Algorithm + * \image html parkFormula.gif + * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components, + * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the + * cosine and sine values of theta (rotor flux position). + * \par Fixed-Point Behavior + * Care must be taken when using the Q31 version of the Park transform. + * In particular, the overflow and saturation behavior of the accumulator used must be considered. + * Refer to the function specific documentation below for usage guidelines. + */ + + /** + * @addtogroup park + * @{ + */ + + /** + * @brief Floating-point Park transform + * @param[in] Ialpha input two-phase vector coordinate alpha + * @param[in] Ibeta input two-phase vector coordinate beta + * @param[out] pId points to output rotor reference frame d + * @param[out] pIq points to output rotor reference frame q + * @param[in] sinVal sine value of rotation angle theta + * @param[in] cosVal cosine value of rotation angle theta + * @return none + * + * The function implements the forward Park transform. + * + */ + __STATIC_FORCEINLINE void arm_park_f32( + float32_t Ialpha, + float32_t Ibeta, + float32_t * pId, + float32_t * pIq, + float32_t sinVal, + float32_t cosVal) + { + /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */ + *pId = Ialpha * cosVal + Ibeta * sinVal; + + /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */ + *pIq = -Ialpha * sinVal + Ibeta * cosVal; + } + + +/** + @brief Park transform for Q31 version + @param[in] Ialpha input two-phase vector coordinate alpha + @param[in] Ibeta input two-phase vector coordinate beta + @param[out] pId points to output rotor reference frame d + @param[out] pIq points to output rotor reference frame q + @param[in] sinVal sine value of rotation angle theta + @param[in] cosVal cosine value of rotation angle theta + @return none + + \par Scaling and Overflow Behavior + The function is implemented using an internal 32-bit accumulator. + The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. + There is saturation on the addition and subtraction, hence there is no risk of overflow. + */ +__STATIC_FORCEINLINE void arm_park_q31( + q31_t Ialpha, + q31_t Ibeta, + q31_t * pId, + q31_t * pIq, + q31_t sinVal, + q31_t cosVal) + { + q31_t product1, product2; /* Temporary variables used to store intermediate results */ + q31_t product3, product4; /* Temporary variables used to store intermediate results */ + + /* Intermediate product is calculated by (Ialpha * cosVal) */ + product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31); + + /* Intermediate product is calculated by (Ibeta * sinVal) */ + product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31); + + + /* Intermediate product is calculated by (Ialpha * sinVal) */ + product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31); + + /* Intermediate product is calculated by (Ibeta * cosVal) */ + product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31); + + /* Calculate pId by adding the two intermediate products 1 and 2 */ + *pId = __QADD(product1, product2); + + /* Calculate pIq by subtracting the two intermediate products 3 from 4 */ + *pIq = __QSUB(product4, product3); + } + + /** + * @} end of park group + */ + + + /** + * @ingroup groupController + */ + + /** + * @defgroup inv_park Vector Inverse Park transform + * Inverse Park transform converts the input flux and torque components to two-coordinate vector. + * + * The function operates on a single sample of data and each call to the function returns the processed output. + * The library provides separate functions for Q31 and floating-point data types. + * \par Algorithm + * \image html parkInvFormula.gif + * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components, + * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the + * cosine and sine values of theta (rotor flux position). + * \par Fixed-Point Behavior + * Care must be taken when using the Q31 version of the Park transform. + * In particular, the overflow and saturation behavior of the accumulator used must be considered. + * Refer to the function specific documentation below for usage guidelines. + */ + + /** + * @addtogroup inv_park + * @{ + */ + + /** + * @brief Floating-point Inverse Park transform + * @param[in] Id input coordinate of rotor reference frame d + * @param[in] Iq input coordinate of rotor reference frame q + * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha + * @param[out] pIbeta points to output two-phase orthogonal vector axis beta + * @param[in] sinVal sine value of rotation angle theta + * @param[in] cosVal cosine value of rotation angle theta + * @return none + */ + __STATIC_FORCEINLINE void arm_inv_park_f32( + float32_t Id, + float32_t Iq, + float32_t * pIalpha, + float32_t * pIbeta, + float32_t sinVal, + float32_t cosVal) + { + /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */ + *pIalpha = Id * cosVal - Iq * sinVal; + + /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */ + *pIbeta = Id * sinVal + Iq * cosVal; + } + + +/** + @brief Inverse Park transform for Q31 version + @param[in] Id input coordinate of rotor reference frame d + @param[in] Iq input coordinate of rotor reference frame q + @param[out] pIalpha points to output two-phase orthogonal vector axis alpha + @param[out] pIbeta points to output two-phase orthogonal vector axis beta + @param[in] sinVal sine value of rotation angle theta + @param[in] cosVal cosine value of rotation angle theta + @return none + + @par Scaling and Overflow Behavior + The function is implemented using an internal 32-bit accumulator. + The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. + There is saturation on the addition, hence there is no risk of overflow. + */ +__STATIC_FORCEINLINE void arm_inv_park_q31( + q31_t Id, + q31_t Iq, + q31_t * pIalpha, + q31_t * pIbeta, + q31_t sinVal, + q31_t cosVal) + { + q31_t product1, product2; /* Temporary variables used to store intermediate results */ + q31_t product3, product4; /* Temporary variables used to store intermediate results */ + + /* Intermediate product is calculated by (Id * cosVal) */ + product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31); + + /* Intermediate product is calculated by (Iq * sinVal) */ + product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31); + + + /* Intermediate product is calculated by (Id * sinVal) */ + product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31); + + /* Intermediate product is calculated by (Iq * cosVal) */ + product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31); + + /* Calculate pIalpha by using the two intermediate products 1 and 2 */ + *pIalpha = __QSUB(product1, product2); + + /* Calculate pIbeta by using the two intermediate products 3 and 4 */ + *pIbeta = __QADD(product4, product3); + } + + /** + * @} end of Inverse park group + */ + +/** + * @ingroup groupController + */ + + /** + * @defgroup clarke Vector Clarke Transform + * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector. + * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents + * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>. + * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below + * \image html clarke.gif Stator current space vector and its components in (a,b). + * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code> + * can be calculated using only <code>Ia</code> and <code>Ib</code>. + * + * The function operates on a single sample of data and each call to the function returns the processed output. + * The library provides separate functions for Q31 and floating-point data types. + * \par Algorithm + * \image html clarkeFormula.gif + * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and + * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector. + * \par Fixed-Point Behavior + * Care must be taken when using the Q31 version of the Clarke transform. + * In particular, the overflow and saturation behavior of the accumulator used must be considered. + * Refer to the function specific documentation below for usage guidelines. + */ + + /** + * @addtogroup clarke + * @{ + */ + + /** + * + * @brief Floating-point Clarke transform + * @param[in] Ia input three-phase coordinate <code>a</code> + * @param[in] Ib input three-phase coordinate <code>b</code> + * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha + * @param[out] pIbeta points to output two-phase orthogonal vector axis beta + * @return none + */ + __STATIC_FORCEINLINE void arm_clarke_f32( + float32_t Ia, + float32_t Ib, + float32_t * pIalpha, + float32_t * pIbeta) + { + /* Calculate pIalpha using the equation, pIalpha = Ia */ + *pIalpha = Ia; + + /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */ + *pIbeta = (0.57735026919f * Ia + 1.15470053838f * Ib); + } + + +/** + @brief Clarke transform for Q31 version + @param[in] Ia input three-phase coordinate <code>a</code> + @param[in] Ib input three-phase coordinate <code>b</code> + @param[out] pIalpha points to output two-phase orthogonal vector axis alpha + @param[out] pIbeta points to output two-phase orthogonal vector axis beta + @return none + + \par Scaling and Overflow Behavior + The function is implemented using an internal 32-bit accumulator. + The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. + There is saturation on the addition, hence there is no risk of overflow. + */ +__STATIC_FORCEINLINE void arm_clarke_q31( + q31_t Ia, + q31_t Ib, + q31_t * pIalpha, + q31_t * pIbeta) + { + q31_t product1, product2; /* Temporary variables used to store intermediate results */ + + /* Calculating pIalpha from Ia by equation pIalpha = Ia */ + *pIalpha = Ia; + + /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */ + product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30); + + /* Intermediate product is calculated by (2/sqrt(3) * Ib) */ + product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30); + + /* pIbeta is calculated by adding the intermediate products */ + *pIbeta = __QADD(product1, product2); + } + + /** + * @} end of clarke group + */ + + + /** + * @ingroup groupController + */ + + /** + * @defgroup inv_clarke Vector Inverse Clarke Transform + * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases. + * + * The function operates on a single sample of data and each call to the function returns the processed output. + * The library provides separate functions for Q31 and floating-point data types. + * \par Algorithm + * \image html clarkeInvFormula.gif + * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and + * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector. + * \par Fixed-Point Behavior + * Care must be taken when using the Q31 version of the Clarke transform. + * In particular, the overflow and saturation behavior of the accumulator used must be considered. + * Refer to the function specific documentation below for usage guidelines. + */ + + /** + * @addtogroup inv_clarke + * @{ + */ + + /** + * @brief Floating-point Inverse Clarke transform + * @param[in] Ialpha input two-phase orthogonal vector axis alpha + * @param[in] Ibeta input two-phase orthogonal vector axis beta + * @param[out] pIa points to output three-phase coordinate <code>a</code> + * @param[out] pIb points to output three-phase coordinate <code>b</code> + * @return none + */ + __STATIC_FORCEINLINE void arm_inv_clarke_f32( + float32_t Ialpha, + float32_t Ibeta, + float32_t * pIa, + float32_t * pIb) + { + /* Calculating pIa from Ialpha by equation pIa = Ialpha */ + *pIa = Ialpha; + + /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */ + *pIb = -0.5f * Ialpha + 0.8660254039f * Ibeta; + } + + +/** + @brief Inverse Clarke transform for Q31 version + @param[in] Ialpha input two-phase orthogonal vector axis alpha + @param[in] Ibeta input two-phase orthogonal vector axis beta + @param[out] pIa points to output three-phase coordinate <code>a</code> + @param[out] pIb points to output three-phase coordinate <code>b</code> + @return none + + \par Scaling and Overflow Behavior + The function is implemented using an internal 32-bit accumulator. + The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. + There is saturation on the subtraction, hence there is no risk of overflow. + */ +__STATIC_FORCEINLINE void arm_inv_clarke_q31( + q31_t Ialpha, + q31_t Ibeta, + q31_t * pIa, + q31_t * pIb) + { + q31_t product1, product2; /* Temporary variables used to store intermediate results */ + + /* Calculating pIa from Ialpha by equation pIa = Ialpha */ + *pIa = Ialpha; + + /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */ + product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31); + + /* Intermediate product is calculated by (1/sqrt(3) * pIb) */ + product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31); + + /* pIb is calculated by subtracting the products */ + *pIb = __QSUB(product2, product1); + } + + /** + * @} end of inv_clarke group + */ + + + + +#ifdef __cplusplus +} +#endif + +#endif /* ifndef _CONTROLLER_FUNCTIONS_H_ */ diff --git a/Drivers/CMSIS/DSP/Include/dsp/controller_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/controller_functions_f16.h new file mode 100644 index 0000000..8fae483 --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/dsp/controller_functions_f16.h @@ -0,0 +1,41 @@ +/****************************************************************************** + * @file controller_functions_f16.h + * @brief Public header file for CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + + +#ifndef _CONTROLLER_FUNCTIONS_F16_H_ +#define _CONTROLLER_FUNCTIONS_F16_H_ + +#ifdef __cplusplus +extern "C" +{ +#endif + +#if defined(ARM_FLOAT16_SUPPORTED) +#endif /*defined(ARM_FLOAT16_SUPPORTED)*/ +#ifdef __cplusplus +} +#endif + +#endif /* ifndef _CONTROLLER_FUNCTIONS_F16_H_ */ diff --git a/Drivers/CMSIS/DSP/Include/dsp/distance_functions.h b/Drivers/CMSIS/DSP/Include/dsp/distance_functions.h new file mode 100644 index 0000000..3123fc3 --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/dsp/distance_functions.h @@ -0,0 +1,341 @@ +/****************************************************************************** + * @file distance_functions.h + * @brief Public header file for CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + + +#ifndef _DISTANCE_FUNCTIONS_H_ +#define _DISTANCE_FUNCTIONS_H_ + +#include "arm_math_types.h" +#include "arm_math_memory.h" + +#include "dsp/none.h" +#include "dsp/utils.h" + +#include "dsp/statistics_functions.h" +#include "dsp/basic_math_functions.h" +#include "dsp/fast_math_functions.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + + +/** + * @defgroup groupDistance Distance functions + * + * Distance functions for use with clustering algorithms. + * There are distance functions for float vectors and boolean vectors. + * + */ + +/* 6.14 bug */ +#if defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6100100) && (__ARMCC_VERSION < 6150001) + +__attribute__((weak)) float __powisf2(float a, int b); + +#endif + +/** + * @brief Euclidean distance between two vectors + * @param[in] pA First vector + * @param[in] pB Second vector + * @param[in] blockSize vector length + * @return distance + * + */ + +float32_t arm_euclidean_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize); + +/** + * @brief Euclidean distance between two vectors + * @param[in] pA First vector + * @param[in] pB Second vector + * @param[in] blockSize vector length + * @return distance + * + */ + +float64_t arm_euclidean_distance_f64(const float64_t *pA,const float64_t *pB, uint32_t blockSize); + +/** + * @brief Bray-Curtis distance between two vectors + * @param[in] pA First vector + * @param[in] pB Second vector + * @param[in] blockSize vector length + * @return distance + * + */ +float32_t arm_braycurtis_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize); + +/** + * @brief Canberra distance between two vectors + * + * This function may divide by zero when samples pA[i] and pB[i] are both zero. + * The result of the computation will be correct. So the division per zero may be + * ignored. + * + * @param[in] pA First vector + * @param[in] pB Second vector + * @param[in] blockSize vector length + * @return distance + * + */ +float32_t arm_canberra_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize); + + +/** + * @brief Chebyshev distance between two vectors + * @param[in] pA First vector + * @param[in] pB Second vector + * @param[in] blockSize vector length + * @return distance + * + */ +float32_t arm_chebyshev_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize); + + +/** + * @brief Chebyshev distance between two vectors + * @param[in] pA First vector + * @param[in] pB Second vector + * @param[in] blockSize vector length + * @return distance + * + */ +float64_t arm_chebyshev_distance_f64(const float64_t *pA,const float64_t *pB, uint32_t blockSize); + + +/** + * @brief Cityblock (Manhattan) distance between two vectors + * @param[in] pA First vector + * @param[in] pB Second vector + * @param[in] blockSize vector length + * @return distance + * + */ +float32_t arm_cityblock_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize); + +/** + * @brief Cityblock (Manhattan) distance between two vectors + * @param[in] pA First vector + * @param[in] pB Second vector + * @param[in] blockSize vector length + * @return distance + * + */ +float64_t arm_cityblock_distance_f64(const float64_t *pA,const float64_t *pB, uint32_t blockSize); + +/** + * @brief Correlation distance between two vectors + * + * The input vectors are modified in place ! + * + * @param[in] pA First vector + * @param[in] pB Second vector + * @param[in] blockSize vector length + * @return distance + * + */ +float32_t arm_correlation_distance_f32(float32_t *pA,float32_t *pB, uint32_t blockSize); + +/** + * @brief Cosine distance between two vectors + * + * @param[in] pA First vector + * @param[in] pB Second vector + * @param[in] blockSize vector length + * @return distance + * + */ + +float32_t arm_cosine_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize); + +/** + * @brief Cosine distance between two vectors + * + * @param[in] pA First vector + * @param[in] pB Second vector + * @param[in] blockSize vector length + * @return distance + * + */ + +float64_t arm_cosine_distance_f64(const float64_t *pA,const float64_t *pB, uint32_t blockSize); + +/** + * @brief Jensen-Shannon distance between two vectors + * + * This function is assuming that elements of second vector are > 0 + * and 0 only when the corresponding element of first vector is 0. + * Otherwise the result of the computation does not make sense + * and for speed reasons, the cases returning NaN or Infinity are not + * managed. + * + * When the function is computing x log (x / y) with x 0 and y 0, + * it will compute the right value (0) but a division per zero will occur + * and shoudl be ignored in client code. + * + * @param[in] pA First vector + * @param[in] pB Second vector + * @param[in] blockSize vector length + * @return distance + * + */ + +float32_t arm_jensenshannon_distance_f32(const float32_t *pA,const float32_t *pB,uint32_t blockSize); + +/** + * @brief Minkowski distance between two vectors + * + * @param[in] pA First vector + * @param[in] pB Second vector + * @param[in] n Norm order (>= 2) + * @param[in] blockSize vector length + * @return distance + * + */ + + + +float32_t arm_minkowski_distance_f32(const float32_t *pA,const float32_t *pB, int32_t order, uint32_t blockSize); + +/** + * @brief Dice distance between two vectors + * + * @param[in] pA First vector of packed booleans + * @param[in] pB Second vector of packed booleans + * @param[in] order Distance order + * @param[in] blockSize Number of samples + * @return distance + * + */ + + +float32_t arm_dice_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools); + +/** + * @brief Hamming distance between two vectors + * + * @param[in] pA First vector of packed booleans + * @param[in] pB Second vector of packed booleans + * @param[in] numberOfBools Number of booleans + * @return distance + * + */ + +float32_t arm_hamming_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools); + +/** + * @brief Jaccard distance between two vectors + * + * @param[in] pA First vector of packed booleans + * @param[in] pB Second vector of packed booleans + * @param[in] numberOfBools Number of booleans + * @return distance + * + */ + +float32_t arm_jaccard_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools); + +/** + * @brief Kulsinski distance between two vectors + * + * @param[in] pA First vector of packed booleans + * @param[in] pB Second vector of packed booleans + * @param[in] numberOfBools Number of booleans + * @return distance + * + */ + +float32_t arm_kulsinski_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools); + +/** + * @brief Roger Stanimoto distance between two vectors + * + * @param[in] pA First vector of packed booleans + * @param[in] pB Second vector of packed booleans + * @param[in] numberOfBools Number of booleans + * @return distance + * + */ + +float32_t arm_rogerstanimoto_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools); + +/** + * @brief Russell-Rao distance between two vectors + * + * @param[in] pA First vector of packed booleans + * @param[in] pB Second vector of packed booleans + * @param[in] numberOfBools Number of booleans + * @return distance + * + */ + +float32_t arm_russellrao_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools); + +/** + * @brief Sokal-Michener distance between two vectors + * + * @param[in] pA First vector of packed booleans + * @param[in] pB Second vector of packed booleans + * @param[in] numberOfBools Number of booleans + * @return distance + * + */ + +float32_t arm_sokalmichener_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools); + +/** + * @brief Sokal-Sneath distance between two vectors + * + * @param[in] pA First vector of packed booleans + * @param[in] pB Second vector of packed booleans + * @param[in] numberOfBools Number of booleans + * @return distance + * + */ + +float32_t arm_sokalsneath_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools); + +/** + * @brief Yule distance between two vectors + * + * @param[in] pA First vector of packed booleans + * @param[in] pB Second vector of packed booleans + * @param[in] numberOfBools Number of booleans + * @return distance + * + */ + +float32_t arm_yule_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools); + + + +#ifdef __cplusplus +} +#endif + +#endif /* ifndef _DISTANCE_FUNCTIONS_H_ */ diff --git a/Drivers/CMSIS/DSP/Include/dsp/distance_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/distance_functions_f16.h new file mode 100644 index 0000000..a7ceb3c --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/dsp/distance_functions_f16.h @@ -0,0 +1,180 @@ +/****************************************************************************** + * @file distance_functions_f16.h + * @brief Public header file for CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + + +#ifndef _DISTANCE_FUNCTIONS_F16_H_ +#define _DISTANCE_FUNCTIONS_F16_H_ + +#include "arm_math_types_f16.h" +#include "arm_math_memory.h" + +#include "dsp/none.h" +#include "dsp/utils.h" + +/* 6.14 bug */ +#if defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6100100) && (__ARMCC_VERSION < 6150001) +/* Defined in minkowski_f32 */ +__attribute__((weak)) float __powisf2(float a, int b); +#endif + +#include "dsp/statistics_functions_f16.h" +#include "dsp/basic_math_functions_f16.h" + +#include "dsp/fast_math_functions_f16.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + +#if defined(ARM_FLOAT16_SUPPORTED) + +/** + * @brief Euclidean distance between two vectors + * @param[in] pA First vector + * @param[in] pB Second vector + * @param[in] blockSize vector length + * @return distance + * + */ + +float16_t arm_euclidean_distance_f16(const float16_t *pA,const float16_t *pB, uint32_t blockSize); + +/** + * @brief Bray-Curtis distance between two vectors + * @param[in] pA First vector + * @param[in] pB Second vector + * @param[in] blockSize vector length + * @return distance + * + */ +float16_t arm_braycurtis_distance_f16(const float16_t *pA,const float16_t *pB, uint32_t blockSize); + +/** + * @brief Canberra distance between two vectors + * + * This function may divide by zero when samples pA[i] and pB[i] are both zero. + * The result of the computation will be correct. So the division per zero may be + * ignored. + * + * @param[in] pA First vector + * @param[in] pB Second vector + * @param[in] blockSize vector length + * @return distance + * + */ +float16_t arm_canberra_distance_f16(const float16_t *pA,const float16_t *pB, uint32_t blockSize); + + +/** + * @brief Chebyshev distance between two vectors + * @param[in] pA First vector + * @param[in] pB Second vector + * @param[in] blockSize vector length + * @return distance + * + */ +float16_t arm_chebyshev_distance_f16(const float16_t *pA,const float16_t *pB, uint32_t blockSize); + + +/** + * @brief Cityblock (Manhattan) distance between two vectors + * @param[in] pA First vector + * @param[in] pB Second vector + * @param[in] blockSize vector length + * @return distance + * + */ +float16_t arm_cityblock_distance_f16(const float16_t *pA,const float16_t *pB, uint32_t blockSize); + +/** + * @brief Correlation distance between two vectors + * + * The input vectors are modified in place ! + * + * @param[in] pA First vector + * @param[in] pB Second vector + * @param[in] blockSize vector length + * @return distance + * + */ +float16_t arm_correlation_distance_f16(float16_t *pA,float16_t *pB, uint32_t blockSize); + +/** + * @brief Cosine distance between two vectors + * + * @param[in] pA First vector + * @param[in] pB Second vector + * @param[in] blockSize vector length + * @return distance + * + */ + +float16_t arm_cosine_distance_f16(const float16_t *pA,const float16_t *pB, uint32_t blockSize); + +/** + * @brief Jensen-Shannon distance between two vectors + * + * This function is assuming that elements of second vector are > 0 + * and 0 only when the corresponding element of first vector is 0. + * Otherwise the result of the computation does not make sense + * and for speed reasons, the cases returning NaN or Infinity are not + * managed. + * + * When the function is computing x log (x / y) with x 0 and y 0, + * it will compute the right value (0) but a division per zero will occur + * and shoudl be ignored in client code. + * + * @param[in] pA First vector + * @param[in] pB Second vector + * @param[in] blockSize vector length + * @return distance + * + */ + +float16_t arm_jensenshannon_distance_f16(const float16_t *pA,const float16_t *pB,uint32_t blockSize); + +/** + * @brief Minkowski distance between two vectors + * + * @param[in] pA First vector + * @param[in] pB Second vector + * @param[in] n Norm order (>= 2) + * @param[in] blockSize vector length + * @return distance + * + */ + + + +float16_t arm_minkowski_distance_f16(const float16_t *pA,const float16_t *pB, int32_t order, uint32_t blockSize); + + +#endif /*defined(ARM_FLOAT16_SUPPORTED)*/ +#ifdef __cplusplus +} +#endif + +#endif /* ifndef _DISTANCE_FUNCTIONS_F16_H_ */ diff --git a/Drivers/CMSIS/DSP/Include/dsp/fast_math_functions.h b/Drivers/CMSIS/DSP/Include/dsp/fast_math_functions.h new file mode 100644 index 0000000..489f214 --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/dsp/fast_math_functions.h @@ -0,0 +1,389 @@ +/****************************************************************************** + * @file fast_math_functions.h + * @brief Public header file for CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + + +#ifndef _FAST_MATH_FUNCTIONS_H_ +#define _FAST_MATH_FUNCTIONS_H_ + +#include "arm_math_types.h" +#include "arm_math_memory.h" + +#include "dsp/none.h" +#include "dsp/utils.h" + +#include "dsp/basic_math_functions.h" + + +#ifdef __cplusplus +extern "C" +{ +#endif + + /** + * @brief Macros required for SINE and COSINE Fast math approximations + */ + +#define FAST_MATH_TABLE_SIZE 512 +#define FAST_MATH_Q31_SHIFT (32 - 10) +#define FAST_MATH_Q15_SHIFT (16 - 10) + +#ifndef PI + #define PI 3.14159265358979f +#endif + + +/** + * @defgroup groupFastMath Fast Math Functions + * This set of functions provides a fast approximation to sine, cosine, and square root. + * As compared to most of the other functions in the CMSIS math library, the fast math functions + * operate on individual values and not arrays. + * There are separate functions for Q15, Q31, and floating-point data. + * + */ + + /** + * @ingroup groupFastMath + */ + + +/** + @addtogroup sin + @{ + */ + +/** + * @brief Fast approximation to the trigonometric sine function for floating-point data. + * @param[in] x input value in radians. + * @return sin(x). + */ + float32_t arm_sin_f32( + float32_t x); + + + /** + * @brief Fast approximation to the trigonometric sine function for Q31 data. + * @param[in] x Scaled input value in radians. + * @return sin(x). + */ + q31_t arm_sin_q31( + q31_t x); + + + /** + * @brief Fast approximation to the trigonometric sine function for Q15 data. + * @param[in] x Scaled input value in radians. + * @return sin(x). + */ + q15_t arm_sin_q15( + q15_t x); + +/** + @} end of sin group + */ + +/** + @addtogroup cos + @{ + */ + + /** + * @brief Fast approximation to the trigonometric cosine function for floating-point data. + * @param[in] x input value in radians. + * @return cos(x). + */ + float32_t arm_cos_f32( + float32_t x); + + + /** + * @brief Fast approximation to the trigonometric cosine function for Q31 data. + * @param[in] x Scaled input value in radians. + * @return cos(x). + */ + q31_t arm_cos_q31( + q31_t x); + + + /** + * @brief Fast approximation to the trigonometric cosine function for Q15 data. + * @param[in] x Scaled input value in radians. + * @return cos(x). + */ + q15_t arm_cos_q15( + q15_t x); + +/** + @} end of cos group + */ + + +/** + @brief Floating-point vector of log values. + @param[in] pSrc points to the input vector + @param[out] pDst points to the output vector + @param[in] blockSize number of samples in each vector + @return none + */ + void arm_vlog_f32( + const float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + + +/** + @brief Floating-point vector of log values. + @param[in] pSrc points to the input vector + @param[out] pDst points to the output vector + @param[in] blockSize number of samples in each vector + @return none + */ + void arm_vlog_f64( + const float64_t * pSrc, + float64_t * pDst, + uint32_t blockSize); + + + + /** + * @brief q31 vector of log values. + * @param[in] pSrc points to the input vector in q31 + * @param[out] pDst points to the output vector in q5.26 + * @param[in] blockSize number of samples in each vector + * @return none + */ + void arm_vlog_q31(const q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + /** + * @brief q15 vector of log values. + * @param[in] pSrc points to the input vector in q15 + * @param[out] pDst points to the output vector in q4.11 + * @param[in] blockSize number of samples in each vector + * @return none + */ + void arm_vlog_q15(const q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + + +/** + @brief Floating-point vector of exp values. + @param[in] pSrc points to the input vector + @param[out] pDst points to the output vector + @param[in] blockSize number of samples in each vector + @return none + */ + void arm_vexp_f32( + const float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + + +/** + @brief Floating-point vector of exp values. + @param[in] pSrc points to the input vector + @param[out] pDst points to the output vector + @param[in] blockSize number of samples in each vector + @return none + */ + void arm_vexp_f64( + const float64_t * pSrc, + float64_t * pDst, + uint32_t blockSize); + + + + /** + * @defgroup SQRT Square Root + * + * Computes the square root of a number. + * There are separate functions for Q15, Q31, and floating-point data types. + * The square root function is computed using the Newton-Raphson algorithm. + * This is an iterative algorithm of the form: + * <pre> + * x1 = x0 - f(x0)/f'(x0) + * </pre> + * where <code>x1</code> is the current estimate, + * <code>x0</code> is the previous estimate, and + * <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>. + * For the square root function, the algorithm reduces to: + * <pre> + * x0 = in/2 [initial guess] + * x1 = 1/2 * ( x0 + in / x0) [each iteration] + * </pre> + */ + + + /** + * @addtogroup SQRT + * @{ + */ + +/** + @brief Floating-point square root function. + @param[in] in input value + @param[out] pOut square root of input value + @return execution status + - \ref ARM_MATH_SUCCESS : input value is positive + - \ref ARM_MATH_ARGUMENT_ERROR : input value is negative; *pOut is set to 0 + */ +__STATIC_FORCEINLINE arm_status arm_sqrt_f32( + const float32_t in, + float32_t * pOut) + { + if (in >= 0.0f) + { +#if defined ( __CC_ARM ) + #if defined __TARGET_FPU_VFP + *pOut = __sqrtf(in); + #else + *pOut = sqrtf(in); + #endif + +#elif defined ( __ICCARM__ ) + #if defined __ARMVFP__ + __ASM("VSQRT.F32 %0,%1" : "=t"(*pOut) : "t"(in)); + #else + *pOut = sqrtf(in); + #endif + +#else + *pOut = sqrtf(in); +#endif + + return (ARM_MATH_SUCCESS); + } + else + { + *pOut = 0.0f; + return (ARM_MATH_ARGUMENT_ERROR); + } + } + + +/** + @brief Q31 square root function. + @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF + @param[out] pOut points to square root of input value + @return execution status + - \ref ARM_MATH_SUCCESS : input value is positive + - \ref ARM_MATH_ARGUMENT_ERROR : input value is negative; *pOut is set to 0 + */ +arm_status arm_sqrt_q31( + q31_t in, + q31_t * pOut); + + +/** + @brief Q15 square root function. + @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF + @param[out] pOut points to square root of input value + @return execution status + - \ref ARM_MATH_SUCCESS : input value is positive + - \ref ARM_MATH_ARGUMENT_ERROR : input value is negative; *pOut is set to 0 + */ +arm_status arm_sqrt_q15( + q15_t in, + q15_t * pOut); + + + + /** + * @} end of SQRT group + */ + + /** + @brief Fixed point division + @param[in] numerator Numerator + @param[in] denominator Denominator + @param[out] quotient Quotient value normalized between -1.0 and 1.0 + @param[out] shift Shift left value to get the unnormalized quotient + @return error status + + When dividing by 0, an error ARM_MATH_NANINF is returned. And the quotient is forced + to the saturated negative or positive value. + */ + +arm_status arm_divide_q15(q15_t numerator, + q15_t denominator, + q15_t *quotient, + int16_t *shift); + + /** + @brief Fixed point division + @param[in] numerator Numerator + @param[in] denominator Denominator + @param[out] quotient Quotient value normalized between -1.0 and 1.0 + @param[out] shift Shift left value to get the unnormalized quotient + @return error status + + When dividing by 0, an error ARM_MATH_NANINF is returned. And the quotient is forced + to the saturated negative or positive value. + */ + +arm_status arm_divide_q31(q31_t numerator, + q31_t denominator, + q31_t *quotient, + int16_t *shift); + + + + /** + @brief Arc tangent in radian of y/x using sign of x and y to determine right quadrant. + @param[in] y y coordinate + @param[in] x x coordinate + @param[out] result Result + @return error status. + */ + arm_status arm_atan2_f32(float32_t y,float32_t x,float32_t *result); + + + /** + @brief Arc tangent in radian of y/x using sign of x and y to determine right quadrant. + @param[in] y y coordinate + @param[in] x x coordinate + @param[out] result Result in Q2.29 + @return error status. + */ + arm_status arm_atan2_q31(q31_t y,q31_t x,q31_t *result); + + /** + @brief Arc tangent in radian of y/x using sign of x and y to determine right quadrant. + @param[in] y y coordinate + @param[in] x x coordinate + @param[out] result Result in Q2.13 + @return error status. + */ + arm_status arm_atan2_q15(q15_t y,q15_t x,q15_t *result); + +#ifdef __cplusplus +} +#endif + +#endif /* ifndef _FAST_MATH_FUNCTIONS_H_ */ diff --git a/Drivers/CMSIS/DSP/Include/dsp/fast_math_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/fast_math_functions_f16.h new file mode 100644 index 0000000..46ae06d --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/dsp/fast_math_functions_f16.h @@ -0,0 +1,125 @@ +/****************************************************************************** + * @file fast_math_functions_f16.h + * @brief Public header file for CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + + +#ifndef _FAST_MATH_FUNCTIONS_F16_H_ +#define _FAST_MATH_FUNCTIONS_F16_H_ + +#include "arm_math_types_f16.h" +#include "arm_math_memory.h" + +#include "dsp/none.h" +#include "dsp/utils.h" + +/* For sqrt_f32 */ +#include "dsp/fast_math_functions.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + +#if defined(ARM_FLOAT16_SUPPORTED) + + /** + * @addtogroup SQRT + * @{ + */ + +/** + @brief Floating-point square root function. + @param[in] in input value + @param[out] pOut square root of input value + @return execution status + - \ref ARM_MATH_SUCCESS : input value is positive + - \ref ARM_MATH_ARGUMENT_ERROR : input value is negative; *pOut is set to 0 + */ +__STATIC_FORCEINLINE arm_status arm_sqrt_f16( + float16_t in, + float16_t * pOut) + { + float32_t r; + arm_status status; + status=arm_sqrt_f32((float32_t)in,&r); + *pOut=(float16_t)r; + return(status); + } + + +/** + @} end of SQRT group + */ + +/** + @brief Floating-point vector of log values. + @param[in] pSrc points to the input vector + @param[out] pDst points to the output vector + @param[in] blockSize number of samples in each vector + @return none + */ + void arm_vlog_f16( + const float16_t * pSrc, + float16_t * pDst, + uint32_t blockSize); + +/** + @brief Floating-point vector of exp values. + @param[in] pSrc points to the input vector + @param[out] pDst points to the output vector + @param[in] blockSize number of samples in each vector + @return none + */ + void arm_vexp_f16( + const float16_t * pSrc, + float16_t * pDst, + uint32_t blockSize); + + /** + @brief Floating-point vector of inverse values. + @param[in] pSrc points to the input vector + @param[out] pDst points to the output vector + @param[in] blockSize number of samples in each vector + @return none + */ + void arm_vinverse_f16( + const float16_t * pSrc, + float16_t * pDst, + uint32_t blockSize); + + /** + @brief Arc tangent in radian of y/x using sign of x and y to determine right quadrant. + @param[in] y y coordinate + @param[in] x x coordinate + @param[out] result Result + @return error status. + */ + arm_status arm_atan2_f16(float16_t y,float16_t x,float16_t *result); + +#endif /*defined(ARM_FLOAT16_SUPPORTED)*/ +#ifdef __cplusplus +} +#endif + +#endif /* ifndef _FAST_MATH_FUNCTIONS_F16_H_ */ diff --git a/Drivers/CMSIS/DSP/Include/dsp/filtering_functions.h b/Drivers/CMSIS/DSP/Include/dsp/filtering_functions.h new file mode 100644 index 0000000..28a9568 --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/dsp/filtering_functions.h @@ -0,0 +1,2529 @@ +/****************************************************************************** + * @file filtering_functions.h + * @brief Public header file for CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + + +#ifndef _FILTERING_FUNCTIONS_H_ +#define _FILTERING_FUNCTIONS_H_ + +#include "arm_math_types.h" +#include "arm_math_memory.h" + +#include "dsp/none.h" +#include "dsp/utils.h" + +#include "dsp/support_functions.h" +#include "dsp/fast_math_functions.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + + + +#define DELTA_Q31 ((q31_t)(0x100)) +#define DELTA_Q15 ((q15_t)0x5) + +/** + * @defgroup groupFilters Filtering Functions + */ + + /** + * @brief Instance structure for the Q7 FIR filter. + */ + typedef struct + { + uint16_t numTaps; /**< number of filter coefficients in the filter. */ + q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + const q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ + } arm_fir_instance_q7; + + /** + * @brief Instance structure for the Q15 FIR filter. + */ + typedef struct + { + uint16_t numTaps; /**< number of filter coefficients in the filter. */ + q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + const q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ + } arm_fir_instance_q15; + + /** + * @brief Instance structure for the Q31 FIR filter. + */ + typedef struct + { + uint16_t numTaps; /**< number of filter coefficients in the filter. */ + q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + const q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ + } arm_fir_instance_q31; + + /** + * @brief Instance structure for the floating-point FIR filter. + */ + typedef struct + { + uint16_t numTaps; /**< number of filter coefficients in the filter. */ + float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + const float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ + } arm_fir_instance_f32; + + /** + * @brief Instance structure for the floating-point FIR filter. + */ + typedef struct + { + uint16_t numTaps; /**< number of filter coefficients in the filter. */ + float64_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + const float64_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ + } arm_fir_instance_f64; + + /** + * @brief Processing function for the Q7 FIR filter. + * @param[in] S points to an instance of the Q7 FIR filter structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_fir_q7( + const arm_fir_instance_q7 * S, + const q7_t * pSrc, + q7_t * pDst, + uint32_t blockSize); + + /** + * @brief Initialization function for the Q7 FIR filter. + * @param[in,out] S points to an instance of the Q7 FIR structure. + * @param[in] numTaps Number of filter coefficients in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of samples that are processed. + * + * For the MVE version, the coefficient length must be a multiple of 16. + * You can pad with zeros if you have less coefficients. + */ + void arm_fir_init_q7( + arm_fir_instance_q7 * S, + uint16_t numTaps, + const q7_t * pCoeffs, + q7_t * pState, + uint32_t blockSize); + + /** + * @brief Processing function for the Q15 FIR filter. + * @param[in] S points to an instance of the Q15 FIR structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_fir_q15( + const arm_fir_instance_q15 * S, + const q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + /** + * @brief Processing function for the fast Q15 FIR filter (fast version). + * @param[in] S points to an instance of the Q15 FIR filter structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_fir_fast_q15( + const arm_fir_instance_q15 * S, + const q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + /** + * @brief Initialization function for the Q15 FIR filter. + * @param[in,out] S points to an instance of the Q15 FIR filter structure. + * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of samples that are processed at a time. + * @return The function returns either + * <code>ARM_MATH_SUCCESS</code> if initialization was successful or + * <code>ARM_MATH_ARGUMENT_ERROR</code> if <code>numTaps</code> is not a supported value. + * + * For the MVE version, the coefficient length must be a multiple of 8. + * You can pad with zeros if you have less coefficients. + * + */ + arm_status arm_fir_init_q15( + arm_fir_instance_q15 * S, + uint16_t numTaps, + const q15_t * pCoeffs, + q15_t * pState, + uint32_t blockSize); + + /** + * @brief Processing function for the Q31 FIR filter. + * @param[in] S points to an instance of the Q31 FIR filter structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_fir_q31( + const arm_fir_instance_q31 * S, + const q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + /** + * @brief Processing function for the fast Q31 FIR filter (fast version). + * @param[in] S points to an instance of the Q31 FIR filter structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_fir_fast_q31( + const arm_fir_instance_q31 * S, + const q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + /** + * @brief Initialization function for the Q31 FIR filter. + * @param[in,out] S points to an instance of the Q31 FIR structure. + * @param[in] numTaps Number of filter coefficients in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of samples that are processed at a time. + * + * For the MVE version, the coefficient length must be a multiple of 4. + * You can pad with zeros if you have less coefficients. + */ + void arm_fir_init_q31( + arm_fir_instance_q31 * S, + uint16_t numTaps, + const q31_t * pCoeffs, + q31_t * pState, + uint32_t blockSize); + + /** + * @brief Processing function for the floating-point FIR filter. + * @param[in] S points to an instance of the floating-point FIR structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_fir_f32( + const arm_fir_instance_f32 * S, + const float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + /** + * @brief Processing function for the floating-point FIR filter. + * @param[in] S points to an instance of the floating-point FIR structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_fir_f64( + const arm_fir_instance_f64 * S, + const float64_t * pSrc, + float64_t * pDst, + uint32_t blockSize); + + /** + * @brief Initialization function for the floating-point FIR filter. + * @param[in,out] S points to an instance of the floating-point FIR filter structure. + * @param[in] numTaps Number of filter coefficients in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of samples that are processed at a time. + */ + void arm_fir_init_f32( + arm_fir_instance_f32 * S, + uint16_t numTaps, + const float32_t * pCoeffs, + float32_t * pState, + uint32_t blockSize); + + /** + * @brief Initialization function for the floating-point FIR filter. + * @param[in,out] S points to an instance of the floating-point FIR filter structure. + * @param[in] numTaps Number of filter coefficients in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of samples that are processed at a time. + */ + void arm_fir_init_f64( + arm_fir_instance_f64 * S, + uint16_t numTaps, + const float64_t * pCoeffs, + float64_t * pState, + uint32_t blockSize); + + /** + * @brief Instance structure for the Q15 Biquad cascade filter. + */ + typedef struct + { + int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ + q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ + const q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ + int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ + } arm_biquad_casd_df1_inst_q15; + + /** + * @brief Instance structure for the Q31 Biquad cascade filter. + */ + typedef struct + { + uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ + q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ + const q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ + uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ + } arm_biquad_casd_df1_inst_q31; + + /** + * @brief Instance structure for the floating-point Biquad cascade filter. + */ + typedef struct + { + uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ + float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ + const float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ + } arm_biquad_casd_df1_inst_f32; + +#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) + /** + * @brief Instance structure for the modified Biquad coefs required by vectorized code. + */ + typedef struct + { + float32_t coeffs[8][4]; /**< Points to the array of modified coefficients. The array is of length 32. There is one per stage */ + } arm_biquad_mod_coef_f32; +#endif + + /** + * @brief Processing function for the Q15 Biquad cascade filter. + * @param[in] S points to an instance of the Q15 Biquad cascade structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_biquad_cascade_df1_q15( + const arm_biquad_casd_df1_inst_q15 * S, + const q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + /** + * @brief Initialization function for the Q15 Biquad cascade filter. + * @param[in,out] S points to an instance of the Q15 Biquad cascade structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format + */ + void arm_biquad_cascade_df1_init_q15( + arm_biquad_casd_df1_inst_q15 * S, + uint8_t numStages, + const q15_t * pCoeffs, + q15_t * pState, + int8_t postShift); + + /** + * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4. + * @param[in] S points to an instance of the Q15 Biquad cascade structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_biquad_cascade_df1_fast_q15( + const arm_biquad_casd_df1_inst_q15 * S, + const q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + /** + * @brief Processing function for the Q31 Biquad cascade filter + * @param[in] S points to an instance of the Q31 Biquad cascade structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_biquad_cascade_df1_q31( + const arm_biquad_casd_df1_inst_q31 * S, + const q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + /** + * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4. + * @param[in] S points to an instance of the Q31 Biquad cascade structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_biquad_cascade_df1_fast_q31( + const arm_biquad_casd_df1_inst_q31 * S, + const q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + /** + * @brief Initialization function for the Q31 Biquad cascade filter. + * @param[in,out] S points to an instance of the Q31 Biquad cascade structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format + */ + void arm_biquad_cascade_df1_init_q31( + arm_biquad_casd_df1_inst_q31 * S, + uint8_t numStages, + const q31_t * pCoeffs, + q31_t * pState, + int8_t postShift); + + /** + * @brief Processing function for the floating-point Biquad cascade filter. + * @param[in] S points to an instance of the floating-point Biquad cascade structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_biquad_cascade_df1_f32( + const arm_biquad_casd_df1_inst_f32 * S, + const float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + /** + * @brief Initialization function for the floating-point Biquad cascade filter. + * @param[in,out] S points to an instance of the floating-point Biquad cascade structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pCoeffsMod points to the modified filter coefficients (only MVE version). + * @param[in] pState points to the state buffer. + */ +#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) + void arm_biquad_cascade_df1_mve_init_f32( + arm_biquad_casd_df1_inst_f32 * S, + uint8_t numStages, + const float32_t * pCoeffs, + arm_biquad_mod_coef_f32 * pCoeffsMod, + float32_t * pState); +#endif + + void arm_biquad_cascade_df1_init_f32( + arm_biquad_casd_df1_inst_f32 * S, + uint8_t numStages, + const float32_t * pCoeffs, + float32_t * pState); + + +/** + * @brief Convolution of floating-point sequences. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1. + */ + void arm_conv_f32( + const float32_t * pSrcA, + uint32_t srcALen, + const float32_t * pSrcB, + uint32_t srcBLen, + float32_t * pDst); + + + /** + * @brief Convolution of Q15 sequences. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. + * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). + */ + void arm_conv_opt_q15( + const q15_t * pSrcA, + uint32_t srcALen, + const q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst, + q15_t * pScratch1, + q15_t * pScratch2); + + +/** + * @brief Convolution of Q15 sequences. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1. + */ + void arm_conv_q15( + const q15_t * pSrcA, + uint32_t srcALen, + const q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst); + + + /** + * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. + */ + void arm_conv_fast_q15( + const q15_t * pSrcA, + uint32_t srcALen, + const q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst); + + + /** + * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. + * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). + */ + void arm_conv_fast_opt_q15( + const q15_t * pSrcA, + uint32_t srcALen, + const q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst, + q15_t * pScratch1, + q15_t * pScratch2); + + + /** + * @brief Convolution of Q31 sequences. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. + */ + void arm_conv_q31( + const q31_t * pSrcA, + uint32_t srcALen, + const q31_t * pSrcB, + uint32_t srcBLen, + q31_t * pDst); + + + /** + * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. + */ + void arm_conv_fast_q31( + const q31_t * pSrcA, + uint32_t srcALen, + const q31_t * pSrcB, + uint32_t srcBLen, + q31_t * pDst); + + + /** + * @brief Convolution of Q7 sequences. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. + * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). + */ + void arm_conv_opt_q7( + const q7_t * pSrcA, + uint32_t srcALen, + const q7_t * pSrcB, + uint32_t srcBLen, + q7_t * pDst, + q15_t * pScratch1, + q15_t * pScratch2); + + + /** + * @brief Convolution of Q7 sequences. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. + */ + void arm_conv_q7( + const q7_t * pSrcA, + uint32_t srcALen, + const q7_t * pSrcB, + uint32_t srcBLen, + q7_t * pDst); + + + /** + * @brief Partial convolution of floating-point sequences. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. + * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. + */ + arm_status arm_conv_partial_f32( + const float32_t * pSrcA, + uint32_t srcALen, + const float32_t * pSrcB, + uint32_t srcBLen, + float32_t * pDst, + uint32_t firstIndex, + uint32_t numPoints); + + + /** + * @brief Partial convolution of Q15 sequences. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. + * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). + * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. + */ + arm_status arm_conv_partial_opt_q15( + const q15_t * pSrcA, + uint32_t srcALen, + const q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst, + uint32_t firstIndex, + uint32_t numPoints, + q15_t * pScratch1, + q15_t * pScratch2); + + + /** + * @brief Partial convolution of Q15 sequences. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. + * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. + */ + arm_status arm_conv_partial_q15( + const q15_t * pSrcA, + uint32_t srcALen, + const q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst, + uint32_t firstIndex, + uint32_t numPoints); + + + /** + * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. + * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. + */ + arm_status arm_conv_partial_fast_q15( + const q15_t * pSrcA, + uint32_t srcALen, + const q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst, + uint32_t firstIndex, + uint32_t numPoints); + + + /** + * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. + * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). + * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. + */ + arm_status arm_conv_partial_fast_opt_q15( + const q15_t * pSrcA, + uint32_t srcALen, + const q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst, + uint32_t firstIndex, + uint32_t numPoints, + q15_t * pScratch1, + q15_t * pScratch2); + + + /** + * @brief Partial convolution of Q31 sequences. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. + * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. + */ + arm_status arm_conv_partial_q31( + const q31_t * pSrcA, + uint32_t srcALen, + const q31_t * pSrcB, + uint32_t srcBLen, + q31_t * pDst, + uint32_t firstIndex, + uint32_t numPoints); + + + /** + * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. + * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. + */ + arm_status arm_conv_partial_fast_q31( + const q31_t * pSrcA, + uint32_t srcALen, + const q31_t * pSrcB, + uint32_t srcBLen, + q31_t * pDst, + uint32_t firstIndex, + uint32_t numPoints); + + + /** + * @brief Partial convolution of Q7 sequences + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. + * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). + * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. + */ + arm_status arm_conv_partial_opt_q7( + const q7_t * pSrcA, + uint32_t srcALen, + const q7_t * pSrcB, + uint32_t srcBLen, + q7_t * pDst, + uint32_t firstIndex, + uint32_t numPoints, + q15_t * pScratch1, + q15_t * pScratch2); + + +/** + * @brief Partial convolution of Q7 sequences. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. + * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. + */ + arm_status arm_conv_partial_q7( + const q7_t * pSrcA, + uint32_t srcALen, + const q7_t * pSrcB, + uint32_t srcBLen, + q7_t * pDst, + uint32_t firstIndex, + uint32_t numPoints); + + + /** + * @brief Instance structure for the Q15 FIR decimator. + */ + typedef struct + { + uint8_t M; /**< decimation factor. */ + uint16_t numTaps; /**< number of coefficients in the filter. */ + const q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ + q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + } arm_fir_decimate_instance_q15; + + /** + * @brief Instance structure for the Q31 FIR decimator. + */ + typedef struct + { + uint8_t M; /**< decimation factor. */ + uint16_t numTaps; /**< number of coefficients in the filter. */ + const q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ + q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + } arm_fir_decimate_instance_q31; + +/** + @brief Instance structure for floating-point FIR decimator. + */ +typedef struct + { + uint8_t M; /**< decimation factor. */ + uint16_t numTaps; /**< number of coefficients in the filter. */ + const float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ + float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + } arm_fir_decimate_instance_f32; + + +/** + @brief Processing function for floating-point FIR decimator. + @param[in] S points to an instance of the floating-point FIR decimator structure + @param[in] pSrc points to the block of input data + @param[out] pDst points to the block of output data + @param[in] blockSize number of samples to process + */ +void arm_fir_decimate_f32( + const arm_fir_decimate_instance_f32 * S, + const float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + +/** + @brief Initialization function for the floating-point FIR decimator. + @param[in,out] S points to an instance of the floating-point FIR decimator structure + @param[in] numTaps number of coefficients in the filter + @param[in] M decimation factor + @param[in] pCoeffs points to the filter coefficients + @param[in] pState points to the state buffer + @param[in] blockSize number of input samples to process per call + @return execution status + - \ref ARM_MATH_SUCCESS : Operation successful + - \ref ARM_MATH_LENGTH_ERROR : <code>blockSize</code> is not a multiple of <code>M</code> + */ +arm_status arm_fir_decimate_init_f32( + arm_fir_decimate_instance_f32 * S, + uint16_t numTaps, + uint8_t M, + const float32_t * pCoeffs, + float32_t * pState, + uint32_t blockSize); + + + /** + * @brief Processing function for the Q15 FIR decimator. + * @param[in] S points to an instance of the Q15 FIR decimator structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of input samples to process per call. + */ + void arm_fir_decimate_q15( + const arm_fir_decimate_instance_q15 * S, + const q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + + /** + * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. + * @param[in] S points to an instance of the Q15 FIR decimator structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of input samples to process per call. + */ + void arm_fir_decimate_fast_q15( + const arm_fir_decimate_instance_q15 * S, + const q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + + /** + * @brief Initialization function for the Q15 FIR decimator. + * @param[in,out] S points to an instance of the Q15 FIR decimator structure. + * @param[in] numTaps number of coefficients in the filter. + * @param[in] M decimation factor. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of input samples to process per call. + * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if + * <code>blockSize</code> is not a multiple of <code>M</code>. + */ + arm_status arm_fir_decimate_init_q15( + arm_fir_decimate_instance_q15 * S, + uint16_t numTaps, + uint8_t M, + const q15_t * pCoeffs, + q15_t * pState, + uint32_t blockSize); + + + /** + * @brief Processing function for the Q31 FIR decimator. + * @param[in] S points to an instance of the Q31 FIR decimator structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of input samples to process per call. + */ + void arm_fir_decimate_q31( + const arm_fir_decimate_instance_q31 * S, + const q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + /** + * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. + * @param[in] S points to an instance of the Q31 FIR decimator structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of input samples to process per call. + */ + void arm_fir_decimate_fast_q31( + const arm_fir_decimate_instance_q31 * S, + const q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + + /** + * @brief Initialization function for the Q31 FIR decimator. + * @param[in,out] S points to an instance of the Q31 FIR decimator structure. + * @param[in] numTaps number of coefficients in the filter. + * @param[in] M decimation factor. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of input samples to process per call. + * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if + * <code>blockSize</code> is not a multiple of <code>M</code>. + */ + arm_status arm_fir_decimate_init_q31( + arm_fir_decimate_instance_q31 * S, + uint16_t numTaps, + uint8_t M, + const q31_t * pCoeffs, + q31_t * pState, + uint32_t blockSize); + + + /** + * @brief Instance structure for the Q15 FIR interpolator. + */ + typedef struct + { + uint8_t L; /**< upsample factor. */ + uint16_t phaseLength; /**< length of each polyphase filter component. */ + const q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ + q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ + } arm_fir_interpolate_instance_q15; + + /** + * @brief Instance structure for the Q31 FIR interpolator. + */ + typedef struct + { + uint8_t L; /**< upsample factor. */ + uint16_t phaseLength; /**< length of each polyphase filter component. */ + const q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ + q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ + } arm_fir_interpolate_instance_q31; + + /** + * @brief Instance structure for the floating-point FIR interpolator. + */ + typedef struct + { + uint8_t L; /**< upsample factor. */ + uint16_t phaseLength; /**< length of each polyphase filter component. */ + const float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ + float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */ + } arm_fir_interpolate_instance_f32; + + + /** + * @brief Processing function for the Q15 FIR interpolator. + * @param[in] S points to an instance of the Q15 FIR interpolator structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of input samples to process per call. + */ + void arm_fir_interpolate_q15( + const arm_fir_interpolate_instance_q15 * S, + const q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + + /** + * @brief Initialization function for the Q15 FIR interpolator. + * @param[in,out] S points to an instance of the Q15 FIR interpolator structure. + * @param[in] L upsample factor. + * @param[in] numTaps number of filter coefficients in the filter. + * @param[in] pCoeffs points to the filter coefficient buffer. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of input samples to process per call. + * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if + * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. + */ + arm_status arm_fir_interpolate_init_q15( + arm_fir_interpolate_instance_q15 * S, + uint8_t L, + uint16_t numTaps, + const q15_t * pCoeffs, + q15_t * pState, + uint32_t blockSize); + + + /** + * @brief Processing function for the Q31 FIR interpolator. + * @param[in] S points to an instance of the Q15 FIR interpolator structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of input samples to process per call. + */ + void arm_fir_interpolate_q31( + const arm_fir_interpolate_instance_q31 * S, + const q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + + /** + * @brief Initialization function for the Q31 FIR interpolator. + * @param[in,out] S points to an instance of the Q31 FIR interpolator structure. + * @param[in] L upsample factor. + * @param[in] numTaps number of filter coefficients in the filter. + * @param[in] pCoeffs points to the filter coefficient buffer. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of input samples to process per call. + * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if + * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. + */ + arm_status arm_fir_interpolate_init_q31( + arm_fir_interpolate_instance_q31 * S, + uint8_t L, + uint16_t numTaps, + const q31_t * pCoeffs, + q31_t * pState, + uint32_t blockSize); + + + /** + * @brief Processing function for the floating-point FIR interpolator. + * @param[in] S points to an instance of the floating-point FIR interpolator structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of input samples to process per call. + */ + void arm_fir_interpolate_f32( + const arm_fir_interpolate_instance_f32 * S, + const float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + + /** + * @brief Initialization function for the floating-point FIR interpolator. + * @param[in,out] S points to an instance of the floating-point FIR interpolator structure. + * @param[in] L upsample factor. + * @param[in] numTaps number of filter coefficients in the filter. + * @param[in] pCoeffs points to the filter coefficient buffer. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of input samples to process per call. + * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if + * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. + */ + arm_status arm_fir_interpolate_init_f32( + arm_fir_interpolate_instance_f32 * S, + uint8_t L, + uint16_t numTaps, + const float32_t * pCoeffs, + float32_t * pState, + uint32_t blockSize); + + + /** + * @brief Instance structure for the high precision Q31 Biquad cascade filter. + */ + typedef struct + { + uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ + q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */ + const q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ + uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */ + } arm_biquad_cas_df1_32x64_ins_q31; + + + /** + * @param[in] S points to an instance of the high precision Q31 Biquad cascade filter structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of samples to process. + */ + void arm_biquad_cas_df1_32x64_q31( + const arm_biquad_cas_df1_32x64_ins_q31 * S, + const q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + + /** + * @param[in,out] S points to an instance of the high precision Q31 Biquad cascade filter structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format + */ + void arm_biquad_cas_df1_32x64_init_q31( + arm_biquad_cas_df1_32x64_ins_q31 * S, + uint8_t numStages, + const q31_t * pCoeffs, + q63_t * pState, + uint8_t postShift); + + + /** + * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. + */ + typedef struct + { + uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ + float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */ + const float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ + } arm_biquad_cascade_df2T_instance_f32; + + /** + * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. + */ + typedef struct + { + uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ + float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */ + const float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ + } arm_biquad_cascade_stereo_df2T_instance_f32; + + /** + * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. + */ + typedef struct + { + uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ + float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */ + const float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ + } arm_biquad_cascade_df2T_instance_f64; + + + /** + * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. + * @param[in] S points to an instance of the filter data structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of samples to process. + */ + void arm_biquad_cascade_df2T_f32( + const arm_biquad_cascade_df2T_instance_f32 * S, + const float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + + /** + * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels + * @param[in] S points to an instance of the filter data structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of samples to process. + */ + void arm_biquad_cascade_stereo_df2T_f32( + const arm_biquad_cascade_stereo_df2T_instance_f32 * S, + const float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + + /** + * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. + * @param[in] S points to an instance of the filter data structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of samples to process. + */ + void arm_biquad_cascade_df2T_f64( + const arm_biquad_cascade_df2T_instance_f64 * S, + const float64_t * pSrc, + float64_t * pDst, + uint32_t blockSize); + + +#if defined(ARM_MATH_NEON) +/** + @brief Compute new coefficient arrays for use in vectorized filter (Neon only). + @param[in] numStages number of 2nd order stages in the filter. + @param[in] pCoeffs points to the original filter coefficients. + @param[in] pComputedCoeffs points to the new computed coefficients for the vectorized version. + @return none +*/ +void arm_biquad_cascade_df2T_compute_coefs_f32( + uint8_t numStages, + const float32_t * pCoeffs, + float32_t * pComputedCoeffs); +#endif + /** + * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. + * @param[in,out] S points to an instance of the filter data structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + */ + void arm_biquad_cascade_df2T_init_f32( + arm_biquad_cascade_df2T_instance_f32 * S, + uint8_t numStages, + const float32_t * pCoeffs, + float32_t * pState); + + + /** + * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. + * @param[in,out] S points to an instance of the filter data structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + */ + void arm_biquad_cascade_stereo_df2T_init_f32( + arm_biquad_cascade_stereo_df2T_instance_f32 * S, + uint8_t numStages, + const float32_t * pCoeffs, + float32_t * pState); + + + /** + * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. + * @param[in,out] S points to an instance of the filter data structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + */ + void arm_biquad_cascade_df2T_init_f64( + arm_biquad_cascade_df2T_instance_f64 * S, + uint8_t numStages, + const float64_t * pCoeffs, + float64_t * pState); + + + /** + * @brief Instance structure for the Q15 FIR lattice filter. + */ + typedef struct + { + uint16_t numStages; /**< number of filter stages. */ + q15_t *pState; /**< points to the state variable array. The array is of length numStages. */ + const q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ + } arm_fir_lattice_instance_q15; + + /** + * @brief Instance structure for the Q31 FIR lattice filter. + */ + typedef struct + { + uint16_t numStages; /**< number of filter stages. */ + q31_t *pState; /**< points to the state variable array. The array is of length numStages. */ + const q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ + } arm_fir_lattice_instance_q31; + + /** + * @brief Instance structure for the floating-point FIR lattice filter. + */ + typedef struct + { + uint16_t numStages; /**< number of filter stages. */ + float32_t *pState; /**< points to the state variable array. The array is of length numStages. */ + const float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ + } arm_fir_lattice_instance_f32; + + + /** + * @brief Initialization function for the Q15 FIR lattice filter. + * @param[in] S points to an instance of the Q15 FIR lattice structure. + * @param[in] numStages number of filter stages. + * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. + * @param[in] pState points to the state buffer. The array is of length numStages. + */ + void arm_fir_lattice_init_q15( + arm_fir_lattice_instance_q15 * S, + uint16_t numStages, + const q15_t * pCoeffs, + q15_t * pState); + + + /** + * @brief Processing function for the Q15 FIR lattice filter. + * @param[in] S points to an instance of the Q15 FIR lattice structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_fir_lattice_q15( + const arm_fir_lattice_instance_q15 * S, + const q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + + /** + * @brief Initialization function for the Q31 FIR lattice filter. + * @param[in] S points to an instance of the Q31 FIR lattice structure. + * @param[in] numStages number of filter stages. + * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. + * @param[in] pState points to the state buffer. The array is of length numStages. + */ + void arm_fir_lattice_init_q31( + arm_fir_lattice_instance_q31 * S, + uint16_t numStages, + const q31_t * pCoeffs, + q31_t * pState); + + + /** + * @brief Processing function for the Q31 FIR lattice filter. + * @param[in] S points to an instance of the Q31 FIR lattice structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of samples to process. + */ + void arm_fir_lattice_q31( + const arm_fir_lattice_instance_q31 * S, + const q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + +/** + * @brief Initialization function for the floating-point FIR lattice filter. + * @param[in] S points to an instance of the floating-point FIR lattice structure. + * @param[in] numStages number of filter stages. + * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. + * @param[in] pState points to the state buffer. The array is of length numStages. + */ + void arm_fir_lattice_init_f32( + arm_fir_lattice_instance_f32 * S, + uint16_t numStages, + const float32_t * pCoeffs, + float32_t * pState); + + + /** + * @brief Processing function for the floating-point FIR lattice filter. + * @param[in] S points to an instance of the floating-point FIR lattice structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of samples to process. + */ + void arm_fir_lattice_f32( + const arm_fir_lattice_instance_f32 * S, + const float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + + /** + * @brief Instance structure for the Q15 IIR lattice filter. + */ + typedef struct + { + uint16_t numStages; /**< number of stages in the filter. */ + q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ + q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ + q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ + } arm_iir_lattice_instance_q15; + + /** + * @brief Instance structure for the Q31 IIR lattice filter. + */ + typedef struct + { + uint16_t numStages; /**< number of stages in the filter. */ + q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ + q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ + q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ + } arm_iir_lattice_instance_q31; + + /** + * @brief Instance structure for the floating-point IIR lattice filter. + */ + typedef struct + { + uint16_t numStages; /**< number of stages in the filter. */ + float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ + float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ + float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ + } arm_iir_lattice_instance_f32; + + + /** + * @brief Processing function for the floating-point IIR lattice filter. + * @param[in] S points to an instance of the floating-point IIR lattice structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_iir_lattice_f32( + const arm_iir_lattice_instance_f32 * S, + const float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + + /** + * @brief Initialization function for the floating-point IIR lattice filter. + * @param[in] S points to an instance of the floating-point IIR lattice structure. + * @param[in] numStages number of stages in the filter. + * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. + * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. + * @param[in] pState points to the state buffer. The array is of length numStages+blockSize-1. + * @param[in] blockSize number of samples to process. + */ + void arm_iir_lattice_init_f32( + arm_iir_lattice_instance_f32 * S, + uint16_t numStages, + float32_t * pkCoeffs, + float32_t * pvCoeffs, + float32_t * pState, + uint32_t blockSize); + + + /** + * @brief Processing function for the Q31 IIR lattice filter. + * @param[in] S points to an instance of the Q31 IIR lattice structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_iir_lattice_q31( + const arm_iir_lattice_instance_q31 * S, + const q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + + /** + * @brief Initialization function for the Q31 IIR lattice filter. + * @param[in] S points to an instance of the Q31 IIR lattice structure. + * @param[in] numStages number of stages in the filter. + * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. + * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. + * @param[in] pState points to the state buffer. The array is of length numStages+blockSize. + * @param[in] blockSize number of samples to process. + */ + void arm_iir_lattice_init_q31( + arm_iir_lattice_instance_q31 * S, + uint16_t numStages, + q31_t * pkCoeffs, + q31_t * pvCoeffs, + q31_t * pState, + uint32_t blockSize); + + + /** + * @brief Processing function for the Q15 IIR lattice filter. + * @param[in] S points to an instance of the Q15 IIR lattice structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_iir_lattice_q15( + const arm_iir_lattice_instance_q15 * S, + const q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + +/** + * @brief Initialization function for the Q15 IIR lattice filter. + * @param[in] S points to an instance of the fixed-point Q15 IIR lattice structure. + * @param[in] numStages number of stages in the filter. + * @param[in] pkCoeffs points to reflection coefficient buffer. The array is of length numStages. + * @param[in] pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1. + * @param[in] pState points to state buffer. The array is of length numStages+blockSize. + * @param[in] blockSize number of samples to process per call. + */ + void arm_iir_lattice_init_q15( + arm_iir_lattice_instance_q15 * S, + uint16_t numStages, + q15_t * pkCoeffs, + q15_t * pvCoeffs, + q15_t * pState, + uint32_t blockSize); + + + /** + * @brief Instance structure for the floating-point LMS filter. + */ + typedef struct + { + uint16_t numTaps; /**< number of coefficients in the filter. */ + float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ + float32_t mu; /**< step size that controls filter coefficient updates. */ + } arm_lms_instance_f32; + + + /** + * @brief Processing function for floating-point LMS filter. + * @param[in] S points to an instance of the floating-point LMS filter structure. + * @param[in] pSrc points to the block of input data. + * @param[in] pRef points to the block of reference data. + * @param[out] pOut points to the block of output data. + * @param[out] pErr points to the block of error data. + * @param[in] blockSize number of samples to process. + */ + void arm_lms_f32( + const arm_lms_instance_f32 * S, + const float32_t * pSrc, + float32_t * pRef, + float32_t * pOut, + float32_t * pErr, + uint32_t blockSize); + + + /** + * @brief Initialization function for floating-point LMS filter. + * @param[in] S points to an instance of the floating-point LMS filter structure. + * @param[in] numTaps number of filter coefficients. + * @param[in] pCoeffs points to the coefficient buffer. + * @param[in] pState points to state buffer. + * @param[in] mu step size that controls filter coefficient updates. + * @param[in] blockSize number of samples to process. + */ + void arm_lms_init_f32( + arm_lms_instance_f32 * S, + uint16_t numTaps, + float32_t * pCoeffs, + float32_t * pState, + float32_t mu, + uint32_t blockSize); + + + /** + * @brief Instance structure for the Q15 LMS filter. + */ + typedef struct + { + uint16_t numTaps; /**< number of coefficients in the filter. */ + q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ + q15_t mu; /**< step size that controls filter coefficient updates. */ + uint32_t postShift; /**< bit shift applied to coefficients. */ + } arm_lms_instance_q15; + + + /** + * @brief Initialization function for the Q15 LMS filter. + * @param[in] S points to an instance of the Q15 LMS filter structure. + * @param[in] numTaps number of filter coefficients. + * @param[in] pCoeffs points to the coefficient buffer. + * @param[in] pState points to the state buffer. + * @param[in] mu step size that controls filter coefficient updates. + * @param[in] blockSize number of samples to process. + * @param[in] postShift bit shift applied to coefficients. + */ + void arm_lms_init_q15( + arm_lms_instance_q15 * S, + uint16_t numTaps, + q15_t * pCoeffs, + q15_t * pState, + q15_t mu, + uint32_t blockSize, + uint32_t postShift); + + + /** + * @brief Processing function for Q15 LMS filter. + * @param[in] S points to an instance of the Q15 LMS filter structure. + * @param[in] pSrc points to the block of input data. + * @param[in] pRef points to the block of reference data. + * @param[out] pOut points to the block of output data. + * @param[out] pErr points to the block of error data. + * @param[in] blockSize number of samples to process. + */ + void arm_lms_q15( + const arm_lms_instance_q15 * S, + const q15_t * pSrc, + q15_t * pRef, + q15_t * pOut, + q15_t * pErr, + uint32_t blockSize); + + + /** + * @brief Instance structure for the Q31 LMS filter. + */ + typedef struct + { + uint16_t numTaps; /**< number of coefficients in the filter. */ + q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ + q31_t mu; /**< step size that controls filter coefficient updates. */ + uint32_t postShift; /**< bit shift applied to coefficients. */ + } arm_lms_instance_q31; + + + /** + * @brief Processing function for Q31 LMS filter. + * @param[in] S points to an instance of the Q15 LMS filter structure. + * @param[in] pSrc points to the block of input data. + * @param[in] pRef points to the block of reference data. + * @param[out] pOut points to the block of output data. + * @param[out] pErr points to the block of error data. + * @param[in] blockSize number of samples to process. + */ + void arm_lms_q31( + const arm_lms_instance_q31 * S, + const q31_t * pSrc, + q31_t * pRef, + q31_t * pOut, + q31_t * pErr, + uint32_t blockSize); + + + /** + * @brief Initialization function for Q31 LMS filter. + * @param[in] S points to an instance of the Q31 LMS filter structure. + * @param[in] numTaps number of filter coefficients. + * @param[in] pCoeffs points to coefficient buffer. + * @param[in] pState points to state buffer. + * @param[in] mu step size that controls filter coefficient updates. + * @param[in] blockSize number of samples to process. + * @param[in] postShift bit shift applied to coefficients. + */ + void arm_lms_init_q31( + arm_lms_instance_q31 * S, + uint16_t numTaps, + q31_t * pCoeffs, + q31_t * pState, + q31_t mu, + uint32_t blockSize, + uint32_t postShift); + + + /** + * @brief Instance structure for the floating-point normalized LMS filter. + */ + typedef struct + { + uint16_t numTaps; /**< number of coefficients in the filter. */ + float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ + float32_t mu; /**< step size that control filter coefficient updates. */ + float32_t energy; /**< saves previous frame energy. */ + float32_t x0; /**< saves previous input sample. */ + } arm_lms_norm_instance_f32; + + + /** + * @brief Processing function for floating-point normalized LMS filter. + * @param[in] S points to an instance of the floating-point normalized LMS filter structure. + * @param[in] pSrc points to the block of input data. + * @param[in] pRef points to the block of reference data. + * @param[out] pOut points to the block of output data. + * @param[out] pErr points to the block of error data. + * @param[in] blockSize number of samples to process. + */ + void arm_lms_norm_f32( + arm_lms_norm_instance_f32 * S, + const float32_t * pSrc, + float32_t * pRef, + float32_t * pOut, + float32_t * pErr, + uint32_t blockSize); + + + /** + * @brief Initialization function for floating-point normalized LMS filter. + * @param[in] S points to an instance of the floating-point LMS filter structure. + * @param[in] numTaps number of filter coefficients. + * @param[in] pCoeffs points to coefficient buffer. + * @param[in] pState points to state buffer. + * @param[in] mu step size that controls filter coefficient updates. + * @param[in] blockSize number of samples to process. + */ + void arm_lms_norm_init_f32( + arm_lms_norm_instance_f32 * S, + uint16_t numTaps, + float32_t * pCoeffs, + float32_t * pState, + float32_t mu, + uint32_t blockSize); + + + /** + * @brief Instance structure for the Q31 normalized LMS filter. + */ + typedef struct + { + uint16_t numTaps; /**< number of coefficients in the filter. */ + q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ + q31_t mu; /**< step size that controls filter coefficient updates. */ + uint8_t postShift; /**< bit shift applied to coefficients. */ + const q31_t *recipTable; /**< points to the reciprocal initial value table. */ + q31_t energy; /**< saves previous frame energy. */ + q31_t x0; /**< saves previous input sample. */ + } arm_lms_norm_instance_q31; + + + /** + * @brief Processing function for Q31 normalized LMS filter. + * @param[in] S points to an instance of the Q31 normalized LMS filter structure. + * @param[in] pSrc points to the block of input data. + * @param[in] pRef points to the block of reference data. + * @param[out] pOut points to the block of output data. + * @param[out] pErr points to the block of error data. + * @param[in] blockSize number of samples to process. + */ + void arm_lms_norm_q31( + arm_lms_norm_instance_q31 * S, + const q31_t * pSrc, + q31_t * pRef, + q31_t * pOut, + q31_t * pErr, + uint32_t blockSize); + + + /** + * @brief Initialization function for Q31 normalized LMS filter. + * @param[in] S points to an instance of the Q31 normalized LMS filter structure. + * @param[in] numTaps number of filter coefficients. + * @param[in] pCoeffs points to coefficient buffer. + * @param[in] pState points to state buffer. + * @param[in] mu step size that controls filter coefficient updates. + * @param[in] blockSize number of samples to process. + * @param[in] postShift bit shift applied to coefficients. + */ + void arm_lms_norm_init_q31( + arm_lms_norm_instance_q31 * S, + uint16_t numTaps, + q31_t * pCoeffs, + q31_t * pState, + q31_t mu, + uint32_t blockSize, + uint8_t postShift); + + + /** + * @brief Instance structure for the Q15 normalized LMS filter. + */ + typedef struct + { + uint16_t numTaps; /**< Number of coefficients in the filter. */ + q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ + q15_t mu; /**< step size that controls filter coefficient updates. */ + uint8_t postShift; /**< bit shift applied to coefficients. */ + const q15_t *recipTable; /**< Points to the reciprocal initial value table. */ + q15_t energy; /**< saves previous frame energy. */ + q15_t x0; /**< saves previous input sample. */ + } arm_lms_norm_instance_q15; + + + /** + * @brief Processing function for Q15 normalized LMS filter. + * @param[in] S points to an instance of the Q15 normalized LMS filter structure. + * @param[in] pSrc points to the block of input data. + * @param[in] pRef points to the block of reference data. + * @param[out] pOut points to the block of output data. + * @param[out] pErr points to the block of error data. + * @param[in] blockSize number of samples to process. + */ + void arm_lms_norm_q15( + arm_lms_norm_instance_q15 * S, + const q15_t * pSrc, + q15_t * pRef, + q15_t * pOut, + q15_t * pErr, + uint32_t blockSize); + + + /** + * @brief Initialization function for Q15 normalized LMS filter. + * @param[in] S points to an instance of the Q15 normalized LMS filter structure. + * @param[in] numTaps number of filter coefficients. + * @param[in] pCoeffs points to coefficient buffer. + * @param[in] pState points to state buffer. + * @param[in] mu step size that controls filter coefficient updates. + * @param[in] blockSize number of samples to process. + * @param[in] postShift bit shift applied to coefficients. + */ + void arm_lms_norm_init_q15( + arm_lms_norm_instance_q15 * S, + uint16_t numTaps, + q15_t * pCoeffs, + q15_t * pState, + q15_t mu, + uint32_t blockSize, + uint8_t postShift); + + + /** + * @brief Correlation of floating-point sequences. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + */ + void arm_correlate_f32( + const float32_t * pSrcA, + uint32_t srcALen, + const float32_t * pSrcB, + uint32_t srcBLen, + float32_t * pDst); + + + /** + * @brief Correlation of floating-point sequences. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + */ + void arm_correlate_f64( + const float64_t * pSrcA, + uint32_t srcALen, + const float64_t * pSrcB, + uint32_t srcBLen, + float64_t * pDst); + + +/** + @brief Correlation of Q15 sequences + @param[in] pSrcA points to the first input sequence + @param[in] srcALen length of the first input sequence + @param[in] pSrcB points to the second input sequence + @param[in] srcBLen length of the second input sequence + @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. +*/ +void arm_correlate_opt_q15( + const q15_t * pSrcA, + uint32_t srcALen, + const q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst, + q15_t * pScratch); + + +/** + @brief Correlation of Q15 sequences. + @param[in] pSrcA points to the first input sequence + @param[in] srcALen length of the first input sequence + @param[in] pSrcB points to the second input sequence + @param[in] srcBLen length of the second input sequence + @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + */ + void arm_correlate_q15( + const q15_t * pSrcA, + uint32_t srcALen, + const q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst); + + +/** + @brief Correlation of Q15 sequences (fast version). + @param[in] pSrcA points to the first input sequence + @param[in] srcALen length of the first input sequence + @param[in] pSrcB points to the second input sequence + @param[in] srcBLen length of the second input sequence + @param[out] pDst points to the location where the output result is written. Length 2 * max(srcALen, srcBLen) - 1. + @return none + */ +void arm_correlate_fast_q15( + const q15_t * pSrcA, + uint32_t srcALen, + const q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst); + + +/** + @brief Correlation of Q15 sequences (fast version). + @param[in] pSrcA points to the first input sequence. + @param[in] srcALen length of the first input sequence. + @param[in] pSrcB points to the second input sequence. + @param[in] srcBLen length of the second input sequence. + @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + */ +void arm_correlate_fast_opt_q15( + const q15_t * pSrcA, + uint32_t srcALen, + const q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst, + q15_t * pScratch); + + + /** + * @brief Correlation of Q31 sequences. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + */ + void arm_correlate_q31( + const q31_t * pSrcA, + uint32_t srcALen, + const q31_t * pSrcB, + uint32_t srcBLen, + q31_t * pDst); + + +/** + @brief Correlation of Q31 sequences (fast version). + @param[in] pSrcA points to the first input sequence + @param[in] srcALen length of the first input sequence + @param[in] pSrcB points to the second input sequence + @param[in] srcBLen length of the second input sequence + @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + */ +void arm_correlate_fast_q31( + const q31_t * pSrcA, + uint32_t srcALen, + const q31_t * pSrcB, + uint32_t srcBLen, + q31_t * pDst); + + + /** + * @brief Correlation of Q7 sequences. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). + */ + void arm_correlate_opt_q7( + const q7_t * pSrcA, + uint32_t srcALen, + const q7_t * pSrcB, + uint32_t srcBLen, + q7_t * pDst, + q15_t * pScratch1, + q15_t * pScratch2); + + + /** + * @brief Correlation of Q7 sequences. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + */ + void arm_correlate_q7( + const q7_t * pSrcA, + uint32_t srcALen, + const q7_t * pSrcB, + uint32_t srcBLen, + q7_t * pDst); + + + /** + * @brief Instance structure for the floating-point sparse FIR filter. + */ + typedef struct + { + uint16_t numTaps; /**< number of coefficients in the filter. */ + uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ + float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ + const float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ + uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ + int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ + } arm_fir_sparse_instance_f32; + + /** + * @brief Instance structure for the Q31 sparse FIR filter. + */ + typedef struct + { + uint16_t numTaps; /**< number of coefficients in the filter. */ + uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ + q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ + const q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ + uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ + int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ + } arm_fir_sparse_instance_q31; + + /** + * @brief Instance structure for the Q15 sparse FIR filter. + */ + typedef struct + { + uint16_t numTaps; /**< number of coefficients in the filter. */ + uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ + q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ + const q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ + uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ + int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ + } arm_fir_sparse_instance_q15; + + /** + * @brief Instance structure for the Q7 sparse FIR filter. + */ + typedef struct + { + uint16_t numTaps; /**< number of coefficients in the filter. */ + uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ + q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ + const q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ + uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ + int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ + } arm_fir_sparse_instance_q7; + + + /** + * @brief Processing function for the floating-point sparse FIR filter. + * @param[in] S points to an instance of the floating-point sparse FIR structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] pScratchIn points to a temporary buffer of size blockSize. + * @param[in] blockSize number of input samples to process per call. + */ + void arm_fir_sparse_f32( + arm_fir_sparse_instance_f32 * S, + const float32_t * pSrc, + float32_t * pDst, + float32_t * pScratchIn, + uint32_t blockSize); + + + /** + * @brief Initialization function for the floating-point sparse FIR filter. + * @param[in,out] S points to an instance of the floating-point sparse FIR structure. + * @param[in] numTaps number of nonzero coefficients in the filter. + * @param[in] pCoeffs points to the array of filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] pTapDelay points to the array of offset times. + * @param[in] maxDelay maximum offset time supported. + * @param[in] blockSize number of samples that will be processed per block. + */ + void arm_fir_sparse_init_f32( + arm_fir_sparse_instance_f32 * S, + uint16_t numTaps, + const float32_t * pCoeffs, + float32_t * pState, + int32_t * pTapDelay, + uint16_t maxDelay, + uint32_t blockSize); + + + /** + * @brief Processing function for the Q31 sparse FIR filter. + * @param[in] S points to an instance of the Q31 sparse FIR structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] pScratchIn points to a temporary buffer of size blockSize. + * @param[in] blockSize number of input samples to process per call. + */ + void arm_fir_sparse_q31( + arm_fir_sparse_instance_q31 * S, + const q31_t * pSrc, + q31_t * pDst, + q31_t * pScratchIn, + uint32_t blockSize); + + + /** + * @brief Initialization function for the Q31 sparse FIR filter. + * @param[in,out] S points to an instance of the Q31 sparse FIR structure. + * @param[in] numTaps number of nonzero coefficients in the filter. + * @param[in] pCoeffs points to the array of filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] pTapDelay points to the array of offset times. + * @param[in] maxDelay maximum offset time supported. + * @param[in] blockSize number of samples that will be processed per block. + */ + void arm_fir_sparse_init_q31( + arm_fir_sparse_instance_q31 * S, + uint16_t numTaps, + const q31_t * pCoeffs, + q31_t * pState, + int32_t * pTapDelay, + uint16_t maxDelay, + uint32_t blockSize); + + + /** + * @brief Processing function for the Q15 sparse FIR filter. + * @param[in] S points to an instance of the Q15 sparse FIR structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] pScratchIn points to a temporary buffer of size blockSize. + * @param[in] pScratchOut points to a temporary buffer of size blockSize. + * @param[in] blockSize number of input samples to process per call. + */ + void arm_fir_sparse_q15( + arm_fir_sparse_instance_q15 * S, + const q15_t * pSrc, + q15_t * pDst, + q15_t * pScratchIn, + q31_t * pScratchOut, + uint32_t blockSize); + + + /** + * @brief Initialization function for the Q15 sparse FIR filter. + * @param[in,out] S points to an instance of the Q15 sparse FIR structure. + * @param[in] numTaps number of nonzero coefficients in the filter. + * @param[in] pCoeffs points to the array of filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] pTapDelay points to the array of offset times. + * @param[in] maxDelay maximum offset time supported. + * @param[in] blockSize number of samples that will be processed per block. + */ + void arm_fir_sparse_init_q15( + arm_fir_sparse_instance_q15 * S, + uint16_t numTaps, + const q15_t * pCoeffs, + q15_t * pState, + int32_t * pTapDelay, + uint16_t maxDelay, + uint32_t blockSize); + + + /** + * @brief Processing function for the Q7 sparse FIR filter. + * @param[in] S points to an instance of the Q7 sparse FIR structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] pScratchIn points to a temporary buffer of size blockSize. + * @param[in] pScratchOut points to a temporary buffer of size blockSize. + * @param[in] blockSize number of input samples to process per call. + */ + void arm_fir_sparse_q7( + arm_fir_sparse_instance_q7 * S, + const q7_t * pSrc, + q7_t * pDst, + q7_t * pScratchIn, + q31_t * pScratchOut, + uint32_t blockSize); + + + /** + * @brief Initialization function for the Q7 sparse FIR filter. + * @param[in,out] S points to an instance of the Q7 sparse FIR structure. + * @param[in] numTaps number of nonzero coefficients in the filter. + * @param[in] pCoeffs points to the array of filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] pTapDelay points to the array of offset times. + * @param[in] maxDelay maximum offset time supported. + * @param[in] blockSize number of samples that will be processed per block. + */ + void arm_fir_sparse_init_q7( + arm_fir_sparse_instance_q7 * S, + uint16_t numTaps, + const q7_t * pCoeffs, + q7_t * pState, + int32_t * pTapDelay, + uint16_t maxDelay, + uint32_t blockSize); + + + + + + + /** + * @brief floating-point Circular write function. + */ + __STATIC_FORCEINLINE void arm_circularWrite_f32( + int32_t * circBuffer, + int32_t L, + uint16_t * writeOffset, + int32_t bufferInc, + const int32_t * src, + int32_t srcInc, + uint32_t blockSize) + { + uint32_t i = 0U; + int32_t wOffset; + + /* Copy the value of Index pointer that points + * to the current location where the input samples to be copied */ + wOffset = *writeOffset; + + /* Loop over the blockSize */ + i = blockSize; + + while (i > 0U) + { + /* copy the input sample to the circular buffer */ + circBuffer[wOffset] = *src; + + /* Update the input pointer */ + src += srcInc; + + /* Circularly update wOffset. Watch out for positive and negative value */ + wOffset += bufferInc; + if (wOffset >= L) + wOffset -= L; + + /* Decrement the loop counter */ + i--; + } + + /* Update the index pointer */ + *writeOffset = (uint16_t)wOffset; + } + + + + /** + * @brief floating-point Circular Read function. + */ + __STATIC_FORCEINLINE void arm_circularRead_f32( + int32_t * circBuffer, + int32_t L, + int32_t * readOffset, + int32_t bufferInc, + int32_t * dst, + int32_t * dst_base, + int32_t dst_length, + int32_t dstInc, + uint32_t blockSize) + { + uint32_t i = 0U; + int32_t rOffset; + int32_t* dst_end; + + /* Copy the value of Index pointer that points + * to the current location from where the input samples to be read */ + rOffset = *readOffset; + dst_end = dst_base + dst_length; + + /* Loop over the blockSize */ + i = blockSize; + + while (i > 0U) + { + /* copy the sample from the circular buffer to the destination buffer */ + *dst = circBuffer[rOffset]; + + /* Update the input pointer */ + dst += dstInc; + + if (dst == dst_end) + { + dst = dst_base; + } + + /* Circularly update rOffset. Watch out for positive and negative value */ + rOffset += bufferInc; + + if (rOffset >= L) + { + rOffset -= L; + } + + /* Decrement the loop counter */ + i--; + } + + /* Update the index pointer */ + *readOffset = rOffset; + } + + + /** + * @brief Q15 Circular write function. + */ + __STATIC_FORCEINLINE void arm_circularWrite_q15( + q15_t * circBuffer, + int32_t L, + uint16_t * writeOffset, + int32_t bufferInc, + const q15_t * src, + int32_t srcInc, + uint32_t blockSize) + { + uint32_t i = 0U; + int32_t wOffset; + + /* Copy the value of Index pointer that points + * to the current location where the input samples to be copied */ + wOffset = *writeOffset; + + /* Loop over the blockSize */ + i = blockSize; + + while (i > 0U) + { + /* copy the input sample to the circular buffer */ + circBuffer[wOffset] = *src; + + /* Update the input pointer */ + src += srcInc; + + /* Circularly update wOffset. Watch out for positive and negative value */ + wOffset += bufferInc; + if (wOffset >= L) + wOffset -= L; + + /* Decrement the loop counter */ + i--; + } + + /* Update the index pointer */ + *writeOffset = (uint16_t)wOffset; + } + + + /** + * @brief Q15 Circular Read function. + */ + __STATIC_FORCEINLINE void arm_circularRead_q15( + q15_t * circBuffer, + int32_t L, + int32_t * readOffset, + int32_t bufferInc, + q15_t * dst, + q15_t * dst_base, + int32_t dst_length, + int32_t dstInc, + uint32_t blockSize) + { + uint32_t i = 0; + int32_t rOffset; + q15_t* dst_end; + + /* Copy the value of Index pointer that points + * to the current location from where the input samples to be read */ + rOffset = *readOffset; + + dst_end = dst_base + dst_length; + + /* Loop over the blockSize */ + i = blockSize; + + while (i > 0U) + { + /* copy the sample from the circular buffer to the destination buffer */ + *dst = circBuffer[rOffset]; + + /* Update the input pointer */ + dst += dstInc; + + if (dst == dst_end) + { + dst = dst_base; + } + + /* Circularly update wOffset. Watch out for positive and negative value */ + rOffset += bufferInc; + + if (rOffset >= L) + { + rOffset -= L; + } + + /* Decrement the loop counter */ + i--; + } + + /* Update the index pointer */ + *readOffset = rOffset; + } + + + /** + * @brief Q7 Circular write function. + */ + __STATIC_FORCEINLINE void arm_circularWrite_q7( + q7_t * circBuffer, + int32_t L, + uint16_t * writeOffset, + int32_t bufferInc, + const q7_t * src, + int32_t srcInc, + uint32_t blockSize) + { + uint32_t i = 0U; + int32_t wOffset; + + /* Copy the value of Index pointer that points + * to the current location where the input samples to be copied */ + wOffset = *writeOffset; + + /* Loop over the blockSize */ + i = blockSize; + + while (i > 0U) + { + /* copy the input sample to the circular buffer */ + circBuffer[wOffset] = *src; + + /* Update the input pointer */ + src += srcInc; + + /* Circularly update wOffset. Watch out for positive and negative value */ + wOffset += bufferInc; + if (wOffset >= L) + wOffset -= L; + + /* Decrement the loop counter */ + i--; + } + + /* Update the index pointer */ + *writeOffset = (uint16_t)wOffset; + } + + + /** + * @brief Q7 Circular Read function. + */ + __STATIC_FORCEINLINE void arm_circularRead_q7( + q7_t * circBuffer, + int32_t L, + int32_t * readOffset, + int32_t bufferInc, + q7_t * dst, + q7_t * dst_base, + int32_t dst_length, + int32_t dstInc, + uint32_t blockSize) + { + uint32_t i = 0; + int32_t rOffset; + q7_t* dst_end; + + /* Copy the value of Index pointer that points + * to the current location from where the input samples to be read */ + rOffset = *readOffset; + + dst_end = dst_base + dst_length; + + /* Loop over the blockSize */ + i = blockSize; + + while (i > 0U) + { + /* copy the sample from the circular buffer to the destination buffer */ + *dst = circBuffer[rOffset]; + + /* Update the input pointer */ + dst += dstInc; + + if (dst == dst_end) + { + dst = dst_base; + } + + /* Circularly update rOffset. Watch out for positive and negative value */ + rOffset += bufferInc; + + if (rOffset >= L) + { + rOffset -= L; + } + + /* Decrement the loop counter */ + i--; + } + + /* Update the index pointer */ + *readOffset = rOffset; + } + + +/** + @brief Levinson Durbin + @param[in] phi autocovariance vector starting with lag 0 (length is nbCoefs + 1) + @param[out] a autoregressive coefficients + @param[out] err prediction error (variance) + @param[in] nbCoefs number of autoregressive coefficients + @return none + */ +void arm_levinson_durbin_f32(const float32_t *phi, + float32_t *a, + float32_t *err, + int nbCoefs); + + +/** + @brief Levinson Durbin + @param[in] phi autocovariance vector starting with lag 0 (length is nbCoefs + 1) + @param[out] a autoregressive coefficients + @param[out] err prediction error (variance) + @param[in] nbCoefs number of autoregressive coefficients + @return none + */ +void arm_levinson_durbin_q31(const q31_t *phi, + q31_t *a, + q31_t *err, + int nbCoefs); + +#ifdef __cplusplus +} +#endif + +#endif /* ifndef _FILTERING_FUNCTIONS_H_ */ diff --git a/Drivers/CMSIS/DSP/Include/dsp/filtering_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/filtering_functions_f16.h new file mode 100644 index 0000000..fd8b0bb --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/dsp/filtering_functions_f16.h @@ -0,0 +1,237 @@ +/****************************************************************************** + * @file filtering_functions_f16.h + * @brief Public header file for CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + + +#ifndef _FILTERING_FUNCTIONS_F16_H_ +#define _FILTERING_FUNCTIONS_F16_H_ + +#include "arm_math_types_f16.h" +#include "arm_math_memory.h" + +#include "dsp/none.h" +#include "dsp/utils.h" + + +#ifdef __cplusplus +extern "C" +{ +#endif + +#if defined(ARM_FLOAT16_SUPPORTED) + + /** + * @brief Instance structure for the floating-point FIR filter. + */ + typedef struct + { + uint16_t numTaps; /**< number of filter coefficients in the filter. */ + float16_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + const float16_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ + } arm_fir_instance_f16; + + /** + * @brief Initialization function for the floating-point FIR filter. + * @param[in,out] S points to an instance of the floating-point FIR filter structure. + * @param[in] numTaps Number of filter coefficients in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of samples that are processed at a time. + */ + void arm_fir_init_f16( + arm_fir_instance_f16 * S, + uint16_t numTaps, + const float16_t * pCoeffs, + float16_t * pState, + uint32_t blockSize); + + /** + * @brief Processing function for the floating-point FIR filter. + * @param[in] S points to an instance of the floating-point FIR structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_fir_f16( + const arm_fir_instance_f16 * S, + const float16_t * pSrc, + float16_t * pDst, + uint32_t blockSize); + + + /** + * @brief Instance structure for the floating-point Biquad cascade filter. + */ + typedef struct + { + uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ + float16_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ + const float16_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ + } arm_biquad_casd_df1_inst_f16; + +#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) + /** + * @brief Instance structure for the modified Biquad coefs required by vectorized code. + */ + typedef struct + { + float16_t coeffs[12][8]; /**< Points to the array of modified coefficients. The array is of length 32. There is one per stage */ + } arm_biquad_mod_coef_f16; +#endif + + /** + * @brief Processing function for the floating-point Biquad cascade filter. + * @param[in] S points to an instance of the floating-point Biquad cascade structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_biquad_cascade_df1_f16( + const arm_biquad_casd_df1_inst_f16 * S, + const float16_t * pSrc, + float16_t * pDst, + uint32_t blockSize); + +#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) + void arm_biquad_cascade_df1_mve_init_f16( + arm_biquad_casd_df1_inst_f16 * S, + uint8_t numStages, + const float16_t * pCoeffs, + arm_biquad_mod_coef_f16 * pCoeffsMod, + float16_t * pState); +#endif + + void arm_biquad_cascade_df1_init_f16( + arm_biquad_casd_df1_inst_f16 * S, + uint8_t numStages, + const float16_t * pCoeffs, + float16_t * pState); + + /** + * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. + */ + typedef struct + { + uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ + float16_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */ + const float16_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ + } arm_biquad_cascade_df2T_instance_f16; + + /** + * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. + */ + typedef struct + { + uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ + float16_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */ + const float16_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ + } arm_biquad_cascade_stereo_df2T_instance_f16; + + /** + * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. + * @param[in] S points to an instance of the filter data structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of samples to process. + */ + void arm_biquad_cascade_df2T_f16( + const arm_biquad_cascade_df2T_instance_f16 * S, + const float16_t * pSrc, + float16_t * pDst, + uint32_t blockSize); + + /** + * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels + * @param[in] S points to an instance of the filter data structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of samples to process. + */ + void arm_biquad_cascade_stereo_df2T_f16( + const arm_biquad_cascade_stereo_df2T_instance_f16 * S, + const float16_t * pSrc, + float16_t * pDst, + uint32_t blockSize); + + /** + * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. + * @param[in,out] S points to an instance of the filter data structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + */ + void arm_biquad_cascade_df2T_init_f16( + arm_biquad_cascade_df2T_instance_f16 * S, + uint8_t numStages, + const float16_t * pCoeffs, + float16_t * pState); + + /** + * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. + * @param[in,out] S points to an instance of the filter data structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + */ + void arm_biquad_cascade_stereo_df2T_init_f16( + arm_biquad_cascade_stereo_df2T_instance_f16 * S, + uint8_t numStages, + const float16_t * pCoeffs, + float16_t * pState); + + /** + * @brief Correlation of floating-point sequences. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + */ + void arm_correlate_f16( + const float16_t * pSrcA, + uint32_t srcALen, + const float16_t * pSrcB, + uint32_t srcBLen, + float16_t * pDst); + + +/** + @brief Levinson Durbin + @param[in] phi autocovariance vector starting with lag 0 (length is nbCoefs + 1) + @param[out] a autoregressive coefficients + @param[out] err prediction error (variance) + @param[in] nbCoefs number of autoregressive coefficients + @return none + */ +void arm_levinson_durbin_f16(const float16_t *phi, + float16_t *a, + float16_t *err, + int nbCoefs); + +#endif /*defined(ARM_FLOAT16_SUPPORTED)*/ +#ifdef __cplusplus +} +#endif + +#endif /* ifndef _FILTERING_FUNCTIONS_F16_H_ */ diff --git a/Drivers/CMSIS/DSP/Include/dsp/interpolation_functions.h b/Drivers/CMSIS/DSP/Include/dsp/interpolation_functions.h new file mode 100644 index 0000000..6e51f7c --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/dsp/interpolation_functions.h @@ -0,0 +1,319 @@ +/****************************************************************************** + * @file interpolation_functions.h + * @brief Public header file for CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + + +#ifndef _INTERPOLATION_FUNCTIONS_H_ +#define _INTERPOLATION_FUNCTIONS_H_ + +#include "arm_math_types.h" +#include "arm_math_memory.h" + +#include "dsp/none.h" +#include "dsp/utils.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + + +/** + * @defgroup groupInterpolation Interpolation Functions + * These functions perform 1- and 2-dimensional interpolation of data. + * Linear interpolation is used for 1-dimensional data and + * bilinear interpolation is used for 2-dimensional data. + */ + + + /** + * @brief Instance structure for the floating-point Linear Interpolate function. + */ + typedef struct + { + uint32_t nValues; /**< nValues */ + float32_t x1; /**< x1 */ + float32_t xSpacing; /**< xSpacing */ + float32_t *pYData; /**< pointer to the table of Y values */ + } arm_linear_interp_instance_f32; + + /** + * @brief Instance structure for the floating-point bilinear interpolation function. + */ + typedef struct + { + uint16_t numRows; /**< number of rows in the data table. */ + uint16_t numCols; /**< number of columns in the data table. */ + float32_t *pData; /**< points to the data table. */ + } arm_bilinear_interp_instance_f32; + + /** + * @brief Instance structure for the Q31 bilinear interpolation function. + */ + typedef struct + { + uint16_t numRows; /**< number of rows in the data table. */ + uint16_t numCols; /**< number of columns in the data table. */ + q31_t *pData; /**< points to the data table. */ + } arm_bilinear_interp_instance_q31; + + /** + * @brief Instance structure for the Q15 bilinear interpolation function. + */ + typedef struct + { + uint16_t numRows; /**< number of rows in the data table. */ + uint16_t numCols; /**< number of columns in the data table. */ + q15_t *pData; /**< points to the data table. */ + } arm_bilinear_interp_instance_q15; + + /** + * @brief Instance structure for the Q15 bilinear interpolation function. + */ + typedef struct + { + uint16_t numRows; /**< number of rows in the data table. */ + uint16_t numCols; /**< number of columns in the data table. */ + q7_t *pData; /**< points to the data table. */ + } arm_bilinear_interp_instance_q7; + + + /** + * @brief Struct for specifying cubic spline type + */ + typedef enum + { + ARM_SPLINE_NATURAL = 0, /**< Natural spline */ + ARM_SPLINE_PARABOLIC_RUNOUT = 1 /**< Parabolic runout spline */ + } arm_spline_type; + + /** + * @brief Instance structure for the floating-point cubic spline interpolation. + */ + typedef struct + { + arm_spline_type type; /**< Type (boundary conditions) */ + const float32_t * x; /**< x values */ + const float32_t * y; /**< y values */ + uint32_t n_x; /**< Number of known data points */ + float32_t * coeffs; /**< Coefficients buffer (b,c, and d) */ + } arm_spline_instance_f32; + + + + + /** + * @ingroup groupInterpolation + */ + + /** + * @addtogroup SplineInterpolate + * @{ + */ + + + /** + * @brief Processing function for the floating-point cubic spline interpolation. + * @param[in] S points to an instance of the floating-point spline structure. + * @param[in] xq points to the x values ot the interpolated data points. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples of output data. + */ + void arm_spline_f32( + arm_spline_instance_f32 * S, + const float32_t * xq, + float32_t * pDst, + uint32_t blockSize); + + /** + * @brief Initialization function for the floating-point cubic spline interpolation. + * @param[in,out] S points to an instance of the floating-point spline structure. + * @param[in] type type of cubic spline interpolation (boundary conditions) + * @param[in] x points to the x values of the known data points. + * @param[in] y points to the y values of the known data points. + * @param[in] n number of known data points. + * @param[in] coeffs coefficients array for b, c, and d + * @param[in] tempBuffer buffer array for internal computations + */ + void arm_spline_init_f32( + arm_spline_instance_f32 * S, + arm_spline_type type, + const float32_t * x, + const float32_t * y, + uint32_t n, + float32_t * coeffs, + float32_t * tempBuffer); + + + /** + * @} end of SplineInterpolate group + */ + + + + /** + * @addtogroup LinearInterpolate + * @{ + */ + + /** + * @brief Process function for the floating-point Linear Interpolation Function. + * @param[in,out] S is an instance of the floating-point Linear Interpolation structure + * @param[in] x input sample to process + * @return y processed output sample. + * + */ + float32_t arm_linear_interp_f32( + arm_linear_interp_instance_f32 * S, + float32_t x); + + /** + * + * @brief Process function for the Q31 Linear Interpolation Function. + * @param[in] pYData pointer to Q31 Linear Interpolation table + * @param[in] x input sample to process + * @param[in] nValues number of table values + * @return y processed output sample. + * + * \par + * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. + * This function can support maximum of table size 2^12. + * + */ + q31_t arm_linear_interp_q31( + const q31_t * pYData, + q31_t x, + uint32_t nValues); + + /** + * + * @brief Process function for the Q15 Linear Interpolation Function. + * @param[in] pYData pointer to Q15 Linear Interpolation table + * @param[in] x input sample to process + * @param[in] nValues number of table values + * @return y processed output sample. + * + * \par + * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. + * This function can support maximum of table size 2^12. + * + */ + q15_t arm_linear_interp_q15( + const q15_t * pYData, + q31_t x, + uint32_t nValues); + + /** + * + * @brief Process function for the Q7 Linear Interpolation Function. + * @param[in] pYData pointer to Q7 Linear Interpolation table + * @param[in] x input sample to process + * @param[in] nValues number of table values + * @return y processed output sample. + * + * \par + * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. + * This function can support maximum of table size 2^12. + */ +q7_t arm_linear_interp_q7( + const q7_t * pYData, + q31_t x, + uint32_t nValues); + + /** + * @} end of LinearInterpolate group + */ + + + + + /** + * @ingroup groupInterpolation + */ + + + /** + * @addtogroup BilinearInterpolate + * @{ + */ + + /** + * @brief Floating-point bilinear interpolation. + * @param[in,out] S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate. + * @param[in] Y interpolation coordinate. + * @return out interpolated value. + */ + float32_t arm_bilinear_interp_f32( + const arm_bilinear_interp_instance_f32 * S, + float32_t X, + float32_t Y); + + /** + * @brief Q31 bilinear interpolation. + * @param[in,out] S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate in 12.20 format. + * @param[in] Y interpolation coordinate in 12.20 format. + * @return out interpolated value. + */ + q31_t arm_bilinear_interp_q31( + arm_bilinear_interp_instance_q31 * S, + q31_t X, + q31_t Y); + + + /** + * @brief Q15 bilinear interpolation. + * @param[in,out] S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate in 12.20 format. + * @param[in] Y interpolation coordinate in 12.20 format. + * @return out interpolated value. + */ + q15_t arm_bilinear_interp_q15( + arm_bilinear_interp_instance_q15 * S, + q31_t X, + q31_t Y); + + /** + * @brief Q7 bilinear interpolation. + * @param[in,out] S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate in 12.20 format. + * @param[in] Y interpolation coordinate in 12.20 format. + * @return out interpolated value. + */ + q7_t arm_bilinear_interp_q7( + arm_bilinear_interp_instance_q7 * S, + q31_t X, + q31_t Y); + /** + * @} end of BilinearInterpolate group + */ + + + +#ifdef __cplusplus +} +#endif + +#endif /* ifndef _INTERPOLATION_FUNCTIONS_H_ */ diff --git a/Drivers/CMSIS/DSP/Include/dsp/interpolation_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/interpolation_functions_f16.h new file mode 100644 index 0000000..8b6e6a9 --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/dsp/interpolation_functions_f16.h @@ -0,0 +1,107 @@ +/****************************************************************************** + * @file interpolation_functions_f16.h + * @brief Public header file for CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + + +#ifndef _INTERPOLATION_FUNCTIONS_F16_H_ +#define _INTERPOLATION_FUNCTIONS_F16_H_ + +#include "arm_math_types_f16.h" +#include "arm_math_memory.h" + +#include "dsp/none.h" +#include "dsp/utils.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + +#if defined(ARM_FLOAT16_SUPPORTED) + +typedef struct +{ + uint32_t nValues; /**< nValues */ + float16_t x1; /**< x1 */ + float16_t xSpacing; /**< xSpacing */ + float16_t *pYData; /**< pointer to the table of Y values */ +} arm_linear_interp_instance_f16; + +/** + * @brief Instance structure for the floating-point bilinear interpolation function. + */ +typedef struct +{ + uint16_t numRows;/**< number of rows in the data table. */ + uint16_t numCols;/**< number of columns in the data table. */ + float16_t *pData; /**< points to the data table. */ +} arm_bilinear_interp_instance_f16; + + /** + * @addtogroup LinearInterpolate + * @{ + */ + + /** + * @brief Process function for the floating-point Linear Interpolation Function. + * @param[in,out] S is an instance of the floating-point Linear Interpolation structure + * @param[in] x input sample to process + * @return y processed output sample. + * + */ + float16_t arm_linear_interp_f16( + arm_linear_interp_instance_f16 * S, + float16_t x); + + /** + * @} end of LinearInterpolate group + */ + +/** + * @addtogroup BilinearInterpolate + * @{ + */ + + /** + * @brief Floating-point bilinear interpolation. + * @param[in,out] S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate. + * @param[in] Y interpolation coordinate. + * @return out interpolated value. + */ + float16_t arm_bilinear_interp_f16( + const arm_bilinear_interp_instance_f16 * S, + float16_t X, + float16_t Y); + + + /** + * @} end of BilinearInterpolate group + */ +#endif /*defined(ARM_FLOAT16_SUPPORTED)*/ +#ifdef __cplusplus +} +#endif + +#endif /* ifndef _INTERPOLATION_FUNCTIONS_F16_H_ */ diff --git a/Drivers/CMSIS/DSP/Include/dsp/matrix_functions.h b/Drivers/CMSIS/DSP/Include/dsp/matrix_functions.h new file mode 100644 index 0000000..f3801a9 --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/dsp/matrix_functions.h @@ -0,0 +1,757 @@ +/****************************************************************************** + * @file matrix_functions.h + * @brief Public header file for CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + + +#ifndef _MATRIX_FUNCTIONS_H_ +#define _MATRIX_FUNCTIONS_H_ + +#include "arm_math_types.h" +#include "arm_math_memory.h" + +#include "dsp/none.h" +#include "dsp/utils.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + +/** + * @defgroup groupMatrix Matrix Functions + * + * This set of functions provides basic matrix math operations. + * The functions operate on matrix data structures. For example, + * the type + * definition for the floating-point matrix structure is shown + * below: + * <pre> + * typedef struct + * { + * uint16_t numRows; // number of rows of the matrix. + * uint16_t numCols; // number of columns of the matrix. + * float32_t *pData; // points to the data of the matrix. + * } arm_matrix_instance_f32; + * </pre> + * There are similar definitions for Q15 and Q31 data types. + * + * The structure specifies the size of the matrix and then points to + * an array of data. The array is of size <code>numRows X numCols</code> + * and the values are arranged in row order. That is, the + * matrix element (i, j) is stored at: + * <pre> + * pData[i*numCols + j] + * </pre> + * + * \par Init Functions + * There is an associated initialization function for each type of matrix + * data structure. + * The initialization function sets the values of the internal structure fields. + * Refer to \ref arm_mat_init_f32(), \ref arm_mat_init_q31() and \ref arm_mat_init_q15() + * for floating-point, Q31 and Q15 types, respectively. + * + * \par + * Use of the initialization function is optional. However, if initialization function is used + * then the instance structure cannot be placed into a const data section. + * To place the instance structure in a const data + * section, manually initialize the data structure. For example: + * <pre> + * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code> + * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code> + * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code> + * </pre> + * where <code>nRows</code> specifies the number of rows, <code>nColumns</code> + * specifies the number of columns, and <code>pData</code> points to the + * data array. + * + * \par Size Checking + * By default all of the matrix functions perform size checking on the input and + * output matrices. For example, the matrix addition function verifies that the + * two input matrices and the output matrix all have the same number of rows and + * columns. If the size check fails the functions return: + * <pre> + * ARM_MATH_SIZE_MISMATCH + * </pre> + * Otherwise the functions return + * <pre> + * ARM_MATH_SUCCESS + * </pre> + * There is some overhead associated with this matrix size checking. + * The matrix size checking is enabled via the \#define + * <pre> + * ARM_MATH_MATRIX_CHECK + * </pre> + * within the library project settings. By default this macro is defined + * and size checking is enabled. By changing the project settings and + * undefining this macro size checking is eliminated and the functions + * run a bit faster. With size checking disabled the functions always + * return <code>ARM_MATH_SUCCESS</code>. + */ + + /** + * @brief Instance structure for the floating-point matrix structure. + */ + typedef struct + { + uint16_t numRows; /**< number of rows of the matrix. */ + uint16_t numCols; /**< number of columns of the matrix. */ + float32_t *pData; /**< points to the data of the matrix. */ + } arm_matrix_instance_f32; + + /** + * @brief Instance structure for the floating-point matrix structure. + */ + typedef struct + { + uint16_t numRows; /**< number of rows of the matrix. */ + uint16_t numCols; /**< number of columns of the matrix. */ + float64_t *pData; /**< points to the data of the matrix. */ + } arm_matrix_instance_f64; + + /** + * @brief Instance structure for the Q7 matrix structure. + */ + typedef struct + { + uint16_t numRows; /**< number of rows of the matrix. */ + uint16_t numCols; /**< number of columns of the matrix. */ + q7_t *pData; /**< points to the data of the matrix. */ + } arm_matrix_instance_q7; + + /** + * @brief Instance structure for the Q15 matrix structure. + */ + typedef struct + { + uint16_t numRows; /**< number of rows of the matrix. */ + uint16_t numCols; /**< number of columns of the matrix. */ + q15_t *pData; /**< points to the data of the matrix. */ + } arm_matrix_instance_q15; + + /** + * @brief Instance structure for the Q31 matrix structure. + */ + typedef struct + { + uint16_t numRows; /**< number of rows of the matrix. */ + uint16_t numCols; /**< number of columns of the matrix. */ + q31_t *pData; /**< points to the data of the matrix. */ + } arm_matrix_instance_q31; + + /** + * @brief Floating-point matrix addition. + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_add_f32( + const arm_matrix_instance_f32 * pSrcA, + const arm_matrix_instance_f32 * pSrcB, + arm_matrix_instance_f32 * pDst); + + /** + * @brief Q15 matrix addition. + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_add_q15( + const arm_matrix_instance_q15 * pSrcA, + const arm_matrix_instance_q15 * pSrcB, + arm_matrix_instance_q15 * pDst); + + /** + * @brief Q31 matrix addition. + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_add_q31( + const arm_matrix_instance_q31 * pSrcA, + const arm_matrix_instance_q31 * pSrcB, + arm_matrix_instance_q31 * pDst); + + /** + * @brief Floating-point, complex, matrix multiplication. + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_cmplx_mult_f32( + const arm_matrix_instance_f32 * pSrcA, + const arm_matrix_instance_f32 * pSrcB, + arm_matrix_instance_f32 * pDst); + + /** + * @brief Q15, complex, matrix multiplication. + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_cmplx_mult_q15( + const arm_matrix_instance_q15 * pSrcA, + const arm_matrix_instance_q15 * pSrcB, + arm_matrix_instance_q15 * pDst, + q15_t * pScratch); + + /** + * @brief Q31, complex, matrix multiplication. + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_cmplx_mult_q31( + const arm_matrix_instance_q31 * pSrcA, + const arm_matrix_instance_q31 * pSrcB, + arm_matrix_instance_q31 * pDst); + + /** + * @brief Floating-point matrix transpose. + * @param[in] pSrc points to the input matrix + * @param[out] pDst points to the output matrix + * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> + * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_trans_f32( + const arm_matrix_instance_f32 * pSrc, + arm_matrix_instance_f32 * pDst); + +/** + * @brief Floating-point matrix transpose. + * @param[in] pSrc points to the input matrix + * @param[out] pDst points to the output matrix + * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> + * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_trans_f64( + const arm_matrix_instance_f64 * pSrc, + arm_matrix_instance_f64 * pDst); + + /** + * @brief Floating-point complex matrix transpose. + * @param[in] pSrc points to the input matrix + * @param[out] pDst points to the output matrix + * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> + * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_cmplx_trans_f32( + const arm_matrix_instance_f32 * pSrc, + arm_matrix_instance_f32 * pDst); + + + /** + * @brief Q15 matrix transpose. + * @param[in] pSrc points to the input matrix + * @param[out] pDst points to the output matrix + * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> + * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_trans_q15( + const arm_matrix_instance_q15 * pSrc, + arm_matrix_instance_q15 * pDst); + + /** + * @brief Q15 complex matrix transpose. + * @param[in] pSrc points to the input matrix + * @param[out] pDst points to the output matrix + * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> + * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_cmplx_trans_q15( + const arm_matrix_instance_q15 * pSrc, + arm_matrix_instance_q15 * pDst); + + /** + * @brief Q7 matrix transpose. + * @param[in] pSrc points to the input matrix + * @param[out] pDst points to the output matrix + * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> + * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_trans_q7( + const arm_matrix_instance_q7 * pSrc, + arm_matrix_instance_q7 * pDst); + + /** + * @brief Q31 matrix transpose. + * @param[in] pSrc points to the input matrix + * @param[out] pDst points to the output matrix + * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> + * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_trans_q31( + const arm_matrix_instance_q31 * pSrc, + arm_matrix_instance_q31 * pDst); + + /** + * @brief Q31 complex matrix transpose. + * @param[in] pSrc points to the input matrix + * @param[out] pDst points to the output matrix + * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> + * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_cmplx_trans_q31( + const arm_matrix_instance_q31 * pSrc, + arm_matrix_instance_q31 * pDst); + + /** + * @brief Floating-point matrix multiplication + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_mult_f32( + const arm_matrix_instance_f32 * pSrcA, + const arm_matrix_instance_f32 * pSrcB, + arm_matrix_instance_f32 * pDst); + + /** + * @brief Floating-point matrix multiplication + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_mult_f64( + const arm_matrix_instance_f64 * pSrcA, + const arm_matrix_instance_f64 * pSrcB, + arm_matrix_instance_f64 * pDst); + + /** + * @brief Floating-point matrix and vector multiplication + * @param[in] pSrcMat points to the input matrix structure + * @param[in] pVec points to vector + * @param[out] pDst points to output vector + */ +void arm_mat_vec_mult_f32( + const arm_matrix_instance_f32 *pSrcMat, + const float32_t *pVec, + float32_t *pDst); + + /** + * @brief Q7 matrix multiplication + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @param[in] pState points to the array for storing intermediate results + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_mult_q7( + const arm_matrix_instance_q7 * pSrcA, + const arm_matrix_instance_q7 * pSrcB, + arm_matrix_instance_q7 * pDst, + q7_t * pState); + + /** + * @brief Q7 matrix and vector multiplication + * @param[in] pSrcMat points to the input matrix structure + * @param[in] pVec points to vector + * @param[out] pDst points to output vector + */ +void arm_mat_vec_mult_q7( + const arm_matrix_instance_q7 *pSrcMat, + const q7_t *pVec, + q7_t *pDst); + + /** + * @brief Q15 matrix multiplication + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @param[in] pState points to the array for storing intermediate results + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_mult_q15( + const arm_matrix_instance_q15 * pSrcA, + const arm_matrix_instance_q15 * pSrcB, + arm_matrix_instance_q15 * pDst, + q15_t * pState); + + /** + * @brief Q15 matrix and vector multiplication + * @param[in] pSrcMat points to the input matrix structure + * @param[in] pVec points to vector + * @param[out] pDst points to output vector + */ +void arm_mat_vec_mult_q15( + const arm_matrix_instance_q15 *pSrcMat, + const q15_t *pVec, + q15_t *pDst); + + /** + * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @param[in] pState points to the array for storing intermediate results + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_mult_fast_q15( + const arm_matrix_instance_q15 * pSrcA, + const arm_matrix_instance_q15 * pSrcB, + arm_matrix_instance_q15 * pDst, + q15_t * pState); + + /** + * @brief Q31 matrix multiplication + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_mult_q31( + const arm_matrix_instance_q31 * pSrcA, + const arm_matrix_instance_q31 * pSrcB, + arm_matrix_instance_q31 * pDst); + + /** + * @brief Q31 matrix multiplication + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @param[in] pState points to the array for storing intermediate results + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_mult_opt_q31( + const arm_matrix_instance_q31 * pSrcA, + const arm_matrix_instance_q31 * pSrcB, + arm_matrix_instance_q31 * pDst, + q31_t *pState); + + /** + * @brief Q31 matrix and vector multiplication + * @param[in] pSrcMat points to the input matrix structure + * @param[in] pVec points to vector + * @param[out] pDst points to output vector + */ +void arm_mat_vec_mult_q31( + const arm_matrix_instance_q31 *pSrcMat, + const q31_t *pVec, + q31_t *pDst); + + /** + * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_mult_fast_q31( + const arm_matrix_instance_q31 * pSrcA, + const arm_matrix_instance_q31 * pSrcB, + arm_matrix_instance_q31 * pDst); + + /** + * @brief Floating-point matrix subtraction + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_sub_f32( + const arm_matrix_instance_f32 * pSrcA, + const arm_matrix_instance_f32 * pSrcB, + arm_matrix_instance_f32 * pDst); + + /** + * @brief Floating-point matrix subtraction + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_sub_f64( + const arm_matrix_instance_f64 * pSrcA, + const arm_matrix_instance_f64 * pSrcB, + arm_matrix_instance_f64 * pDst); + + /** + * @brief Q15 matrix subtraction + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_sub_q15( + const arm_matrix_instance_q15 * pSrcA, + const arm_matrix_instance_q15 * pSrcB, + arm_matrix_instance_q15 * pDst); + + /** + * @brief Q31 matrix subtraction + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_sub_q31( + const arm_matrix_instance_q31 * pSrcA, + const arm_matrix_instance_q31 * pSrcB, + arm_matrix_instance_q31 * pDst); + + /** + * @brief Floating-point matrix scaling. + * @param[in] pSrc points to the input matrix + * @param[in] scale scale factor + * @param[out] pDst points to the output matrix + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_scale_f32( + const arm_matrix_instance_f32 * pSrc, + float32_t scale, + arm_matrix_instance_f32 * pDst); + + /** + * @brief Q15 matrix scaling. + * @param[in] pSrc points to input matrix + * @param[in] scaleFract fractional portion of the scale factor + * @param[in] shift number of bits to shift the result by + * @param[out] pDst points to output matrix + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_scale_q15( + const arm_matrix_instance_q15 * pSrc, + q15_t scaleFract, + int32_t shift, + arm_matrix_instance_q15 * pDst); + + /** + * @brief Q31 matrix scaling. + * @param[in] pSrc points to input matrix + * @param[in] scaleFract fractional portion of the scale factor + * @param[in] shift number of bits to shift the result by + * @param[out] pDst points to output matrix structure + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_scale_q31( + const arm_matrix_instance_q31 * pSrc, + q31_t scaleFract, + int32_t shift, + arm_matrix_instance_q31 * pDst); + + /** + * @brief Q31 matrix initialization. + * @param[in,out] S points to an instance of the floating-point matrix structure. + * @param[in] nRows number of rows in the matrix. + * @param[in] nColumns number of columns in the matrix. + * @param[in] pData points to the matrix data array. + */ +void arm_mat_init_q31( + arm_matrix_instance_q31 * S, + uint16_t nRows, + uint16_t nColumns, + q31_t * pData); + + /** + * @brief Q15 matrix initialization. + * @param[in,out] S points to an instance of the floating-point matrix structure. + * @param[in] nRows number of rows in the matrix. + * @param[in] nColumns number of columns in the matrix. + * @param[in] pData points to the matrix data array. + */ +void arm_mat_init_q15( + arm_matrix_instance_q15 * S, + uint16_t nRows, + uint16_t nColumns, + q15_t * pData); + + /** + * @brief Floating-point matrix initialization. + * @param[in,out] S points to an instance of the floating-point matrix structure. + * @param[in] nRows number of rows in the matrix. + * @param[in] nColumns number of columns in the matrix. + * @param[in] pData points to the matrix data array. + */ +void arm_mat_init_f32( + arm_matrix_instance_f32 * S, + uint16_t nRows, + uint16_t nColumns, + float32_t * pData); + + + + /** + * @brief Floating-point matrix inverse. + * @param[in] src points to the instance of the input floating-point matrix structure. + * @param[out] dst points to the instance of the output floating-point matrix structure. + * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. + * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. + */ + arm_status arm_mat_inverse_f32( + const arm_matrix_instance_f32 * src, + arm_matrix_instance_f32 * dst); + + + /** + * @brief Floating-point matrix inverse. + * @param[in] src points to the instance of the input floating-point matrix structure. + * @param[out] dst points to the instance of the output floating-point matrix structure. + * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. + * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. + */ + arm_status arm_mat_inverse_f64( + const arm_matrix_instance_f64 * src, + arm_matrix_instance_f64 * dst); + + /** + * @brief Floating-point Cholesky decomposition of Symmetric Positive Definite Matrix. + * @param[in] src points to the instance of the input floating-point matrix structure. + * @param[out] dst points to the instance of the output floating-point matrix structure. + * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. + * If the input matrix does not have a decomposition, then the algorithm terminates and returns error status ARM_MATH_DECOMPOSITION_FAILURE. + * If the matrix is ill conditioned or only semi-definite, then it is better using the LDL^t decomposition. + * The decomposition is returning a lower triangular matrix. + */ + arm_status arm_mat_cholesky_f64( + const arm_matrix_instance_f64 * src, + arm_matrix_instance_f64 * dst); + + /** + * @brief Floating-point Cholesky decomposition of Symmetric Positive Definite Matrix. + * @param[in] src points to the instance of the input floating-point matrix structure. + * @param[out] dst points to the instance of the output floating-point matrix structure. + * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. + * If the input matrix does not have a decomposition, then the algorithm terminates and returns error status ARM_MATH_DECOMPOSITION_FAILURE. + * If the matrix is ill conditioned or only semi-definite, then it is better using the LDL^t decomposition. + * The decomposition is returning a lower triangular matrix. + */ + arm_status arm_mat_cholesky_f32( + const arm_matrix_instance_f32 * src, + arm_matrix_instance_f32 * dst); + + /** + * @brief Solve UT . X = A where UT is an upper triangular matrix + * @param[in] ut The upper triangular matrix + * @param[in] a The matrix a + * @param[out] dst The solution X of UT . X = A + * @return The function returns ARM_MATH_SINGULAR, if the system can't be solved. + */ + arm_status arm_mat_solve_upper_triangular_f32( + const arm_matrix_instance_f32 * ut, + const arm_matrix_instance_f32 * a, + arm_matrix_instance_f32 * dst); + + /** + * @brief Solve LT . X = A where LT is a lower triangular matrix + * @param[in] lt The lower triangular matrix + * @param[in] a The matrix a + * @param[out] dst The solution X of LT . X = A + * @return The function returns ARM_MATH_SINGULAR, if the system can't be solved. + */ + arm_status arm_mat_solve_lower_triangular_f32( + const arm_matrix_instance_f32 * lt, + const arm_matrix_instance_f32 * a, + arm_matrix_instance_f32 * dst); + + + /** + * @brief Solve UT . X = A where UT is an upper triangular matrix + * @param[in] ut The upper triangular matrix + * @param[in] a The matrix a + * @param[out] dst The solution X of UT . X = A + * @return The function returns ARM_MATH_SINGULAR, if the system can't be solved. + */ + arm_status arm_mat_solve_upper_triangular_f64( + const arm_matrix_instance_f64 * ut, + const arm_matrix_instance_f64 * a, + arm_matrix_instance_f64 * dst); + + /** + * @brief Solve LT . X = A where LT is a lower triangular matrix + * @param[in] lt The lower triangular matrix + * @param[in] a The matrix a + * @param[out] dst The solution X of LT . X = A + * @return The function returns ARM_MATH_SINGULAR, if the system can't be solved. + */ + arm_status arm_mat_solve_lower_triangular_f64( + const arm_matrix_instance_f64 * lt, + const arm_matrix_instance_f64 * a, + arm_matrix_instance_f64 * dst); + + + /** + * @brief Floating-point LDL decomposition of Symmetric Positive Semi-Definite Matrix. + * @param[in] src points to the instance of the input floating-point matrix structure. + * @param[out] l points to the instance of the output floating-point triangular matrix structure. + * @param[out] d points to the instance of the output floating-point diagonal matrix structure. + * @param[out] p points to the instance of the output floating-point permutation vector. + * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. + * If the input matrix does not have a decomposition, then the algorithm terminates and returns error status ARM_MATH_DECOMPOSITION_FAILURE. + * The decomposition is returning a lower triangular matrix. + */ + arm_status arm_mat_ldlt_f32( + const arm_matrix_instance_f32 * src, + arm_matrix_instance_f32 * l, + arm_matrix_instance_f32 * d, + uint16_t * pp); + + /** + * @brief Floating-point LDL decomposition of Symmetric Positive Semi-Definite Matrix. + * @param[in] src points to the instance of the input floating-point matrix structure. + * @param[out] l points to the instance of the output floating-point triangular matrix structure. + * @param[out] d points to the instance of the output floating-point diagonal matrix structure. + * @param[out] p points to the instance of the output floating-point permutation vector. + * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. + * If the input matrix does not have a decomposition, then the algorithm terminates and returns error status ARM_MATH_DECOMPOSITION_FAILURE. + * The decomposition is returning a lower triangular matrix. + */ + arm_status arm_mat_ldlt_f64( + const arm_matrix_instance_f64 * src, + arm_matrix_instance_f64 * l, + arm_matrix_instance_f64 * d, + uint16_t * pp); + +#ifdef __cplusplus +} +#endif + +#endif /* ifndef _MATRIX_FUNCTIONS_H_ */ diff --git a/Drivers/CMSIS/DSP/Include/dsp/matrix_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/matrix_functions_f16.h new file mode 100644 index 0000000..3693ec4 --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/dsp/matrix_functions_f16.h @@ -0,0 +1,221 @@ +/****************************************************************************** + * @file matrix_functions_f16.h + * @brief Public header file for CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + + +#ifndef _MATRIX_FUNCTIONS_F16_H_ +#define _MATRIX_FUNCTIONS_F16_H_ + +#ifdef __cplusplus +extern "C" +{ +#endif + + +#include "arm_math_types_f16.h" +#include "arm_math_memory.h" + +#include "dsp/none.h" +#include "dsp/utils.h" + +#if defined(ARM_FLOAT16_SUPPORTED) + + /** + * @brief Instance structure for the floating-point matrix structure. + */ + typedef struct + { + uint16_t numRows; /**< number of rows of the matrix. */ + uint16_t numCols; /**< number of columns of the matrix. */ + float16_t *pData; /**< points to the data of the matrix. */ + } arm_matrix_instance_f16; + + /** + * @brief Floating-point matrix addition. + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_add_f16( + const arm_matrix_instance_f16 * pSrcA, + const arm_matrix_instance_f16 * pSrcB, + arm_matrix_instance_f16 * pDst); + + /** + * @brief Floating-point, complex, matrix multiplication. + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_cmplx_mult_f16( + const arm_matrix_instance_f16 * pSrcA, + const arm_matrix_instance_f16 * pSrcB, + arm_matrix_instance_f16 * pDst); + + /** + * @brief Floating-point matrix transpose. + * @param[in] pSrc points to the input matrix + * @param[out] pDst points to the output matrix + * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> + * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_trans_f16( + const arm_matrix_instance_f16 * pSrc, + arm_matrix_instance_f16 * pDst); + + /** + * @brief Floating-point complex matrix transpose. + * @param[in] pSrc points to the input matrix + * @param[out] pDst points to the output matrix + * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> + * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_cmplx_trans_f16( + const arm_matrix_instance_f16 * pSrc, + arm_matrix_instance_f16 * pDst); + + /** + * @brief Floating-point matrix multiplication + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_mult_f16( + const arm_matrix_instance_f16 * pSrcA, + const arm_matrix_instance_f16 * pSrcB, + arm_matrix_instance_f16 * pDst); + /** + * @brief Floating-point matrix and vector multiplication + * @param[in] pSrcMat points to the input matrix structure + * @param[in] pVec points to vector + * @param[out] pDst points to output vector + */ +void arm_mat_vec_mult_f16( + const arm_matrix_instance_f16 *pSrcMat, + const float16_t *pVec, + float16_t *pDst); + + /** + * @brief Floating-point matrix subtraction + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_sub_f16( + const arm_matrix_instance_f16 * pSrcA, + const arm_matrix_instance_f16 * pSrcB, + arm_matrix_instance_f16 * pDst); + + /** + * @brief Floating-point matrix scaling. + * @param[in] pSrc points to the input matrix + * @param[in] scale scale factor + * @param[out] pDst points to the output matrix + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + */ +arm_status arm_mat_scale_f16( + const arm_matrix_instance_f16 * pSrc, + float16_t scale, + arm_matrix_instance_f16 * pDst); + + /** + * @brief Floating-point matrix initialization. + * @param[in,out] S points to an instance of the floating-point matrix structure. + * @param[in] nRows number of rows in the matrix. + * @param[in] nColumns number of columns in the matrix. + * @param[in] pData points to the matrix data array. + */ +void arm_mat_init_f16( + arm_matrix_instance_f16 * S, + uint16_t nRows, + uint16_t nColumns, + float16_t * pData); + + + /** + * @brief Floating-point matrix inverse. + * @param[in] src points to the instance of the input floating-point matrix structure. + * @param[out] dst points to the instance of the output floating-point matrix structure. + * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. + * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. + */ + arm_status arm_mat_inverse_f16( + const arm_matrix_instance_f16 * src, + arm_matrix_instance_f16 * dst); + + + /** + * @brief Floating-point Cholesky decomposition of Symmetric Positive Definite Matrix. + * @param[in] src points to the instance of the input floating-point matrix structure. + * @param[out] dst points to the instance of the output floating-point matrix structure. + * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. + * If the input matrix does not have a decomposition, then the algorithm terminates and returns error status ARM_MATH_DECOMPOSITION_FAILURE. + * If the matrix is ill conditioned or only semi-definite, then it is better using the LDL^t decomposition. + * The decomposition is returning a lower triangular matrix. + */ + arm_status arm_mat_cholesky_f16( + const arm_matrix_instance_f16 * src, + arm_matrix_instance_f16 * dst); + + /** + * @brief Solve UT . X = A where UT is an upper triangular matrix + * @param[in] ut The upper triangular matrix + * @param[in] a The matrix a + * @param[out] dst The solution X of UT . X = A + * @return The function returns ARM_MATH_SINGULAR, if the system can't be solved. + */ + arm_status arm_mat_solve_upper_triangular_f16( + const arm_matrix_instance_f16 * ut, + const arm_matrix_instance_f16 * a, + arm_matrix_instance_f16 * dst); + + /** + * @brief Solve LT . X = A where LT is a lower triangular matrix + * @param[in] lt The lower triangular matrix + * @param[in] a The matrix a + * @param[out] dst The solution X of LT . X = A + * @return The function returns ARM_MATH_SINGULAR, if the system can't be solved. + */ + arm_status arm_mat_solve_lower_triangular_f16( + const arm_matrix_instance_f16 * lt, + const arm_matrix_instance_f16 * a, + arm_matrix_instance_f16 * dst); + + + +#endif /*defined(ARM_FLOAT16_SUPPORTED)*/ +#ifdef __cplusplus +} +#endif + +#endif /* ifndef _MATRIX_FUNCTIONS_F16_H_ */ diff --git a/Drivers/CMSIS/DSP/Include/dsp/none.h b/Drivers/CMSIS/DSP/Include/dsp/none.h new file mode 100644 index 0000000..130386e --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/dsp/none.h @@ -0,0 +1,576 @@ +/****************************************************************************** + * @file none.h + * @brief Intrinsincs when no DSP extension available + * @version V1.9.0 + * @date 20. July 2020 + ******************************************************************************/ +/* + * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* + +Definitions in this file are allowing to reuse some versions of the +CMSIS-DSP to build on a core (M0 for instance) or a host where +DSP extension are not available. + +Ideally a pure C version should have been used instead. +But those are not always available or use a restricted set +of intrinsics. + +*/ + +#ifndef _NONE_H_ +#define _NONE_H_ + +#include "arm_math_types.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + + + +/* + +Normally those kind of definitions are in a compiler file +in Core or Core_A. + +But for MSVC compiler it is a bit special. The goal is very specific +to CMSIS-DSP and only to allow the use of this library from other +systems like Python or Matlab. + +MSVC is not going to be used to cross-compile to ARM. So, having a MSVC +compiler file in Core or Core_A would not make sense. + +*/ +#if defined ( _MSC_VER ) || defined(__GNUC_PYTHON__) || defined(__APPLE_CC__) + __STATIC_FORCEINLINE uint8_t __CLZ(uint32_t data) + { + if (data == 0U) { return 32U; } + + uint32_t count = 0U; + uint32_t mask = 0x80000000U; + + while ((data & mask) == 0U) + { + count += 1U; + mask = mask >> 1U; + } + return count; + } + + __STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat) + { + if ((sat >= 1U) && (sat <= 32U)) + { + const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U); + const int32_t min = -1 - max ; + if (val > max) + { + return max; + } + else if (val < min) + { + return min; + } + } + return val; + } + + __STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat) + { + if (sat <= 31U) + { + const uint32_t max = ((1U << sat) - 1U); + if (val > (int32_t)max) + { + return max; + } + else if (val < 0) + { + return 0U; + } + } + return (uint32_t)val; + } + + /** + \brief Rotate Right in unsigned value (32 bit) + \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits. + \param [in] op1 Value to rotate + \param [in] op2 Number of Bits to rotate + \return Rotated value + */ +__STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2) +{ + op2 %= 32U; + if (op2 == 0U) + { + return op1; + } + return (op1 >> op2) | (op1 << (32U - op2)); +} + + +#endif + +/** + * @brief Clips Q63 to Q31 values. + */ + __STATIC_FORCEINLINE q31_t clip_q63_to_q31( + q63_t x) + { + return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? + ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x; + } + + /** + * @brief Clips Q63 to Q15 values. + */ + __STATIC_FORCEINLINE q15_t clip_q63_to_q15( + q63_t x) + { + return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? + ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15); + } + + /** + * @brief Clips Q31 to Q7 values. + */ + __STATIC_FORCEINLINE q7_t clip_q31_to_q7( + q31_t x) + { + return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ? + ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x; + } + + /** + * @brief Clips Q31 to Q15 values. + */ + __STATIC_FORCEINLINE q15_t clip_q31_to_q15( + q31_t x) + { + return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ? + ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x; + } + + /** + * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format. + */ + __STATIC_FORCEINLINE q63_t mult32x64( + q63_t x, + q31_t y) + { + return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) + + (((q63_t) (x >> 32) * y) ) ); + } + +/* SMMLAR */ +#define multAcc_32x32_keep32_R(a, x, y) \ + a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32) + +/* SMMLSR */ +#define multSub_32x32_keep32_R(a, x, y) \ + a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32) + +/* SMMULR */ +#define mult_32x32_keep32_R(a, x, y) \ + a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32) + +/* SMMLA */ +#define multAcc_32x32_keep32(a, x, y) \ + a += (q31_t) (((q63_t) x * y) >> 32) + +/* SMMLS */ +#define multSub_32x32_keep32(a, x, y) \ + a -= (q31_t) (((q63_t) x * y) >> 32) + +/* SMMUL */ +#define mult_32x32_keep32(a, x, y) \ + a = (q31_t) (((q63_t) x * y ) >> 32) + +#ifndef ARM_MATH_DSP + /** + * @brief definition to pack two 16 bit values. + */ + #define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \ + (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) ) + #define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \ + (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) ) +#endif + + /** + * @brief definition to pack four 8 bit values. + */ +#ifndef ARM_MATH_BIG_ENDIAN + #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \ + (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \ + (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \ + (((int32_t)(v3) << 24) & (int32_t)0xFF000000) ) +#else + #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \ + (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \ + (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \ + (((int32_t)(v0) << 24) & (int32_t)0xFF000000) ) +#endif + + + + +/* + * @brief C custom defined intrinsic functions + */ +#if !defined (ARM_MATH_DSP) + + + /* + * @brief C custom defined QADD8 + */ + __STATIC_FORCEINLINE uint32_t __QADD8( + uint32_t x, + uint32_t y) + { + q31_t r, s, t, u; + + r = __SSAT(((((q31_t)x << 24) >> 24) + (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF; + s = __SSAT(((((q31_t)x << 16) >> 24) + (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF; + t = __SSAT(((((q31_t)x << 8) >> 24) + (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF; + u = __SSAT(((((q31_t)x ) >> 24) + (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF; + + return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r ))); + } + + + /* + * @brief C custom defined QSUB8 + */ + __STATIC_FORCEINLINE uint32_t __QSUB8( + uint32_t x, + uint32_t y) + { + q31_t r, s, t, u; + + r = __SSAT(((((q31_t)x << 24) >> 24) - (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF; + s = __SSAT(((((q31_t)x << 16) >> 24) - (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF; + t = __SSAT(((((q31_t)x << 8) >> 24) - (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF; + u = __SSAT(((((q31_t)x ) >> 24) - (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF; + + return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r ))); + } + + + /* + * @brief C custom defined QADD16 + */ + __STATIC_FORCEINLINE uint32_t __QADD16( + uint32_t x, + uint32_t y) + { +/* q31_t r, s; without initialisation 'arm_offset_q15 test' fails but 'intrinsic' tests pass! for armCC */ + q31_t r = 0, s = 0; + + r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; + s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; + + return ((uint32_t)((s << 16) | (r ))); + } + + + /* + * @brief C custom defined SHADD16 + */ + __STATIC_FORCEINLINE uint32_t __SHADD16( + uint32_t x, + uint32_t y) + { + q31_t r, s; + + r = (((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; + s = (((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; + + return ((uint32_t)((s << 16) | (r ))); + } + + + /* + * @brief C custom defined QSUB16 + */ + __STATIC_FORCEINLINE uint32_t __QSUB16( + uint32_t x, + uint32_t y) + { + q31_t r, s; + + r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; + s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; + + return ((uint32_t)((s << 16) | (r ))); + } + + + /* + * @brief C custom defined SHSUB16 + */ + __STATIC_FORCEINLINE uint32_t __SHSUB16( + uint32_t x, + uint32_t y) + { + q31_t r, s; + + r = (((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; + s = (((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; + + return ((uint32_t)((s << 16) | (r ))); + } + + + /* + * @brief C custom defined QASX + */ + __STATIC_FORCEINLINE uint32_t __QASX( + uint32_t x, + uint32_t y) + { + q31_t r, s; + + r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; + s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; + + return ((uint32_t)((s << 16) | (r ))); + } + + + /* + * @brief C custom defined SHASX + */ + __STATIC_FORCEINLINE uint32_t __SHASX( + uint32_t x, + uint32_t y) + { + q31_t r, s; + + r = (((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; + s = (((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; + + return ((uint32_t)((s << 16) | (r ))); + } + + + /* + * @brief C custom defined QSAX + */ + __STATIC_FORCEINLINE uint32_t __QSAX( + uint32_t x, + uint32_t y) + { + q31_t r, s; + + r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; + s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; + + return ((uint32_t)((s << 16) | (r ))); + } + + + /* + * @brief C custom defined SHSAX + */ + __STATIC_FORCEINLINE uint32_t __SHSAX( + uint32_t x, + uint32_t y) + { + q31_t r, s; + + r = (((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; + s = (((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; + + return ((uint32_t)((s << 16) | (r ))); + } + + + /* + * @brief C custom defined SMUSDX + */ + __STATIC_FORCEINLINE uint32_t __SMUSDX( + uint32_t x, + uint32_t y) + { + return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) - + ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) )); + } + + /* + * @brief C custom defined SMUADX + */ + __STATIC_FORCEINLINE uint32_t __SMUADX( + uint32_t x, + uint32_t y) + { + return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + + ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) )); + } + + + /* + * @brief C custom defined QADD + */ + __STATIC_FORCEINLINE int32_t __QADD( + int32_t x, + int32_t y) + { + return ((int32_t)(clip_q63_to_q31((q63_t)x + (q31_t)y))); + } + + + /* + * @brief C custom defined QSUB + */ + __STATIC_FORCEINLINE int32_t __QSUB( + int32_t x, + int32_t y) + { + return ((int32_t)(clip_q63_to_q31((q63_t)x - (q31_t)y))); + } + + + /* + * @brief C custom defined SMLAD + */ + __STATIC_FORCEINLINE uint32_t __SMLAD( + uint32_t x, + uint32_t y, + uint32_t sum) + { + return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + + ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) + + ( ((q31_t)sum ) ) )); + } + + + /* + * @brief C custom defined SMLADX + */ + __STATIC_FORCEINLINE uint32_t __SMLADX( + uint32_t x, + uint32_t y, + uint32_t sum) + { + return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + + ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + + ( ((q31_t)sum ) ) )); + } + + + /* + * @brief C custom defined SMLSDX + */ + __STATIC_FORCEINLINE uint32_t __SMLSDX( + uint32_t x, + uint32_t y, + uint32_t sum) + { + return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) - + ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + + ( ((q31_t)sum ) ) )); + } + + + /* + * @brief C custom defined SMLALD + */ + __STATIC_FORCEINLINE uint64_t __SMLALD( + uint32_t x, + uint32_t y, + uint64_t sum) + { +/* return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + ((q15_t) x * (q15_t) y)); */ + return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + + ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) + + ( ((q63_t)sum ) ) )); + } + + + /* + * @brief C custom defined SMLALDX + */ + __STATIC_FORCEINLINE uint64_t __SMLALDX( + uint32_t x, + uint32_t y, + uint64_t sum) + { +/* return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + ((q15_t) x * (q15_t) (y >> 16)); */ + return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + + ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + + ( ((q63_t)sum ) ) )); + } + + + /* + * @brief C custom defined SMUAD + */ + __STATIC_FORCEINLINE uint32_t __SMUAD( + uint32_t x, + uint32_t y) + { + return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + + ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) )); + } + + + /* + * @brief C custom defined SMUSD + */ + __STATIC_FORCEINLINE uint32_t __SMUSD( + uint32_t x, + uint32_t y) + { + return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) - + ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) )); + } + + + /* + * @brief C custom defined SXTB16 + */ + __STATIC_FORCEINLINE uint32_t __SXTB16( + uint32_t x) + { + return ((uint32_t)(((((q31_t)x << 24) >> 24) & (q31_t)0x0000FFFF) | + ((((q31_t)x << 8) >> 8) & (q31_t)0xFFFF0000) )); + } + + /* + * @brief C custom defined SMMLA + */ + __STATIC_FORCEINLINE int32_t __SMMLA( + int32_t x, + int32_t y, + int32_t sum) + { + return (sum + (int32_t) (((int64_t) x * y) >> 32)); + } + +#endif /* !defined (ARM_MATH_DSP) */ + + +#ifdef __cplusplus +} +#endif + +#endif /* ifndef _TRANSFORM_FUNCTIONS_H_ */ diff --git a/Drivers/CMSIS/DSP/Include/dsp/quaternion_math_functions.h b/Drivers/CMSIS/DSP/Include/dsp/quaternion_math_functions.h new file mode 100644 index 0000000..0c5d067 --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/dsp/quaternion_math_functions.h @@ -0,0 +1,159 @@ +/****************************************************************************** + * @file quaternion_math_functions.h + * @brief Public header file for CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2021 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + + +#ifndef _QUATERNION_MATH_FUNCTIONS_H_ +#define _QUATERNION_MATH_FUNCTIONS_H_ + +#include "arm_math_types.h" +#include "arm_math_memory.h" + +#include "dsp/none.h" +#include "dsp/utils.h" + + +#ifdef __cplusplus +extern "C" +{ +#endif + +/** + * @defgroup groupQuaternionMath Quaternion Math Functions + * Functions to operates on quaternions and convert between a + * rotation and quaternion representation. + */ + + +/** + @brief Floating-point quaternion Norm. + @param[in] pInputQuaternions points to the input vector of quaternions + @param[out] pNorms points to the output vector of norms + @param[in] nbQuaternions number of quaternions in each vector + @return none + */ + + + +void arm_quaternion_norm_f32(const float32_t *pInputQuaternions, + float32_t *pNorms, + uint32_t nbQuaternions); + + +/** + @brief Floating-point quaternion inverse. + @param[in] pInputQuaternions points to the input vector of quaternions + @param[out] pInverseQuaternions points to the output vector of inverse quaternions + @param[in] nbQuaternions number of quaternions in each vector + @return none + */ + +void arm_quaternion_inverse_f32(const float32_t *pInputQuaternions, + float32_t *pInverseQuaternions, + uint32_t nbQuaternions); + +/** + @brief Floating-point quaternion conjugates. + @param[in] pInputQuaternions points to the input vector of quaternions + @param[out] pConjugateQuaternions points to the output vector of conjugate quaternions + @param[in] nbQuaternions number of quaternions in each vector + @return none + */ +void arm_quaternion_conjugate_f32(const float32_t *inputQuaternions, + float32_t *pConjugateQuaternions, + uint32_t nbQuaternions); + +/** + @brief Floating-point normalization of quaternions. + @param[in] pInputQuaternions points to the input vector of quaternions + @param[out] pNormalizedQuaternions points to the output vector of normalized quaternions + @param[in] nbQuaternions number of quaternions in each vector + @return none + */ +void arm_quaternion_normalize_f32(const float32_t *inputQuaternions, + float32_t *pNormalizedQuaternions, + uint32_t nbQuaternions); + + +/** + @brief Floating-point product of two quaternions. + @param[in] qa First quaternion + @param[in] qb Second quaternion + @param[out] r Product of two quaternions + @return none + */ +void arm_quaternion_product_single_f32(const float32_t *qa, + const float32_t *qb, + float32_t *r); + +/** + @brief Floating-point elementwise product two quaternions. + @param[in] qa First array of quaternions + @param[in] qb Second array of quaternions + @param[out] r Elementwise product of quaternions + @param[in] nbQuaternions Number of quaternions in the array + @return none + */ +void arm_quaternion_product_f32(const float32_t *qa, + const float32_t *qb, + float32_t *r, + uint32_t nbQuaternions); + +/** + * @brief Conversion of quaternion to equivalent rotation matrix. + * @param[in] pInputQuaternions points to an array of normalized quaternions + * @param[out] pOutputRotations points to an array of 3x3 rotations (in row order) + * @param[in] nbQuaternions in the array + * @return none. + * + * <b>Format of rotation matrix</b> + * \par + * The quaternion a + ib + jc + kd is converted into rotation matrix: + * a^2 + b^2 - c^2 - d^2 2bc - 2ad 2bd + 2ac + * 2bc + 2ad a^2 - b^2 + c^2 - d^2 2cd - 2ab + * 2bd - 2ac 2cd + 2ab a^2 - b^2 - c^2 + d^2 + * + * Rotation matrix is saved in row order : R00 R01 R02 R10 R11 R12 R20 R21 R22 + */ +void arm_quaternion2rotation_f32(const float32_t *pInputQuaternions, + float32_t *pOutputRotations, + uint32_t nbQuaternions); + +/** + * @brief Conversion of a rotation matrix to equivalent quaternion. + * @param[in] pInputRotations points to an array 3x3 rotation matrix (in row order) + * @param[out] pOutputQuaternions points to an array of quaternions + * @param[in] nbQuaternions in the array + * @return none. +*/ +void arm_rotation2quaternion_f32(const float32_t *pInputRotations, + float32_t *pOutputQuaternions, + uint32_t nbQuaternions); + +#ifdef __cplusplus +} +#endif + +#endif /* ifndef _QUATERNION_MATH_FUNCTIONS_H_ */ diff --git a/Drivers/CMSIS/DSP/Include/dsp/statistics_functions.h b/Drivers/CMSIS/DSP/Include/dsp/statistics_functions.h new file mode 100644 index 0000000..c5224c6 --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/dsp/statistics_functions.h @@ -0,0 +1,977 @@ +/****************************************************************************** + * @file statistics_functions.h + * @brief Public header file for CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + + +#ifndef _STATISTICS_FUNCTIONS_H_ +#define _STATISTICS_FUNCTIONS_H_ + +#include "arm_math_types.h" +#include "arm_math_memory.h" + +#include "dsp/none.h" +#include "dsp/utils.h" + +#include "dsp/basic_math_functions.h" +#include "dsp/fast_math_functions.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + + +/** + * @defgroup groupStats Statistics Functions + */ + +/** + * @brief Computation of the LogSumExp + * + * In probabilistic computations, the dynamic of the probability values can be very + * wide because they come from gaussian functions. + * To avoid underflow and overflow issues, the values are represented by their log. + * In this representation, multiplying the original exp values is easy : their logs are added. + * But adding the original exp values is requiring some special handling and it is the + * goal of the LogSumExp function. + * + * If the values are x1...xn, the function is computing: + * + * ln(exp(x1) + ... + exp(xn)) and the computation is done in such a way that + * rounding issues are minimised. + * + * The max xm of the values is extracted and the function is computing: + * xm + ln(exp(x1 - xm) + ... + exp(xn - xm)) + * + * @param[in] *in Pointer to an array of input values. + * @param[in] blockSize Number of samples in the input array. + * @return LogSumExp + * + */ + + +float32_t arm_logsumexp_f32(const float32_t *in, uint32_t blockSize); + +/** + * @brief Dot product with log arithmetic + * + * Vectors are containing the log of the samples + * + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[in] blockSize number of samples in each vector + * @param[in] pTmpBuffer temporary buffer of length blockSize + * @return The log of the dot product . + * + */ + + +float32_t arm_logsumexp_dot_prod_f32(const float32_t * pSrcA, + const float32_t * pSrcB, + uint32_t blockSize, + float32_t *pTmpBuffer); + +/** + * @brief Entropy + * + * @param[in] pSrcA Array of input values. + * @param[in] blockSize Number of samples in the input array. + * @return Entropy -Sum(p ln p) + * + */ + + +float32_t arm_entropy_f32(const float32_t * pSrcA,uint32_t blockSize); + + +/** + * @brief Entropy + * + * @param[in] pSrcA Array of input values. + * @param[in] blockSize Number of samples in the input array. + * @return Entropy -Sum(p ln p) + * + */ + + +float64_t arm_entropy_f64(const float64_t * pSrcA, uint32_t blockSize); + + +/** + * @brief Kullback-Leibler + * + * @param[in] pSrcA Pointer to an array of input values for probability distribution A. + * @param[in] pSrcB Pointer to an array of input values for probability distribution B. + * @param[in] blockSize Number of samples in the input array. + * @return Kullback-Leibler Divergence D(A || B) + * + */ +float32_t arm_kullback_leibler_f32(const float32_t * pSrcA + ,const float32_t * pSrcB + ,uint32_t blockSize); + + +/** + * @brief Kullback-Leibler + * + * @param[in] pSrcA Pointer to an array of input values for probability distribution A. + * @param[in] pSrcB Pointer to an array of input values for probability distribution B. + * @param[in] blockSize Number of samples in the input array. + * @return Kullback-Leibler Divergence D(A || B) + * + */ +float64_t arm_kullback_leibler_f64(const float64_t * pSrcA, + const float64_t * pSrcB, + uint32_t blockSize); + + + /** + * @brief Sum of the squares of the elements of a Q31 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_power_q31( + const q31_t * pSrc, + uint32_t blockSize, + q63_t * pResult); + + + /** + * @brief Sum of the squares of the elements of a floating-point vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_power_f32( + const float32_t * pSrc, + uint32_t blockSize, + float32_t * pResult); + + + /** + * @brief Sum of the squares of the elements of a floating-point vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_power_f64( + const float64_t * pSrc, + uint32_t blockSize, + float64_t * pResult); + + + /** + * @brief Sum of the squares of the elements of a Q15 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_power_q15( + const q15_t * pSrc, + uint32_t blockSize, + q63_t * pResult); + + + /** + * @brief Sum of the squares of the elements of a Q7 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_power_q7( + const q7_t * pSrc, + uint32_t blockSize, + q31_t * pResult); + + + /** + * @brief Mean value of a Q7 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_mean_q7( + const q7_t * pSrc, + uint32_t blockSize, + q7_t * pResult); + + + /** + * @brief Mean value of a Q15 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_mean_q15( + const q15_t * pSrc, + uint32_t blockSize, + q15_t * pResult); + + + /** + * @brief Mean value of a Q31 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_mean_q31( + const q31_t * pSrc, + uint32_t blockSize, + q31_t * pResult); + + + /** + * @brief Mean value of a floating-point vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_mean_f32( + const float32_t * pSrc, + uint32_t blockSize, + float32_t * pResult); + + + /** + * @brief Mean value of a floating-point vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_mean_f64( + const float64_t * pSrc, + uint32_t blockSize, + float64_t * pResult); + + + /** + * @brief Variance of the elements of a floating-point vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_var_f32( + const float32_t * pSrc, + uint32_t blockSize, + float32_t * pResult); + + + /** + * @brief Variance of the elements of a floating-point vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_var_f64( + const float64_t * pSrc, + uint32_t blockSize, + float64_t * pResult); + + + /** + * @brief Variance of the elements of a Q31 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_var_q31( + const q31_t * pSrc, + uint32_t blockSize, + q31_t * pResult); + + + /** + * @brief Variance of the elements of a Q15 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_var_q15( + const q15_t * pSrc, + uint32_t blockSize, + q15_t * pResult); + + + /** + * @brief Root Mean Square of the elements of a floating-point vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_rms_f32( + const float32_t * pSrc, + uint32_t blockSize, + float32_t * pResult); + + + /** + * @brief Root Mean Square of the elements of a Q31 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_rms_q31( + const q31_t * pSrc, + uint32_t blockSize, + q31_t * pResult); + + + /** + * @brief Root Mean Square of the elements of a Q15 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_rms_q15( + const q15_t * pSrc, + uint32_t blockSize, + q15_t * pResult); + + + /** + * @brief Standard deviation of the elements of a floating-point vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_std_f32( + const float32_t * pSrc, + uint32_t blockSize, + float32_t * pResult); + + + /** + * @brief Standard deviation of the elements of a floating-point vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_std_f64( + const float64_t * pSrc, + uint32_t blockSize, + float64_t * pResult); + + + /** + * @brief Standard deviation of the elements of a Q31 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_std_q31( + const q31_t * pSrc, + uint32_t blockSize, + q31_t * pResult); + + + /** + * @brief Standard deviation of the elements of a Q15 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_std_q15( + const q15_t * pSrc, + uint32_t blockSize, + q15_t * pResult); + + + + /** + * @brief Minimum value of a Q7 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] result is output pointer + * @param[in] index is the array index of the minimum value in the input buffer. + */ + void arm_min_q7( + const q7_t * pSrc, + uint32_t blockSize, + q7_t * result, + uint32_t * index); + + /** + * @brief Minimum value of absolute values of a Q7 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] result is output pointer + * @param[in] index is the array index of the minimum value in the input buffer. + */ + void arm_absmin_q7( + const q7_t * pSrc, + uint32_t blockSize, + q7_t * result, + uint32_t * index); + + /** + * @brief Minimum value of absolute values of a Q7 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] result is output pointer + */ + void arm_absmin_no_idx_q7( + const q7_t * pSrc, + uint32_t blockSize, + q7_t * result); + + + /** + * @brief Minimum value of a Q15 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output pointer + * @param[in] pIndex is the array index of the minimum value in the input buffer. + */ + void arm_min_q15( + const q15_t * pSrc, + uint32_t blockSize, + q15_t * pResult, + uint32_t * pIndex); + +/** + * @brief Minimum value of absolute values of a Q15 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output pointer + * @param[in] pIndex is the array index of the minimum value in the input buffer. + */ + void arm_absmin_q15( + const q15_t * pSrc, + uint32_t blockSize, + q15_t * pResult, + uint32_t * pIndex); + + /** + * @brief Minimum value of absolute values of a Q15 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output pointer + */ + void arm_absmin_no_idx_q15( + const q15_t * pSrc, + uint32_t blockSize, + q15_t * pResult); + + + /** + * @brief Minimum value of a Q31 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output pointer + * @param[out] pIndex is the array index of the minimum value in the input buffer. + */ + void arm_min_q31( + const q31_t * pSrc, + uint32_t blockSize, + q31_t * pResult, + uint32_t * pIndex); + + /** + * @brief Minimum value of absolute values of a Q31 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output pointer + * @param[out] pIndex is the array index of the minimum value in the input buffer. + */ + void arm_absmin_q31( + const q31_t * pSrc, + uint32_t blockSize, + q31_t * pResult, + uint32_t * pIndex); + + /** + * @brief Minimum value of absolute values of a Q31 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output pointer + */ + void arm_absmin_no_idx_q31( + const q31_t * pSrc, + uint32_t blockSize, + q31_t * pResult); + + + /** + * @brief Minimum value of a floating-point vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output pointer + * @param[out] pIndex is the array index of the minimum value in the input buffer. + */ + void arm_min_f32( + const float32_t * pSrc, + uint32_t blockSize, + float32_t * pResult, + uint32_t * pIndex); + + /** + * @brief Minimum value of absolute values of a floating-point vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output pointer + * @param[out] pIndex is the array index of the minimum value in the input buffer. + */ + void arm_absmin_f32( + const float32_t * pSrc, + uint32_t blockSize, + float32_t * pResult, + uint32_t * pIndex); + + /** + * @brief Minimum value of absolute values of a floating-point vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output pointer + */ + void arm_absmin_no_idx_f32( + const float32_t * pSrc, + uint32_t blockSize, + float32_t * pResult); + + + /** + * @brief Minimum value of a floating-point vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output pointer + * @param[out] pIndex is the array index of the minimum value in the input buffer. + */ + void arm_min_f64( + const float64_t * pSrc, + uint32_t blockSize, + float64_t * pResult, + uint32_t * pIndex); + + /** + * @brief Minimum value of absolute values of a floating-point vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output pointer + * @param[out] pIndex is the array index of the minimum value in the input buffer. + */ + void arm_absmin_f64( + const float64_t * pSrc, + uint32_t blockSize, + float64_t * pResult, + uint32_t * pIndex); + + /** + * @brief Minimum value of absolute values of a floating-point vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output pointer + */ + void arm_absmin_no_idx_f64( + const float64_t * pSrc, + uint32_t blockSize, + float64_t * pResult); + + +/** + * @brief Maximum value of a Q7 vector. + * @param[in] pSrc points to the input buffer + * @param[in] blockSize length of the input vector + * @param[out] pResult maximum value returned here + * @param[out] pIndex index of maximum value returned here + */ + void arm_max_q7( + const q7_t * pSrc, + uint32_t blockSize, + q7_t * pResult, + uint32_t * pIndex); + +/** + * @brief Maximum value of absolute values of a Q7 vector. + * @param[in] pSrc points to the input buffer + * @param[in] blockSize length of the input vector + * @param[out] pResult maximum value returned here + * @param[out] pIndex index of maximum value returned here + */ + void arm_absmax_q7( + const q7_t * pSrc, + uint32_t blockSize, + q7_t * pResult, + uint32_t * pIndex); + +/** + * @brief Maximum value of absolute values of a Q7 vector. + * @param[in] pSrc points to the input buffer + * @param[in] blockSize length of the input vector + * @param[out] pResult maximum value returned here + */ + void arm_absmax_no_idx_q7( + const q7_t * pSrc, + uint32_t blockSize, + q7_t * pResult); + + +/** + * @brief Maximum value of a Q15 vector. + * @param[in] pSrc points to the input buffer + * @param[in] blockSize length of the input vector + * @param[out] pResult maximum value returned here + * @param[out] pIndex index of maximum value returned here + */ + void arm_max_q15( + const q15_t * pSrc, + uint32_t blockSize, + q15_t * pResult, + uint32_t * pIndex); + +/** + * @brief Maximum value of absolute values of a Q15 vector. + * @param[in] pSrc points to the input buffer + * @param[in] blockSize length of the input vector + * @param[out] pResult maximum value returned here + * @param[out] pIndex index of maximum value returned here + */ + void arm_absmax_q15( + const q15_t * pSrc, + uint32_t blockSize, + q15_t * pResult, + uint32_t * pIndex); + + /** + * @brief Maximum value of absolute values of a Q15 vector. + * @param[in] pSrc points to the input buffer + * @param[in] blockSize length of the input vector + * @param[out] pResult maximum value returned here + */ + void arm_absmax_no_idx_q15( + const q15_t * pSrc, + uint32_t blockSize, + q15_t * pResult); + +/** + * @brief Maximum value of a Q31 vector. + * @param[in] pSrc points to the input buffer + * @param[in] blockSize length of the input vector + * @param[out] pResult maximum value returned here + * @param[out] pIndex index of maximum value returned here + */ + void arm_max_q31( + const q31_t * pSrc, + uint32_t blockSize, + q31_t * pResult, + uint32_t * pIndex); + +/** + * @brief Maximum value of absolute values of a Q31 vector. + * @param[in] pSrc points to the input buffer + * @param[in] blockSize length of the input vector + * @param[out] pResult maximum value returned here + * @param[out] pIndex index of maximum value returned here + */ + void arm_absmax_q31( + const q31_t * pSrc, + uint32_t blockSize, + q31_t * pResult, + uint32_t * pIndex); + + /** + * @brief Maximum value of absolute values of a Q31 vector. + * @param[in] pSrc points to the input buffer + * @param[in] blockSize length of the input vector + * @param[out] pResult maximum value returned here + */ + void arm_absmax_no_idx_q31( + const q31_t * pSrc, + uint32_t blockSize, + q31_t * pResult); + +/** + * @brief Maximum value of a floating-point vector. + * @param[in] pSrc points to the input buffer + * @param[in] blockSize length of the input vector + * @param[out] pResult maximum value returned here + * @param[out] pIndex index of maximum value returned here + */ + void arm_max_f32( + const float32_t * pSrc, + uint32_t blockSize, + float32_t * pResult, + uint32_t * pIndex); + +/** + * @brief Maximum value of absolute values of a floating-point vector. + * @param[in] pSrc points to the input buffer + * @param[in] blockSize length of the input vector + * @param[out] pResult maximum value returned here + * @param[out] pIndex index of maximum value returned here + */ + void arm_absmax_f32( + const float32_t * pSrc, + uint32_t blockSize, + float32_t * pResult, + uint32_t * pIndex); + + /** + * @brief Maximum value of absolute values of a floating-point vector. + * @param[in] pSrc points to the input buffer + * @param[in] blockSize length of the input vector + * @param[out] pResult maximum value returned here + */ + void arm_absmax_no_idx_f32( + const float32_t * pSrc, + uint32_t blockSize, + float32_t * pResult); + +/** + * @brief Maximum value of a floating-point vector. + * @param[in] pSrc points to the input buffer + * @param[in] blockSize length of the input vector + * @param[out] pResult maximum value returned here + * @param[out] pIndex index of maximum value returned here + */ + void arm_max_f64( + const float64_t * pSrc, + uint32_t blockSize, + float64_t * pResult, + uint32_t * pIndex); + +/** + * @brief Maximum value of absolute values of a floating-point vector. + * @param[in] pSrc points to the input buffer + * @param[in] blockSize length of the input vector + * @param[out] pResult maximum value returned here + * @param[out] pIndex index of maximum value returned here + */ + void arm_absmax_f64( + const float64_t * pSrc, + uint32_t blockSize, + float64_t * pResult, + uint32_t * pIndex); + +/** + * @brief Maximum value of absolute values of a floating-point vector. + * @param[in] pSrc points to the input buffer + * @param[in] blockSize length of the input vector + * @param[out] pResult maximum value returned here + */ + void arm_absmax_no_idx_f64( + const float64_t * pSrc, + uint32_t blockSize, + float64_t * pResult); + + /** + @brief Maximum value of a floating-point vector. + @param[in] pSrc points to the input vector + @param[in] blockSize number of samples in input vector + @param[out] pResult maximum value returned here + @return none + */ + void arm_max_no_idx_f32( + const float32_t *pSrc, + uint32_t blockSize, + float32_t *pResult); + + /** + @brief Minimum value of a floating-point vector. + @param[in] pSrc points to the input vector + @param[in] blockSize number of samples in input vector + @param[out] pResult minimum value returned here + @return none + */ + void arm_min_no_idx_f32( + const float32_t *pSrc, + uint32_t blockSize, + float32_t *pResult); + + /** + @brief Maximum value of a floating-point vector. + @param[in] pSrc points to the input vector + @param[in] blockSize number of samples in input vector + @param[out] pResult maximum value returned here + @return none + */ + void arm_max_no_idx_f64( + const float64_t *pSrc, + uint32_t blockSize, + float64_t *pResult); + + /** + @brief Maximum value of a q31 vector. + @param[in] pSrc points to the input vector + @param[in] blockSize number of samples in input vector + @param[out] pResult maximum value returned here + @return none + */ + void arm_max_no_idx_q31( + const q31_t *pSrc, + uint32_t blockSize, + q31_t *pResult); + + /** + @brief Maximum value of a q15 vector. + @param[in] pSrc points to the input vector + @param[in] blockSize number of samples in input vector + @param[out] pResult maximum value returned here + @return none + */ + void arm_max_no_idx_q15( + const q15_t *pSrc, + uint32_t blockSize, + q15_t *pResult); + + /** + @brief Maximum value of a q7 vector. + @param[in] pSrc points to the input vector + @param[in] blockSize number of samples in input vector + @param[out] pResult maximum value returned here + @return none + */ + void arm_max_no_idx_q7( + const q7_t *pSrc, + uint32_t blockSize, + q7_t *pResult); + + /** + @brief Minimum value of a floating-point vector. + @param[in] pSrc points to the input vector + @param[in] blockSize number of samples in input vector + @param[out] pResult minimum value returned here + @return none + */ + void arm_min_no_idx_f64( + const float64_t *pSrc, + uint32_t blockSize, + float64_t *pResult); + +/** + @brief Minimum value of a q31 vector. + @param[in] pSrc points to the input vector + @param[in] blockSize number of samples in input vector + @param[out] pResult minimum value returned here + @return none + */ + void arm_min_no_idx_q31( + const q31_t *pSrc, + uint32_t blockSize, + q31_t *pResult); + + /** + @brief Minimum value of a q15 vector. + @param[in] pSrc points to the input vector + @param[in] blockSize number of samples in input vector + @param[out] pResult minimum value returned here + @return none + */ + void arm_min_no_idx_q15( + const q15_t *pSrc, + uint32_t blockSize, + q15_t *pResult); + + /** + @brief Minimum value of a q7 vector. + @param[in] pSrc points to the input vector + @param[in] blockSize number of samples in input vector + @param[out] pResult minimum value returned here + @return none + */ + void arm_min_no_idx_q7( + const q7_t *pSrc, + uint32_t blockSize, + q7_t *pResult); + +/** + @brief Mean square error between two Q7 vectors. + @param[in] pSrcA points to the first input vector + @param[in] pSrcB points to the second input vector + @param[in] blockSize number of samples in input vector + @param[out] pResult mean square error + @return none +*/ + +void arm_mse_q7( + const q7_t * pSrcA, + const q7_t * pSrcB, + uint32_t blockSize, + q7_t * pResult); + +/** + @brief Mean square error between two Q15 vectors. + @param[in] pSrcA points to the first input vector + @param[in] pSrcB points to the second input vector + @param[in] blockSize number of samples in input vector + @param[out] pResult mean square error + @return none +*/ + +void arm_mse_q15( + const q15_t * pSrcA, + const q15_t * pSrcB, + uint32_t blockSize, + q15_t * pResult); + +/** + @brief Mean square error between two Q31 vectors. + @param[in] pSrcA points to the first input vector + @param[in] pSrcB points to the second input vector + @param[in] blockSize number of samples in input vector + @param[out] pResult mean square error + @return none +*/ + +void arm_mse_q31( + const q31_t * pSrcA, + const q31_t * pSrcB, + uint32_t blockSize, + q31_t * pResult); + +/** + @brief Mean square error between two single precision float vectors. + @param[in] pSrcA points to the first input vector + @param[in] pSrcB points to the second input vector + @param[in] blockSize number of samples in input vector + @param[out] pResult mean square error + @return none +*/ + +void arm_mse_f32( + const float32_t * pSrcA, + const float32_t * pSrcB, + uint32_t blockSize, + float32_t * pResult); + +/** + @brief Mean square error between two double precision float vectors. + @param[in] pSrcA points to the first input vector + @param[in] pSrcB points to the second input vector + @param[in] blockSize number of samples in input vector + @param[out] pResult mean square error + @return none +*/ + +void arm_mse_f64( + const float64_t * pSrcA, + const float64_t * pSrcB, + uint32_t blockSize, + float64_t * pResult); + +#ifdef __cplusplus +} +#endif + +#endif /* ifndef _STATISTICS_FUNCTIONS_H_ */ diff --git a/Drivers/CMSIS/DSP/Include/dsp/statistics_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/statistics_functions_f16.h new file mode 100644 index 0000000..124c0a0 --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/dsp/statistics_functions_f16.h @@ -0,0 +1,266 @@ +/****************************************************************************** + * @file statistics_functions_f16.h + * @brief Public header file for CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + + +#ifndef _STATISTICS_FUNCTIONS_F16_H_ +#define _STATISTICS_FUNCTIONS_F16_H_ + +#include "arm_math_types_f16.h" +#include "arm_math_memory.h" + +#include "dsp/none.h" +#include "dsp/utils.h" + +#include "dsp/basic_math_functions_f16.h" +#include "dsp/fast_math_functions_f16.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + +#if defined(ARM_FLOAT16_SUPPORTED) + + /** + * @brief Sum of the squares of the elements of a floating-point vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_power_f16( + const float16_t * pSrc, + uint32_t blockSize, + float16_t * pResult); + + /** + * @brief Mean value of a floating-point vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_mean_f16( + const float16_t * pSrc, + uint32_t blockSize, + float16_t * pResult); + + /** + * @brief Variance of the elements of a floating-point vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_var_f16( + const float16_t * pSrc, + uint32_t blockSize, + float16_t * pResult); + + /** + * @brief Root Mean Square of the elements of a floating-point vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_rms_f16( + const float16_t * pSrc, + uint32_t blockSize, + float16_t * pResult); + + /** + * @brief Standard deviation of the elements of a floating-point vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_std_f16( + const float16_t * pSrc, + uint32_t blockSize, + float16_t * pResult); + + /** + * @brief Minimum value of a floating-point vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output pointer + * @param[out] pIndex is the array index of the minimum value in the input buffer. + */ + void arm_min_f16( + const float16_t * pSrc, + uint32_t blockSize, + float16_t * pResult, + uint32_t * pIndex); + + /** + * @brief Minimum value of absolute values of a floating-point vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output pointer + * @param[out] pIndex is the array index of the minimum value in the input buffer. + */ + void arm_absmin_f16( + const float16_t * pSrc, + uint32_t blockSize, + float16_t * pResult, + uint32_t * pIndex); + +/** + * @brief Maximum value of a floating-point vector. + * @param[in] pSrc points to the input buffer + * @param[in] blockSize length of the input vector + * @param[out] pResult maximum value returned here + * @param[out] pIndex index of maximum value returned here + */ + void arm_max_f16( + const float16_t * pSrc, + uint32_t blockSize, + float16_t * pResult, + uint32_t * pIndex); + +/** + * @brief Maximum value of absolute values of a floating-point vector. + * @param[in] pSrc points to the input buffer + * @param[in] blockSize length of the input vector + * @param[out] pResult maximum value returned here + * @param[out] pIndex index of maximum value returned here + */ + void arm_absmax_f16( + const float16_t * pSrc, + uint32_t blockSize, + float16_t * pResult, + uint32_t * pIndex); + + /** + * @brief Minimum value of absolute values of a floating-point vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output pointer + */ + void arm_absmin_no_idx_f16( + const float16_t * pSrc, + uint32_t blockSize, + float16_t * pResult); + +/** + * @brief Maximum value of a floating-point vector. + * @param[in] pSrc points to the input buffer + * @param[in] blockSize length of the input vector + * @param[out] pResult maximum value returned here + */ + void arm_absmax_no_idx_f16( + const float16_t * pSrc, + uint32_t blockSize, + float16_t * pResult); + + +/** + * @brief Entropy + * + * @param[in] pSrcA Array of input values. + * @param[in] blockSize Number of samples in the input array. + * @return Entropy -Sum(p ln p) + * + */ + + +float16_t arm_entropy_f16(const float16_t * pSrcA,uint32_t blockSize); + +float16_t arm_logsumexp_f16(const float16_t *in, uint32_t blockSize); + +/** + * @brief Dot product with log arithmetic + * + * Vectors are containing the log of the samples + * + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[in] blockSize number of samples in each vector + * @param[in] pTmpBuffer temporary buffer of length blockSize + * @return The log of the dot product . + * + */ + + +float16_t arm_logsumexp_dot_prod_f16(const float16_t * pSrcA, + const float16_t * pSrcB, + uint32_t blockSize, + float16_t *pTmpBuffer); + +/** + * @brief Kullback-Leibler + * + * @param[in] pSrcA Pointer to an array of input values for probability distribution A. + * @param[in] pSrcB Pointer to an array of input values for probability distribution B. + * @param[in] blockSize Number of samples in the input array. + * @return Kullback-Leibler Divergence D(A || B) + * + */ +float16_t arm_kullback_leibler_f16(const float16_t * pSrcA + ,const float16_t * pSrcB + ,uint32_t blockSize); + +/** + @brief Maximum value of a floating-point vector. + @param[in] pSrc points to the input vector + @param[in] blockSize number of samples in input vector + @param[out] pResult maximum value returned here + @return none + */ + void arm_max_no_idx_f16( + const float16_t *pSrc, + uint32_t blockSize, + float16_t *pResult); + +/** + @brief Minimum value of a floating-point vector. + @param[in] pSrc points to the input vector + @param[in] blockSize number of samples in input vector + @param[out] pResult minimum value returned here + @return none + */ + void arm_min_no_idx_f16( + const float16_t *pSrc, + uint32_t blockSize, + float16_t *pResult); + +/** + @brief Mean square error between two half precision float vectors. + @param[in] pSrcA points to the first input vector + @param[in] pSrcB points to the second input vector + @param[in] blockSize number of samples in input vector + @param[out] pResult mean square error + @return none +*/ + +void arm_mse_f16( + const float16_t * pSrcA, + const float16_t * pSrcB, + uint32_t blockSize, + float16_t * pResult); + +#endif /*defined(ARM_FLOAT16_SUPPORTED)*/ +#ifdef __cplusplus +} +#endif + +#endif /* ifndef _STATISTICS_FUNCTIONS_F16_H_ */ diff --git a/Drivers/CMSIS/DSP/Include/dsp/support_functions.h b/Drivers/CMSIS/DSP/Include/dsp/support_functions.h new file mode 100644 index 0000000..9c77593 --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/dsp/support_functions.h @@ -0,0 +1,453 @@ +/****************************************************************************** + * @file support_functions.h + * @brief Public header file for CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + + +#ifndef _SUPPORT_FUNCTIONS_H_ +#define _SUPPORT_FUNCTIONS_H_ + +#include "arm_math_types.h" +#include "arm_math_memory.h" + +#include "dsp/none.h" +#include "dsp/utils.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + +/** + * @defgroup groupSupport Support Functions + */ + + +/** + * @brief Converts the elements of the floating-point vector to Q31 vector. + * @param[in] pSrc points to the floating-point input vector + * @param[out] pDst points to the Q31 output vector + * @param[in] blockSize length of the input vector + */ + void arm_float_to_q31( + const float32_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + + /** + * @brief Converts the elements of the floating-point vector to Q15 vector. + * @param[in] pSrc points to the floating-point input vector + * @param[out] pDst points to the Q15 output vector + * @param[in] blockSize length of the input vector + */ + void arm_float_to_q15( + const float32_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + + /** + * @brief Converts the elements of the floating-point vector to Q7 vector. + * @param[in] pSrc points to the floating-point input vector + * @param[out] pDst points to the Q7 output vector + * @param[in] blockSize length of the input vector + */ + void arm_float_to_q7( + const float32_t * pSrc, + q7_t * pDst, + uint32_t blockSize); + + + /** + * @brief Converts the elements of the Q31 vector to floating-point vector. + * @param[in] pSrc is input pointer + * @param[out] pDst is output pointer + * @param[in] blockSize is the number of samples to process + */ + void arm_q31_to_float( + const q31_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + + /** + * @brief Converts the elements of the Q31 vector to Q15 vector. + * @param[in] pSrc is input pointer + * @param[out] pDst is output pointer + * @param[in] blockSize is the number of samples to process + */ + void arm_q31_to_q15( + const q31_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + + /** + * @brief Converts the elements of the Q31 vector to Q7 vector. + * @param[in] pSrc is input pointer + * @param[out] pDst is output pointer + * @param[in] blockSize is the number of samples to process + */ + void arm_q31_to_q7( + const q31_t * pSrc, + q7_t * pDst, + uint32_t blockSize); + + + /** + * @brief Converts the elements of the Q15 vector to floating-point vector. + * @param[in] pSrc is input pointer + * @param[out] pDst is output pointer + * @param[in] blockSize is the number of samples to process + */ + void arm_q15_to_float( + const q15_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + + /** + * @brief Converts the elements of the Q15 vector to Q31 vector. + * @param[in] pSrc is input pointer + * @param[out] pDst is output pointer + * @param[in] blockSize is the number of samples to process + */ + void arm_q15_to_q31( + const q15_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + + /** + * @brief Converts the elements of the Q15 vector to Q7 vector. + * @param[in] pSrc is input pointer + * @param[out] pDst is output pointer + * @param[in] blockSize is the number of samples to process + */ + void arm_q15_to_q7( + const q15_t * pSrc, + q7_t * pDst, + uint32_t blockSize); + + + /** + * @brief Converts the elements of the Q7 vector to floating-point vector. + * @param[in] pSrc is input pointer + * @param[out] pDst is output pointer + * @param[in] blockSize is the number of samples to process + */ + void arm_q7_to_float( + const q7_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + + /** + * @brief Converts the elements of the Q7 vector to Q31 vector. + * @param[in] pSrc input pointer + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process + */ + void arm_q7_to_q31( + const q7_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + + /** + * @brief Converts the elements of the Q7 vector to Q15 vector. + * @param[in] pSrc input pointer + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process + */ + void arm_q7_to_q15( + const q7_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + + + + + /** + * @brief Struct for specifying sorting algorithm + */ + typedef enum + { + ARM_SORT_BITONIC = 0, + /**< Bitonic sort */ + ARM_SORT_BUBBLE = 1, + /**< Bubble sort */ + ARM_SORT_HEAP = 2, + /**< Heap sort */ + ARM_SORT_INSERTION = 3, + /**< Insertion sort */ + ARM_SORT_QUICK = 4, + /**< Quick sort */ + ARM_SORT_SELECTION = 5 + /**< Selection sort */ + } arm_sort_alg; + + /** + * @brief Struct for specifying sorting algorithm + */ + typedef enum + { + ARM_SORT_DESCENDING = 0, + /**< Descending order (9 to 0) */ + ARM_SORT_ASCENDING = 1 + /**< Ascending order (0 to 9) */ + } arm_sort_dir; + + /** + * @brief Instance structure for the sorting algorithms. + */ + typedef struct + { + arm_sort_alg alg; /**< Sorting algorithm selected */ + arm_sort_dir dir; /**< Sorting order (direction) */ + } arm_sort_instance_f32; + + /** + * @param[in] S points to an instance of the sorting structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_sort_f32( + const arm_sort_instance_f32 * S, + float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + /** + * @param[in,out] S points to an instance of the sorting structure. + * @param[in] alg Selected algorithm. + * @param[in] dir Sorting order. + */ + void arm_sort_init_f32( + arm_sort_instance_f32 * S, + arm_sort_alg alg, + arm_sort_dir dir); + + /** + * @brief Instance structure for the sorting algorithms. + */ + typedef struct + { + arm_sort_dir dir; /**< Sorting order (direction) */ + float32_t * buffer; /**< Working buffer */ + } arm_merge_sort_instance_f32; + + /** + * @param[in] S points to an instance of the sorting structure. + * @param[in,out] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of samples to process. + */ + void arm_merge_sort_f32( + const arm_merge_sort_instance_f32 * S, + float32_t *pSrc, + float32_t *pDst, + uint32_t blockSize); + + /** + * @param[in,out] S points to an instance of the sorting structure. + * @param[in] dir Sorting order. + * @param[in] buffer Working buffer. + */ + void arm_merge_sort_init_f32( + arm_merge_sort_instance_f32 * S, + arm_sort_dir dir, + float32_t * buffer); + + + + /** + * @brief Copies the elements of a floating-point vector. + * @param[in] pSrc input pointer + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process + */ + void arm_copy_f32( + const float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + + + /** + * @brief Copies the elements of a floating-point vector. + * @param[in] pSrc input pointer + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process + */ + void arm_copy_f64( + const float64_t * pSrc, + float64_t * pDst, + uint32_t blockSize); + + + + /** + * @brief Copies the elements of a Q7 vector. + * @param[in] pSrc input pointer + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process + */ + void arm_copy_q7( + const q7_t * pSrc, + q7_t * pDst, + uint32_t blockSize); + + + /** + * @brief Copies the elements of a Q15 vector. + * @param[in] pSrc input pointer + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process + */ + void arm_copy_q15( + const q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + + /** + * @brief Copies the elements of a Q31 vector. + * @param[in] pSrc input pointer + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process + */ + void arm_copy_q31( + const q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + + /** + * @brief Fills a constant value into a floating-point vector. + * @param[in] value input value to be filled + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process + */ + void arm_fill_f32( + float32_t value, + float32_t * pDst, + uint32_t blockSize); + + + /** + * @brief Fills a constant value into a floating-point vector. + * @param[in] value input value to be filled + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process + */ + void arm_fill_f64( + float64_t value, + float64_t * pDst, + uint32_t blockSize); + + + /** + * @brief Fills a constant value into a Q7 vector. + * @param[in] value input value to be filled + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process + */ + void arm_fill_q7( + q7_t value, + q7_t * pDst, + uint32_t blockSize); + + + /** + * @brief Fills a constant value into a Q15 vector. + * @param[in] value input value to be filled + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process + */ + void arm_fill_q15( + q15_t value, + q15_t * pDst, + uint32_t blockSize); + + + /** + * @brief Fills a constant value into a Q31 vector. + * @param[in] value input value to be filled + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process + */ + void arm_fill_q31( + q31_t value, + q31_t * pDst, + uint32_t blockSize); + + + + + + + +/** + * @brief Weighted sum + * + * + * @param[in] *in Array of input values. + * @param[in] *weigths Weights + * @param[in] blockSize Number of samples in the input array. + * @return Weighted sum + * + */ +float32_t arm_weighted_sum_f32(const float32_t *in + , const float32_t *weigths + , uint32_t blockSize); + + +/** + * @brief Barycenter + * + * + * @param[in] in List of vectors + * @param[in] weights Weights of the vectors + * @param[out] out Barycenter + * @param[in] nbVectors Number of vectors + * @param[in] vecDim Dimension of space (vector dimension) + * @return None + * + */ +void arm_barycenter_f32(const float32_t *in + , const float32_t *weights + , float32_t *out + , uint32_t nbVectors + , uint32_t vecDim); + + + +#ifdef __cplusplus +} +#endif + +#endif /* ifndef _SUPPORT_FUNCTIONS_H_ */ diff --git a/Drivers/CMSIS/DSP/Include/dsp/support_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/support_functions_f16.h new file mode 100644 index 0000000..bc3f266 --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/dsp/support_functions_f16.h @@ -0,0 +1,187 @@ +/****************************************************************************** + * @file support_functions_f16.h + * @brief Public header file for CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + + +#ifndef _SUPPORT_FUNCTIONS_F16_H_ +#define _SUPPORT_FUNCTIONS_F16_H_ + +#include "arm_math_types_f16.h" +#include "arm_math_memory.h" + +#include "dsp/none.h" +#include "dsp/utils.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + +#if defined(ARM_FLOAT16_SUPPORTED) + + /** + * @brief Copies the elements of a floating-point vector. + * @param[in] pSrc input pointer + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process + */ +void arm_copy_f16(const float16_t * pSrc, float16_t * pDst, uint32_t blockSize); + + /** + * @brief Fills a constant value into a floating-point vector. + * @param[in] value input value to be filled + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process + */ +void arm_fill_f16(float16_t value, float16_t * pDst, uint32_t blockSize); + +/** + * @brief Converts the elements of the floating-point vector to Q31 vector. + * @param[in] pSrc points to the f16 input vector + * @param[out] pDst points to the q15 output vector + * @param[in] blockSize length of the input vector + */ +void arm_f16_to_q15(const float16_t * pSrc, q15_t * pDst, uint32_t blockSize); + +/** + * @brief Converts the elements of the floating-point vector to Q31 vector. + * @param[in] pSrc points to the q15 input vector + * @param[out] pDst points to the f16 output vector + * @param[in] blockSize length of the input vector + */ +void arm_q15_to_f16(const q15_t * pSrc, float16_t * pDst, uint32_t blockSize); + + +/** + * @brief Converts the elements of the floating-point vector to Q31 vector. + * @param[in] pSrc points to the f32 input vector + * @param[out] pDst points to the f16 output vector + * @param[in] blockSize length of the input vector + */ +void arm_float_to_f16(const float32_t * pSrc, float16_t * pDst, uint32_t blockSize); + +/** + * @brief Converts the elements of the floating-point vector to Q31 vector. + * @param[in] pSrc points to the f16 input vector + * @param[out] pDst points to the f32 output vector + * @param[in] blockSize length of the input vector + */ +void arm_f16_to_float(const float16_t * pSrc, float32_t * pDst, uint32_t blockSize); + +/** + * @brief Weighted sum + * + * + * @param[in] *in Array of input values. + * @param[in] *weigths Weights + * @param[in] blockSize Number of samples in the input array. + * @return Weighted sum + * + */ +float16_t arm_weighted_sum_f16(const float16_t *in + , const float16_t *weigths + , uint32_t blockSize); + +/** + * @brief Barycenter + * + * + * @param[in] in List of vectors + * @param[in] weights Weights of the vectors + * @param[out] out Barycenter + * @param[in] nbVectors Number of vectors + * @param[in] vecDim Dimension of space (vector dimension) + * @return None + * + */ +void arm_barycenter_f16(const float16_t *in + , const float16_t *weights + , float16_t *out + , uint32_t nbVectors + , uint32_t vecDim); + + +/** + @ingroup groupSupport + */ + +/** + * @defgroup typecast Typecasting + */ + +/** + @addtogroup typecast + @{ + */ + +/** + * @brief Interpret a f16 as an s16 value + * @param[in] x input value. + * @return return value. + * + * @par Description + * It is a typecast. No conversion of the float to int is done. + * The memcpy will be optimized out by the compiler. + * memcpy is used to prevent type punning issues. + * With gcc, -fno-builtins MUST not be used or the + * memcpy will not be optimized out. + */ +__STATIC_INLINE int16_t arm_typecast_s16_f16(float16_t x) +{ + int16_t res; + res=*(int16_t*)memcpy((char*)&res,(char*)&x,sizeof(float16_t)); + return(res); +} + +/** + * @brief Interpret an s16 as an f16 value + * @param[in] x input value. + * @return return value. + * + * @par Description + * It is a typecast. No conversion of the int to float is done. + * The memcpy will be optimized out by the compiler. + * memcpy is used to prevent type punning issues. + * With gcc, -fno-builtins MUST not be used or the + * memcpy will not be optimized out. + */ +__STATIC_INLINE float16_t arm_typecast_f16_s16(int16_t x) +{ + float16_t res; + res=*(float16_t*)memcpy((char*)&res,(char*)&x,sizeof(int16_t)); + return(res); +} + + +/** + @} end of typecast group + */ + + +#endif /*defined(ARM_FLOAT16_SUPPORTED)*/ +#ifdef __cplusplus +} +#endif + +#endif /* ifndef _SUPPORT_FUNCTIONS_F16_H_ */ diff --git a/Drivers/CMSIS/DSP/Include/dsp/svm_defines.h b/Drivers/CMSIS/DSP/Include/dsp/svm_defines.h new file mode 100644 index 0000000..f93e953 --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/dsp/svm_defines.h @@ -0,0 +1,46 @@ +/****************************************************************************** + * @file svm_defines.h + * @brief Public header file for CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + + +#ifndef _SVM_DEFINES_H_ +#define _SVM_DEFINES_H_ + +/** + * @brief Struct for specifying SVM Kernel + */ +typedef enum +{ + ARM_ML_KERNEL_LINEAR = 0, + /**< Linear kernel */ + ARM_ML_KERNEL_POLYNOMIAL = 1, + /**< Polynomial kernel */ + ARM_ML_KERNEL_RBF = 2, + /**< Radial Basis Function kernel */ + ARM_ML_KERNEL_SIGMOID = 3 + /**< Sigmoid kernel */ +} arm_ml_kernel_type; + +#endif diff --git a/Drivers/CMSIS/DSP/Include/dsp/svm_functions.h b/Drivers/CMSIS/DSP/Include/dsp/svm_functions.h new file mode 100644 index 0000000..3acc621 --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/dsp/svm_functions.h @@ -0,0 +1,299 @@ +/****************************************************************************** + * @file svm_functions.h + * @brief Public header file for CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + + +#ifndef _SVM_FUNCTIONS_H_ +#define _SVM_FUNCTIONS_H_ + +#include "arm_math_types.h" +#include "arm_math_memory.h" + +#include "dsp/none.h" +#include "dsp/utils.h" +#include "dsp/svm_defines.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + +#define STEP(x) (x) <= 0 ? 0 : 1 + +/** + * @defgroup groupSVM SVM Functions + * This set of functions is implementing SVM classification on 2 classes. + * The training must be done from scikit-learn. The parameters can be easily + * generated from the scikit-learn object. Some examples are given in + * DSP/Testing/PatternGeneration/SVM.py + * + * If more than 2 classes are needed, the functions in this folder + * will have to be used, as building blocks, to do multi-class classification. + * + * No multi-class classification is provided in this SVM folder. + * + */ + +/** + * @brief Integer exponentiation + * @param[in] x value + * @param[in] nb integer exponent >= 1 + * @return x^nb + * + */ +__STATIC_INLINE float32_t arm_exponent_f32(float32_t x, int32_t nb) +{ + float32_t r = x; + nb --; + while(nb > 0) + { + r = r * x; + nb--; + } + return(r); +} + + + + + +/** + * @brief Instance structure for linear SVM prediction function. + */ +typedef struct +{ + uint32_t nbOfSupportVectors; /**< Number of support vectors */ + uint32_t vectorDimension; /**< Dimension of vector space */ + float32_t intercept; /**< Intercept */ + const float32_t *dualCoefficients; /**< Dual coefficients */ + const float32_t *supportVectors; /**< Support vectors */ + const int32_t *classes; /**< The two SVM classes */ +} arm_svm_linear_instance_f32; + + +/** + * @brief Instance structure for polynomial SVM prediction function. + */ +typedef struct +{ + uint32_t nbOfSupportVectors; /**< Number of support vectors */ + uint32_t vectorDimension; /**< Dimension of vector space */ + float32_t intercept; /**< Intercept */ + const float32_t *dualCoefficients; /**< Dual coefficients */ + const float32_t *supportVectors; /**< Support vectors */ + const int32_t *classes; /**< The two SVM classes */ + int32_t degree; /**< Polynomial degree */ + float32_t coef0; /**< Polynomial constant */ + float32_t gamma; /**< Gamma factor */ +} arm_svm_polynomial_instance_f32; + +/** + * @brief Instance structure for rbf SVM prediction function. + */ +typedef struct +{ + uint32_t nbOfSupportVectors; /**< Number of support vectors */ + uint32_t vectorDimension; /**< Dimension of vector space */ + float32_t intercept; /**< Intercept */ + const float32_t *dualCoefficients; /**< Dual coefficients */ + const float32_t *supportVectors; /**< Support vectors */ + const int32_t *classes; /**< The two SVM classes */ + float32_t gamma; /**< Gamma factor */ +} arm_svm_rbf_instance_f32; + +/** + * @brief Instance structure for sigmoid SVM prediction function. + */ +typedef struct +{ + uint32_t nbOfSupportVectors; /**< Number of support vectors */ + uint32_t vectorDimension; /**< Dimension of vector space */ + float32_t intercept; /**< Intercept */ + const float32_t *dualCoefficients; /**< Dual coefficients */ + const float32_t *supportVectors; /**< Support vectors */ + const int32_t *classes; /**< The two SVM classes */ + float32_t coef0; /**< Independent constant */ + float32_t gamma; /**< Gamma factor */ +} arm_svm_sigmoid_instance_f32; + +/** + * @brief SVM linear instance init function + * @param[in] S Parameters for SVM functions + * @param[in] nbOfSupportVectors Number of support vectors + * @param[in] vectorDimension Dimension of vector space + * @param[in] intercept Intercept + * @param[in] dualCoefficients Array of dual coefficients + * @param[in] supportVectors Array of support vectors + * @param[in] classes Array of 2 classes ID + * @return none. + * + */ + + +void arm_svm_linear_init_f32(arm_svm_linear_instance_f32 *S, + uint32_t nbOfSupportVectors, + uint32_t vectorDimension, + float32_t intercept, + const float32_t *dualCoefficients, + const float32_t *supportVectors, + const int32_t *classes); + +/** + * @brief SVM linear prediction + * @param[in] S Pointer to an instance of the linear SVM structure. + * @param[in] in Pointer to input vector + * @param[out] pResult Decision value + * @return none. + * + */ + +void arm_svm_linear_predict_f32(const arm_svm_linear_instance_f32 *S, + const float32_t * in, + int32_t * pResult); + + +/** + * @brief SVM polynomial instance init function + * @param[in] S points to an instance of the polynomial SVM structure. + * @param[in] nbOfSupportVectors Number of support vectors + * @param[in] vectorDimension Dimension of vector space + * @param[in] intercept Intercept + * @param[in] dualCoefficients Array of dual coefficients + * @param[in] supportVectors Array of support vectors + * @param[in] classes Array of 2 classes ID + * @param[in] degree Polynomial degree + * @param[in] coef0 coeff0 (scikit-learn terminology) + * @param[in] gamma gamma (scikit-learn terminology) + * @return none. + * + */ + + +void arm_svm_polynomial_init_f32(arm_svm_polynomial_instance_f32 *S, + uint32_t nbOfSupportVectors, + uint32_t vectorDimension, + float32_t intercept, + const float32_t *dualCoefficients, + const float32_t *supportVectors, + const int32_t *classes, + int32_t degree, + float32_t coef0, + float32_t gamma + ); + +/** + * @brief SVM polynomial prediction + * @param[in] S Pointer to an instance of the polynomial SVM structure. + * @param[in] in Pointer to input vector + * @param[out] pResult Decision value + * @return none. + * + */ +void arm_svm_polynomial_predict_f32(const arm_svm_polynomial_instance_f32 *S, + const float32_t * in, + int32_t * pResult); + + +/** + * @brief SVM radial basis function instance init function + * @param[in] S points to an instance of the polynomial SVM structure. + * @param[in] nbOfSupportVectors Number of support vectors + * @param[in] vectorDimension Dimension of vector space + * @param[in] intercept Intercept + * @param[in] dualCoefficients Array of dual coefficients + * @param[in] supportVectors Array of support vectors + * @param[in] classes Array of 2 classes ID + * @param[in] gamma gamma (scikit-learn terminology) + * @return none. + * + */ + +void arm_svm_rbf_init_f32(arm_svm_rbf_instance_f32 *S, + uint32_t nbOfSupportVectors, + uint32_t vectorDimension, + float32_t intercept, + const float32_t *dualCoefficients, + const float32_t *supportVectors, + const int32_t *classes, + float32_t gamma + ); + +/** + * @brief SVM rbf prediction + * @param[in] S Pointer to an instance of the rbf SVM structure. + * @param[in] in Pointer to input vector + * @param[out] pResult decision value + * @return none. + * + */ +void arm_svm_rbf_predict_f32(const arm_svm_rbf_instance_f32 *S, + const float32_t * in, + int32_t * pResult); + +/** + * @brief SVM sigmoid instance init function + * @param[in] S points to an instance of the rbf SVM structure. + * @param[in] nbOfSupportVectors Number of support vectors + * @param[in] vectorDimension Dimension of vector space + * @param[in] intercept Intercept + * @param[in] dualCoefficients Array of dual coefficients + * @param[in] supportVectors Array of support vectors + * @param[in] classes Array of 2 classes ID + * @param[in] coef0 coeff0 (scikit-learn terminology) + * @param[in] gamma gamma (scikit-learn terminology) + * @return none. + * + */ + +void arm_svm_sigmoid_init_f32(arm_svm_sigmoid_instance_f32 *S, + uint32_t nbOfSupportVectors, + uint32_t vectorDimension, + float32_t intercept, + const float32_t *dualCoefficients, + const float32_t *supportVectors, + const int32_t *classes, + float32_t coef0, + float32_t gamma + ); + +/** + * @brief SVM sigmoid prediction + * @param[in] S Pointer to an instance of the rbf SVM structure. + * @param[in] in Pointer to input vector + * @param[out] pResult Decision value + * @return none. + * + */ +void arm_svm_sigmoid_predict_f32(const arm_svm_sigmoid_instance_f32 *S, + const float32_t * in, + int32_t * pResult); + + + + +#ifdef __cplusplus +} +#endif + +#endif /* ifndef _SVM_FUNCTIONS_H_ */ diff --git a/Drivers/CMSIS/DSP/Include/dsp/svm_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/svm_functions_f16.h new file mode 100644 index 0000000..7c9fbab --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/dsp/svm_functions_f16.h @@ -0,0 +1,281 @@ +/****************************************************************************** + * @file svm_functions_f16.h + * @brief Public header file for CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + + +#ifndef _SVM_FUNCTIONS_F16_H_ +#define _SVM_FUNCTIONS_F16_H_ + +#include "arm_math_types_f16.h" +#include "arm_math_memory.h" + +#include "dsp/none.h" +#include "dsp/utils.h" +#include "dsp/svm_defines.h" + + +#ifdef __cplusplus +extern "C" +{ +#endif + +#if defined(ARM_FLOAT16_SUPPORTED) + +#define STEP(x) (x) <= 0 ? 0 : 1 + +/** + * @defgroup groupSVM SVM Functions + * This set of functions is implementing SVM classification on 2 classes. + * The training must be done from scikit-learn. The parameters can be easily + * generated from the scikit-learn object. Some examples are given in + * DSP/Testing/PatternGeneration/SVM.py + * + * If more than 2 classes are needed, the functions in this folder + * will have to be used, as building blocks, to do multi-class classification. + * + * No multi-class classification is provided in this SVM folder. + * + */ + + + +/** + * @brief Instance structure for linear SVM prediction function. + */ +typedef struct +{ + uint32_t nbOfSupportVectors; /**< Number of support vectors */ + uint32_t vectorDimension; /**< Dimension of vector space */ + float16_t intercept; /**< Intercept */ + const float16_t *dualCoefficients; /**< Dual coefficients */ + const float16_t *supportVectors; /**< Support vectors */ + const int32_t *classes; /**< The two SVM classes */ +} arm_svm_linear_instance_f16; + + +/** + * @brief Instance structure for polynomial SVM prediction function. + */ +typedef struct +{ + uint32_t nbOfSupportVectors; /**< Number of support vectors */ + uint32_t vectorDimension; /**< Dimension of vector space */ + float16_t intercept; /**< Intercept */ + const float16_t *dualCoefficients; /**< Dual coefficients */ + const float16_t *supportVectors; /**< Support vectors */ + const int32_t *classes; /**< The two SVM classes */ + int32_t degree; /**< Polynomial degree */ + float16_t coef0; /**< Polynomial constant */ + float16_t gamma; /**< Gamma factor */ +} arm_svm_polynomial_instance_f16; + +/** + * @brief Instance structure for rbf SVM prediction function. + */ +typedef struct +{ + uint32_t nbOfSupportVectors; /**< Number of support vectors */ + uint32_t vectorDimension; /**< Dimension of vector space */ + float16_t intercept; /**< Intercept */ + const float16_t *dualCoefficients; /**< Dual coefficients */ + const float16_t *supportVectors; /**< Support vectors */ + const int32_t *classes; /**< The two SVM classes */ + float16_t gamma; /**< Gamma factor */ +} arm_svm_rbf_instance_f16; + +/** + * @brief Instance structure for sigmoid SVM prediction function. + */ +typedef struct +{ + uint32_t nbOfSupportVectors; /**< Number of support vectors */ + uint32_t vectorDimension; /**< Dimension of vector space */ + float16_t intercept; /**< Intercept */ + const float16_t *dualCoefficients; /**< Dual coefficients */ + const float16_t *supportVectors; /**< Support vectors */ + const int32_t *classes; /**< The two SVM classes */ + float16_t coef0; /**< Independent constant */ + float16_t gamma; /**< Gamma factor */ +} arm_svm_sigmoid_instance_f16; + +/** + * @brief SVM linear instance init function + * @param[in] S Parameters for SVM functions + * @param[in] nbOfSupportVectors Number of support vectors + * @param[in] vectorDimension Dimension of vector space + * @param[in] intercept Intercept + * @param[in] dualCoefficients Array of dual coefficients + * @param[in] supportVectors Array of support vectors + * @param[in] classes Array of 2 classes ID + * @return none. + * + */ + + +void arm_svm_linear_init_f16(arm_svm_linear_instance_f16 *S, + uint32_t nbOfSupportVectors, + uint32_t vectorDimension, + float16_t intercept, + const float16_t *dualCoefficients, + const float16_t *supportVectors, + const int32_t *classes); + +/** + * @brief SVM linear prediction + * @param[in] S Pointer to an instance of the linear SVM structure. + * @param[in] in Pointer to input vector + * @param[out] pResult Decision value + * @return none. + * + */ + +void arm_svm_linear_predict_f16(const arm_svm_linear_instance_f16 *S, + const float16_t * in, + int32_t * pResult); + + +/** + * @brief SVM polynomial instance init function + * @param[in] S points to an instance of the polynomial SVM structure. + * @param[in] nbOfSupportVectors Number of support vectors + * @param[in] vectorDimension Dimension of vector space + * @param[in] intercept Intercept + * @param[in] dualCoefficients Array of dual coefficients + * @param[in] supportVectors Array of support vectors + * @param[in] classes Array of 2 classes ID + * @param[in] degree Polynomial degree + * @param[in] coef0 coeff0 (scikit-learn terminology) + * @param[in] gamma gamma (scikit-learn terminology) + * @return none. + * + */ + + +void arm_svm_polynomial_init_f16(arm_svm_polynomial_instance_f16 *S, + uint32_t nbOfSupportVectors, + uint32_t vectorDimension, + float16_t intercept, + const float16_t *dualCoefficients, + const float16_t *supportVectors, + const int32_t *classes, + int32_t degree, + float16_t coef0, + float16_t gamma + ); + +/** + * @brief SVM polynomial prediction + * @param[in] S Pointer to an instance of the polynomial SVM structure. + * @param[in] in Pointer to input vector + * @param[out] pResult Decision value + * @return none. + * + */ +void arm_svm_polynomial_predict_f16(const arm_svm_polynomial_instance_f16 *S, + const float16_t * in, + int32_t * pResult); + + +/** + * @brief SVM radial basis function instance init function + * @param[in] S points to an instance of the polynomial SVM structure. + * @param[in] nbOfSupportVectors Number of support vectors + * @param[in] vectorDimension Dimension of vector space + * @param[in] intercept Intercept + * @param[in] dualCoefficients Array of dual coefficients + * @param[in] supportVectors Array of support vectors + * @param[in] classes Array of 2 classes ID + * @param[in] gamma gamma (scikit-learn terminology) + * @return none. + * + */ + +void arm_svm_rbf_init_f16(arm_svm_rbf_instance_f16 *S, + uint32_t nbOfSupportVectors, + uint32_t vectorDimension, + float16_t intercept, + const float16_t *dualCoefficients, + const float16_t *supportVectors, + const int32_t *classes, + float16_t gamma + ); + +/** + * @brief SVM rbf prediction + * @param[in] S Pointer to an instance of the rbf SVM structure. + * @param[in] in Pointer to input vector + * @param[out] pResult decision value + * @return none. + * + */ +void arm_svm_rbf_predict_f16(const arm_svm_rbf_instance_f16 *S, + const float16_t * in, + int32_t * pResult); + +/** + * @brief SVM sigmoid instance init function + * @param[in] S points to an instance of the rbf SVM structure. + * @param[in] nbOfSupportVectors Number of support vectors + * @param[in] vectorDimension Dimension of vector space + * @param[in] intercept Intercept + * @param[in] dualCoefficients Array of dual coefficients + * @param[in] supportVectors Array of support vectors + * @param[in] classes Array of 2 classes ID + * @param[in] coef0 coeff0 (scikit-learn terminology) + * @param[in] gamma gamma (scikit-learn terminology) + * @return none. + * + */ + +void arm_svm_sigmoid_init_f16(arm_svm_sigmoid_instance_f16 *S, + uint32_t nbOfSupportVectors, + uint32_t vectorDimension, + float16_t intercept, + const float16_t *dualCoefficients, + const float16_t *supportVectors, + const int32_t *classes, + float16_t coef0, + float16_t gamma + ); + +/** + * @brief SVM sigmoid prediction + * @param[in] S Pointer to an instance of the rbf SVM structure. + * @param[in] in Pointer to input vector + * @param[out] pResult Decision value + * @return none. + * + */ +void arm_svm_sigmoid_predict_f16(const arm_svm_sigmoid_instance_f16 *S, + const float16_t * in, + int32_t * pResult); + + + +#endif /*defined(ARM_FLOAT16_SUPPORTED)*/ +#ifdef __cplusplus +} +#endif + +#endif /* ifndef _SVM_FUNCTIONS_F16_H_ */ diff --git a/Drivers/CMSIS/DSP/Include/dsp/transform_functions.h b/Drivers/CMSIS/DSP/Include/dsp/transform_functions.h new file mode 100644 index 0000000..6270e10 --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/dsp/transform_functions.h @@ -0,0 +1,735 @@ +/****************************************************************************** + * @file transform_functions.h + * @brief Public header file for CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + + +#ifndef _TRANSFORM_FUNCTIONS_H_ +#define _TRANSFORM_FUNCTIONS_H_ + +#include "arm_math_types.h" +#include "arm_math_memory.h" + +#include "dsp/none.h" +#include "dsp/utils.h" + +#include "dsp/basic_math_functions.h" +#include "dsp/complex_math_functions.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + + +/** + * @defgroup groupTransforms Transform Functions + */ + + + /** + * @brief Instance structure for the Q15 CFFT/CIFFT function. + */ + typedef struct + { + uint16_t fftLen; /**< length of the FFT. */ + uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ + uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ + const q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */ + const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ + uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ + uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ + } arm_cfft_radix2_instance_q15; + +/* Deprecated */ + arm_status arm_cfft_radix2_init_q15( + arm_cfft_radix2_instance_q15 * S, + uint16_t fftLen, + uint8_t ifftFlag, + uint8_t bitReverseFlag); + +/* Deprecated */ + void arm_cfft_radix2_q15( + const arm_cfft_radix2_instance_q15 * S, + q15_t * pSrc); + + + /** + * @brief Instance structure for the Q15 CFFT/CIFFT function. + */ + typedef struct + { + uint16_t fftLen; /**< length of the FFT. */ + uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ + uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ + const q15_t *pTwiddle; /**< points to the twiddle factor table. */ + const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ + uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ + uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ + } arm_cfft_radix4_instance_q15; + +/* Deprecated */ + arm_status arm_cfft_radix4_init_q15( + arm_cfft_radix4_instance_q15 * S, + uint16_t fftLen, + uint8_t ifftFlag, + uint8_t bitReverseFlag); + +/* Deprecated */ + void arm_cfft_radix4_q15( + const arm_cfft_radix4_instance_q15 * S, + q15_t * pSrc); + + /** + * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function. + */ + typedef struct + { + uint16_t fftLen; /**< length of the FFT. */ + uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ + uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ + const q31_t *pTwiddle; /**< points to the Twiddle factor table. */ + const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ + uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ + uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ + } arm_cfft_radix2_instance_q31; + +/* Deprecated */ + arm_status arm_cfft_radix2_init_q31( + arm_cfft_radix2_instance_q31 * S, + uint16_t fftLen, + uint8_t ifftFlag, + uint8_t bitReverseFlag); + +/* Deprecated */ + void arm_cfft_radix2_q31( + const arm_cfft_radix2_instance_q31 * S, + q31_t * pSrc); + + /** + * @brief Instance structure for the Q31 CFFT/CIFFT function. + */ + typedef struct + { + uint16_t fftLen; /**< length of the FFT. */ + uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ + uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ + const q31_t *pTwiddle; /**< points to the twiddle factor table. */ + const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ + uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ + uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ + } arm_cfft_radix4_instance_q31; + +/* Deprecated */ + void arm_cfft_radix4_q31( + const arm_cfft_radix4_instance_q31 * S, + q31_t * pSrc); + +/* Deprecated */ + arm_status arm_cfft_radix4_init_q31( + arm_cfft_radix4_instance_q31 * S, + uint16_t fftLen, + uint8_t ifftFlag, + uint8_t bitReverseFlag); + + /** + * @brief Instance structure for the floating-point CFFT/CIFFT function. + */ + typedef struct + { + uint16_t fftLen; /**< length of the FFT. */ + uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ + uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ + const float32_t *pTwiddle; /**< points to the Twiddle factor table. */ + const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ + uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ + uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ + float32_t onebyfftLen; /**< value of 1/fftLen. */ + } arm_cfft_radix2_instance_f32; + + +/* Deprecated */ + arm_status arm_cfft_radix2_init_f32( + arm_cfft_radix2_instance_f32 * S, + uint16_t fftLen, + uint8_t ifftFlag, + uint8_t bitReverseFlag); + +/* Deprecated */ + void arm_cfft_radix2_f32( + const arm_cfft_radix2_instance_f32 * S, + float32_t * pSrc); + + /** + * @brief Instance structure for the floating-point CFFT/CIFFT function. + */ + typedef struct + { + uint16_t fftLen; /**< length of the FFT. */ + uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ + uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ + const float32_t *pTwiddle; /**< points to the Twiddle factor table. */ + const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ + uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ + uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ + float32_t onebyfftLen; /**< value of 1/fftLen. */ + } arm_cfft_radix4_instance_f32; + + + +/* Deprecated */ + arm_status arm_cfft_radix4_init_f32( + arm_cfft_radix4_instance_f32 * S, + uint16_t fftLen, + uint8_t ifftFlag, + uint8_t bitReverseFlag); + +/* Deprecated */ + void arm_cfft_radix4_f32( + const arm_cfft_radix4_instance_f32 * S, + float32_t * pSrc); + + /** + * @brief Instance structure for the fixed-point CFFT/CIFFT function. + */ + typedef struct + { + uint16_t fftLen; /**< length of the FFT. */ + const q15_t *pTwiddle; /**< points to the Twiddle factor table. */ + const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ + uint16_t bitRevLength; /**< bit reversal table length. */ +#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE) + const uint32_t *rearranged_twiddle_tab_stride1_arr; /**< Per stage reordered twiddle pointer (offset 1) */ \ + const uint32_t *rearranged_twiddle_tab_stride2_arr; /**< Per stage reordered twiddle pointer (offset 2) */ \ + const uint32_t *rearranged_twiddle_tab_stride3_arr; /**< Per stage reordered twiddle pointer (offset 3) */ \ + const q15_t *rearranged_twiddle_stride1; /**< reordered twiddle offset 1 storage */ \ + const q15_t *rearranged_twiddle_stride2; /**< reordered twiddle offset 2 storage */ \ + const q15_t *rearranged_twiddle_stride3; +#endif + } arm_cfft_instance_q15; + +arm_status arm_cfft_init_q15( + arm_cfft_instance_q15 * S, + uint16_t fftLen); + +void arm_cfft_q15( + const arm_cfft_instance_q15 * S, + q15_t * p1, + uint8_t ifftFlag, + uint8_t bitReverseFlag); + + /** + * @brief Instance structure for the fixed-point CFFT/CIFFT function. + */ + typedef struct + { + uint16_t fftLen; /**< length of the FFT. */ + const q31_t *pTwiddle; /**< points to the Twiddle factor table. */ + const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ + uint16_t bitRevLength; /**< bit reversal table length. */ +#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE) + const uint32_t *rearranged_twiddle_tab_stride1_arr; /**< Per stage reordered twiddle pointer (offset 1) */ \ + const uint32_t *rearranged_twiddle_tab_stride2_arr; /**< Per stage reordered twiddle pointer (offset 2) */ \ + const uint32_t *rearranged_twiddle_tab_stride3_arr; /**< Per stage reordered twiddle pointer (offset 3) */ \ + const q31_t *rearranged_twiddle_stride1; /**< reordered twiddle offset 1 storage */ \ + const q31_t *rearranged_twiddle_stride2; /**< reordered twiddle offset 2 storage */ \ + const q31_t *rearranged_twiddle_stride3; +#endif + } arm_cfft_instance_q31; + +arm_status arm_cfft_init_q31( + arm_cfft_instance_q31 * S, + uint16_t fftLen); + +void arm_cfft_q31( + const arm_cfft_instance_q31 * S, + q31_t * p1, + uint8_t ifftFlag, + uint8_t bitReverseFlag); + + /** + * @brief Instance structure for the floating-point CFFT/CIFFT function. + */ + typedef struct + { + uint16_t fftLen; /**< length of the FFT. */ + const float32_t *pTwiddle; /**< points to the Twiddle factor table. */ + const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ + uint16_t bitRevLength; /**< bit reversal table length. */ +#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) + const uint32_t *rearranged_twiddle_tab_stride1_arr; /**< Per stage reordered twiddle pointer (offset 1) */ \ + const uint32_t *rearranged_twiddle_tab_stride2_arr; /**< Per stage reordered twiddle pointer (offset 2) */ \ + const uint32_t *rearranged_twiddle_tab_stride3_arr; /**< Per stage reordered twiddle pointer (offset 3) */ \ + const float32_t *rearranged_twiddle_stride1; /**< reordered twiddle offset 1 storage */ \ + const float32_t *rearranged_twiddle_stride2; /**< reordered twiddle offset 2 storage */ \ + const float32_t *rearranged_twiddle_stride3; +#endif + } arm_cfft_instance_f32; + + + + arm_status arm_cfft_init_f32( + arm_cfft_instance_f32 * S, + uint16_t fftLen); + + void arm_cfft_f32( + const arm_cfft_instance_f32 * S, + float32_t * p1, + uint8_t ifftFlag, + uint8_t bitReverseFlag); + + + /** + * @brief Instance structure for the Double Precision Floating-point CFFT/CIFFT function. + */ + typedef struct + { + uint16_t fftLen; /**< length of the FFT. */ + const float64_t *pTwiddle; /**< points to the Twiddle factor table. */ + const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ + uint16_t bitRevLength; /**< bit reversal table length. */ + } arm_cfft_instance_f64; + + arm_status arm_cfft_init_f64( + arm_cfft_instance_f64 * S, + uint16_t fftLen); + + void arm_cfft_f64( + const arm_cfft_instance_f64 * S, + float64_t * p1, + uint8_t ifftFlag, + uint8_t bitReverseFlag); + + /** + * @brief Instance structure for the Q15 RFFT/RIFFT function. + */ + typedef struct + { + uint32_t fftLenReal; /**< length of the real FFT. */ + uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ + uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ + uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ + const q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ + const q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ +#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE) + arm_cfft_instance_q15 cfftInst; +#else + const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */ +#endif + } arm_rfft_instance_q15; + + arm_status arm_rfft_init_q15( + arm_rfft_instance_q15 * S, + uint32_t fftLenReal, + uint32_t ifftFlagR, + uint32_t bitReverseFlag); + + void arm_rfft_q15( + const arm_rfft_instance_q15 * S, + q15_t * pSrc, + q15_t * pDst); + + /** + * @brief Instance structure for the Q31 RFFT/RIFFT function. + */ + typedef struct + { + uint32_t fftLenReal; /**< length of the real FFT. */ + uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ + uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ + uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ + const q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ + const q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ +#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE) + arm_cfft_instance_q31 cfftInst; +#else + const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */ +#endif + } arm_rfft_instance_q31; + + arm_status arm_rfft_init_q31( + arm_rfft_instance_q31 * S, + uint32_t fftLenReal, + uint32_t ifftFlagR, + uint32_t bitReverseFlag); + + void arm_rfft_q31( + const arm_rfft_instance_q31 * S, + q31_t * pSrc, + q31_t * pDst); + + /** + * @brief Instance structure for the floating-point RFFT/RIFFT function. + */ + typedef struct + { + uint32_t fftLenReal; /**< length of the real FFT. */ + uint16_t fftLenBy2; /**< length of the complex FFT. */ + uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ + uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ + uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ + const float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ + const float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ + arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ + } arm_rfft_instance_f32; + + arm_status arm_rfft_init_f32( + arm_rfft_instance_f32 * S, + arm_cfft_radix4_instance_f32 * S_CFFT, + uint32_t fftLenReal, + uint32_t ifftFlagR, + uint32_t bitReverseFlag); + + void arm_rfft_f32( + const arm_rfft_instance_f32 * S, + float32_t * pSrc, + float32_t * pDst); + + /** + * @brief Instance structure for the Double Precision Floating-point RFFT/RIFFT function. + */ +typedef struct + { + arm_cfft_instance_f64 Sint; /**< Internal CFFT structure. */ + uint16_t fftLenRFFT; /**< length of the real sequence */ + const float64_t * pTwiddleRFFT; /**< Twiddle factors real stage */ + } arm_rfft_fast_instance_f64 ; + +arm_status arm_rfft_fast_init_f64 ( + arm_rfft_fast_instance_f64 * S, + uint16_t fftLen); + + +void arm_rfft_fast_f64( + arm_rfft_fast_instance_f64 * S, + float64_t * p, float64_t * pOut, + uint8_t ifftFlag); + + + /** + * @brief Instance structure for the floating-point RFFT/RIFFT function. + */ +typedef struct + { + arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */ + uint16_t fftLenRFFT; /**< length of the real sequence */ + const float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */ + } arm_rfft_fast_instance_f32 ; + +arm_status arm_rfft_fast_init_f32 ( + arm_rfft_fast_instance_f32 * S, + uint16_t fftLen); + + + void arm_rfft_fast_f32( + const arm_rfft_fast_instance_f32 * S, + float32_t * p, float32_t * pOut, + uint8_t ifftFlag); + + /** + * @brief Instance structure for the floating-point DCT4/IDCT4 function. + */ + typedef struct + { + uint16_t N; /**< length of the DCT4. */ + uint16_t Nby2; /**< half of the length of the DCT4. */ + float32_t normalize; /**< normalizing factor. */ + const float32_t *pTwiddle; /**< points to the twiddle factor table. */ + const float32_t *pCosFactor; /**< points to the cosFactor table. */ + arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */ + arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ + } arm_dct4_instance_f32; + + + /** + * @brief Initialization function for the floating-point DCT4/IDCT4. + * @param[in,out] S points to an instance of floating-point DCT4/IDCT4 structure. + * @param[in] S_RFFT points to an instance of floating-point RFFT/RIFFT structure. + * @param[in] S_CFFT points to an instance of floating-point CFFT/CIFFT structure. + * @param[in] N length of the DCT4. + * @param[in] Nby2 half of the length of the DCT4. + * @param[in] normalize normalizing factor. + * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length. + */ + arm_status arm_dct4_init_f32( + arm_dct4_instance_f32 * S, + arm_rfft_instance_f32 * S_RFFT, + arm_cfft_radix4_instance_f32 * S_CFFT, + uint16_t N, + uint16_t Nby2, + float32_t normalize); + + + /** + * @brief Processing function for the floating-point DCT4/IDCT4. + * @param[in] S points to an instance of the floating-point DCT4/IDCT4 structure. + * @param[in] pState points to state buffer. + * @param[in,out] pInlineBuffer points to the in-place input and output buffer. + */ + void arm_dct4_f32( + const arm_dct4_instance_f32 * S, + float32_t * pState, + float32_t * pInlineBuffer); + + + /** + * @brief Instance structure for the Q31 DCT4/IDCT4 function. + */ + typedef struct + { + uint16_t N; /**< length of the DCT4. */ + uint16_t Nby2; /**< half of the length of the DCT4. */ + q31_t normalize; /**< normalizing factor. */ + const q31_t *pTwiddle; /**< points to the twiddle factor table. */ + const q31_t *pCosFactor; /**< points to the cosFactor table. */ + arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */ + arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */ + } arm_dct4_instance_q31; + + + /** + * @brief Initialization function for the Q31 DCT4/IDCT4. + * @param[in,out] S points to an instance of Q31 DCT4/IDCT4 structure. + * @param[in] S_RFFT points to an instance of Q31 RFFT/RIFFT structure + * @param[in] S_CFFT points to an instance of Q31 CFFT/CIFFT structure + * @param[in] N length of the DCT4. + * @param[in] Nby2 half of the length of the DCT4. + * @param[in] normalize normalizing factor. + * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. + */ + arm_status arm_dct4_init_q31( + arm_dct4_instance_q31 * S, + arm_rfft_instance_q31 * S_RFFT, + arm_cfft_radix4_instance_q31 * S_CFFT, + uint16_t N, + uint16_t Nby2, + q31_t normalize); + + + /** + * @brief Processing function for the Q31 DCT4/IDCT4. + * @param[in] S points to an instance of the Q31 DCT4 structure. + * @param[in] pState points to state buffer. + * @param[in,out] pInlineBuffer points to the in-place input and output buffer. + */ + void arm_dct4_q31( + const arm_dct4_instance_q31 * S, + q31_t * pState, + q31_t * pInlineBuffer); + + + /** + * @brief Instance structure for the Q15 DCT4/IDCT4 function. + */ + typedef struct + { + uint16_t N; /**< length of the DCT4. */ + uint16_t Nby2; /**< half of the length of the DCT4. */ + q15_t normalize; /**< normalizing factor. */ + const q15_t *pTwiddle; /**< points to the twiddle factor table. */ + const q15_t *pCosFactor; /**< points to the cosFactor table. */ + arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */ + arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */ + } arm_dct4_instance_q15; + + + /** + * @brief Initialization function for the Q15 DCT4/IDCT4. + * @param[in,out] S points to an instance of Q15 DCT4/IDCT4 structure. + * @param[in] S_RFFT points to an instance of Q15 RFFT/RIFFT structure. + * @param[in] S_CFFT points to an instance of Q15 CFFT/CIFFT structure. + * @param[in] N length of the DCT4. + * @param[in] Nby2 half of the length of the DCT4. + * @param[in] normalize normalizing factor. + * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. + */ + arm_status arm_dct4_init_q15( + arm_dct4_instance_q15 * S, + arm_rfft_instance_q15 * S_RFFT, + arm_cfft_radix4_instance_q15 * S_CFFT, + uint16_t N, + uint16_t Nby2, + q15_t normalize); + + + /** + * @brief Processing function for the Q15 DCT4/IDCT4. + * @param[in] S points to an instance of the Q15 DCT4 structure. + * @param[in] pState points to state buffer. + * @param[in,out] pInlineBuffer points to the in-place input and output buffer. + */ + void arm_dct4_q15( + const arm_dct4_instance_q15 * S, + q15_t * pState, + q15_t * pInlineBuffer); + + /** + * @brief Instance structure for the Floating-point MFCC function. + */ +typedef struct + { + const float32_t *dctCoefs; /**< Internal DCT coefficients */ + const float32_t *filterCoefs; /**< Internal Mel filter coefficients */ + const float32_t *windowCoefs; /**< Windowing coefficients */ + const uint32_t *filterPos; /**< Internal Mel filter positions in spectrum */ + const uint32_t *filterLengths; /**< Internal Mel filter lengths */ + uint32_t fftLen; /**< FFT length */ + uint32_t nbMelFilters; /**< Number of Mel filters */ + uint32_t nbDctOutputs; /**< Number of DCT outputs */ +#if defined(ARM_MFCC_CFFT_BASED) + /* Implementation of the MFCC is using a CFFT */ + arm_cfft_instance_f32 cfft; /**< Internal CFFT instance */ +#else + /* Implementation of the MFCC is using a RFFT (default) */ + arm_rfft_fast_instance_f32 rfft; +#endif + } arm_mfcc_instance_f32 ; + +arm_status arm_mfcc_init_f32( + arm_mfcc_instance_f32 * S, + uint32_t fftLen, + uint32_t nbMelFilters, + uint32_t nbDctOutputs, + const float32_t *dctCoefs, + const uint32_t *filterPos, + const uint32_t *filterLengths, + const float32_t *filterCoefs, + const float32_t *windowCoefs + ); + + +/** + @brief MFCC F32 + @param[in] S points to the mfcc instance structure + @param[in] pSrc points to the input samples + @param[out] pDst points to the output MFCC values + @param[inout] pTmp points to a temporary buffer of complex + @return none + */ + void arm_mfcc_f32( + const arm_mfcc_instance_f32 * S, + float32_t *pSrc, + float32_t *pDst, + float32_t *pTmp + ); + +typedef struct + { + const q31_t *dctCoefs; /**< Internal DCT coefficients */ + const q31_t *filterCoefs; /**< Internal Mel filter coefficients */ + const q31_t *windowCoefs; /**< Windowing coefficients */ + const uint32_t *filterPos; /**< Internal Mel filter positions in spectrum */ + const uint32_t *filterLengths; /**< Internal Mel filter lengths */ + uint32_t fftLen; /**< FFT length */ + uint32_t nbMelFilters; /**< Number of Mel filters */ + uint32_t nbDctOutputs; /**< Number of DCT outputs */ +#if defined(ARM_MFCC_CFFT_BASED) + /* Implementation of the MFCC is using a CFFT */ + arm_cfft_instance_q31 cfft; /**< Internal CFFT instance */ +#else + /* Implementation of the MFCC is using a RFFT (default) */ + arm_rfft_instance_q31 rfft; +#endif + } arm_mfcc_instance_q31 ; + +arm_status arm_mfcc_init_q31( + arm_mfcc_instance_q31 * S, + uint32_t fftLen, + uint32_t nbMelFilters, + uint32_t nbDctOutputs, + const q31_t *dctCoefs, + const uint32_t *filterPos, + const uint32_t *filterLengths, + const q31_t *filterCoefs, + const q31_t *windowCoefs + ); + + +/** + @brief MFCC Q31 + @param[in] S points to the mfcc instance structure + @param[in] pSrc points to the input samples + @param[out] pDst points to the output MFCC values + @param[inout] pTmp points to a temporary buffer of complex + @return none + */ + arm_status arm_mfcc_q31( + const arm_mfcc_instance_q31 * S, + q31_t *pSrc, + q31_t *pDst, + q31_t *pTmp + ); + +typedef struct + { + const q15_t *dctCoefs; /**< Internal DCT coefficients */ + const q15_t *filterCoefs; /**< Internal Mel filter coefficients */ + const q15_t *windowCoefs; /**< Windowing coefficients */ + const uint32_t *filterPos; /**< Internal Mel filter positions in spectrum */ + const uint32_t *filterLengths; /**< Internal Mel filter lengths */ + uint32_t fftLen; /**< FFT length */ + uint32_t nbMelFilters; /**< Number of Mel filters */ + uint32_t nbDctOutputs; /**< Number of DCT outputs */ +#if defined(ARM_MFCC_CFFT_BASED) + /* Implementation of the MFCC is using a CFFT */ + arm_cfft_instance_q15 cfft; /**< Internal CFFT instance */ +#else + /* Implementation of the MFCC is using a RFFT (default) */ + arm_rfft_instance_q15 rfft; +#endif + } arm_mfcc_instance_q15 ; + +arm_status arm_mfcc_init_q15( + arm_mfcc_instance_q15 * S, + uint32_t fftLen, + uint32_t nbMelFilters, + uint32_t nbDctOutputs, + const q15_t *dctCoefs, + const uint32_t *filterPos, + const uint32_t *filterLengths, + const q15_t *filterCoefs, + const q15_t *windowCoefs + ); + + +/** + @brief MFCC Q15 + @param[in] S points to the mfcc instance structure + @param[in] pSrc points to the input samples + @param[out] pDst points to the output MFCC values in q8.7 format + @param[inout] pTmp points to a temporary buffer of complex + @return error status + */ + arm_status arm_mfcc_q15( + const arm_mfcc_instance_q15 * S, + q15_t *pSrc, + q15_t *pDst, + q31_t *pTmp + ); + + +#ifdef __cplusplus +} +#endif + +#endif /* ifndef _TRANSFORM_FUNCTIONS_H_ */ diff --git a/Drivers/CMSIS/DSP/Include/dsp/transform_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/transform_functions_f16.h new file mode 100644 index 0000000..4d8cc22 --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/dsp/transform_functions_f16.h @@ -0,0 +1,208 @@ +/****************************************************************************** + * @file transform_functions_f16.h + * @brief Public header file for CMSIS DSP Library + * @version V1.10.0 + * @date 08 July 2021 + * Target Processor: Cortex-M and Cortex-A cores + ******************************************************************************/ +/* + * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + + +#ifndef _TRANSFORM_FUNCTIONS_F16_H_ +#define _TRANSFORM_FUNCTIONS_F16_H_ + +#include "arm_math_types_f16.h" +#include "arm_math_memory.h" + +#include "dsp/none.h" +#include "dsp/utils.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + + + +#if defined(ARM_FLOAT16_SUPPORTED) + + + /** + * @brief Instance structure for the floating-point CFFT/CIFFT function. + */ + typedef struct + { + uint16_t fftLen; /**< length of the FFT. */ + uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ + uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ + const float16_t *pTwiddle; /**< points to the Twiddle factor table. */ + const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ + uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ + uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ + float16_t onebyfftLen; /**< value of 1/fftLen. */ + } arm_cfft_radix2_instance_f16; + + /** + * @brief Instance structure for the floating-point CFFT/CIFFT function. + */ + typedef struct + { + uint16_t fftLen; /**< length of the FFT. */ + uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ + uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ + const float16_t *pTwiddle; /**< points to the Twiddle factor table. */ + const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ + uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ + uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ + float16_t onebyfftLen; /**< value of 1/fftLen. */ + } arm_cfft_radix4_instance_f16; + + /** + * @brief Instance structure for the floating-point CFFT/CIFFT function. + */ + typedef struct + { + uint16_t fftLen; /**< length of the FFT. */ + const float16_t *pTwiddle; /**< points to the Twiddle factor table. */ + const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ + uint16_t bitRevLength; /**< bit reversal table length. */ +#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) + const uint32_t *rearranged_twiddle_tab_stride1_arr; /**< Per stage reordered twiddle pointer (offset 1) */ \ + const uint32_t *rearranged_twiddle_tab_stride2_arr; /**< Per stage reordered twiddle pointer (offset 2) */ \ + const uint32_t *rearranged_twiddle_tab_stride3_arr; /**< Per stage reordered twiddle pointer (offset 3) */ \ + const float16_t *rearranged_twiddle_stride1; /**< reordered twiddle offset 1 storage */ \ + const float16_t *rearranged_twiddle_stride2; /**< reordered twiddle offset 2 storage */ \ + const float16_t *rearranged_twiddle_stride3; +#endif + } arm_cfft_instance_f16; + + + arm_status arm_cfft_init_f16( + arm_cfft_instance_f16 * S, + uint16_t fftLen); + + void arm_cfft_f16( + const arm_cfft_instance_f16 * S, + float16_t * p1, + uint8_t ifftFlag, + uint8_t bitReverseFlag); + + /** + * @brief Instance structure for the floating-point RFFT/RIFFT function. + */ +typedef struct + { + arm_cfft_instance_f16 Sint; /**< Internal CFFT structure. */ + uint16_t fftLenRFFT; /**< length of the real sequence */ + const float16_t * pTwiddleRFFT; /**< Twiddle factors real stage */ + } arm_rfft_fast_instance_f16 ; + +arm_status arm_rfft_fast_init_f16 ( + arm_rfft_fast_instance_f16 * S, + uint16_t fftLen); + + + void arm_rfft_fast_f16( + const arm_rfft_fast_instance_f16 * S, + float16_t * p, float16_t * pOut, + uint8_t ifftFlag); + +/* Deprecated */ + arm_status arm_cfft_radix4_init_f16( + arm_cfft_radix4_instance_f16 * S, + uint16_t fftLen, + uint8_t ifftFlag, + uint8_t bitReverseFlag); + +/* Deprecated */ + void arm_cfft_radix4_f16( + const arm_cfft_radix4_instance_f16 * S, + float16_t * pSrc); + + +/* Deprecated */ + arm_status arm_cfft_radix2_init_f16( + arm_cfft_radix2_instance_f16 * S, + uint16_t fftLen, + uint8_t ifftFlag, + uint8_t bitReverseFlag); + +/* Deprecated */ + void arm_cfft_radix2_f16( + const arm_cfft_radix2_instance_f16 * S, + float16_t * pSrc); + + /** + * @brief Instance structure for the Floating-point MFCC function. + */ +typedef struct + { + const float16_t *dctCoefs; /**< Internal DCT coefficients */ + const float16_t *filterCoefs; /**< Internal Mel filter coefficients */ + const float16_t *windowCoefs; /**< Windowing coefficients */ + const uint32_t *filterPos; /**< Internal Mel filter positions in spectrum */ + const uint32_t *filterLengths; /**< Internal Mel filter lengths */ + uint32_t fftLen; /**< FFT length */ + uint32_t nbMelFilters; /**< Number of Mel filters */ + uint32_t nbDctOutputs; /**< Number of DCT outputs */ +#if defined(ARM_MFCC_CFFT_BASED) + /* Implementation of the MFCC is using a CFFT */ + arm_cfft_instance_f16 cfft; /**< Internal CFFT instance */ +#else + /* Implementation of the MFCC is using a RFFT (default) */ + arm_rfft_fast_instance_f16 rfft; +#endif + } arm_mfcc_instance_f16 ; + +arm_status arm_mfcc_init_f16( + arm_mfcc_instance_f16 * S, + uint32_t fftLen, + uint32_t nbMelFilters, + uint32_t nbDctOutputs, + const float16_t *dctCoefs, + const uint32_t *filterPos, + const uint32_t *filterLengths, + const float16_t *filterCoefs, + const float16_t *windowCoefs + ); + + +/** + @brief MFCC F16 + @param[in] S points to the mfcc instance structure + @param[in] pSrc points to the input samples + @param[out] pDst points to the output MFCC values + @param[inout] pTmp points to a temporary buffer of complex + @return none + */ + void arm_mfcc_f16( + const arm_mfcc_instance_f16 * S, + float16_t *pSrc, + float16_t *pDst, + float16_t *pTmp + ); + + +#endif /* defined(ARM_FLOAT16_SUPPORTED)*/ + +#ifdef __cplusplus +} +#endif + +#endif /* ifndef _TRANSFORM_FUNCTIONS_F16_H_ */ diff --git a/Drivers/CMSIS/DSP/Include/dsp/utils.h b/Drivers/CMSIS/DSP/Include/dsp/utils.h new file mode 100644 index 0000000..7f5acb3 --- /dev/null +++ b/Drivers/CMSIS/DSP/Include/dsp/utils.h @@ -0,0 +1,240 @@ +/****************************************************************************** + * @file arm_math_utils.h + * @brief Public header file for CMSIS DSP Library + * @version V1.9.0 + * @date 20. July 2020 + ******************************************************************************/ +/* + * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef _ARM_MATH_UTILS_H_ + +#define _ARM_MATH_UTILS_H_ + +#include "arm_math_types.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + + /** + * @brief Macros required for reciprocal calculation in Normalized LMS + */ + +#define INDEX_MASK 0x0000003F + + +#define SQ(x) ((x) * (x)) + +#define ROUND_UP(N, S) ((((N) + (S) - 1) / (S)) * (S)) + + + /** + * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type. + */ + __STATIC_FORCEINLINE uint32_t arm_recip_q31( + q31_t in, + q31_t * dst, + const q31_t * pRecipTable) + { + q31_t out; + uint32_t tempVal; + uint32_t index, i; + uint32_t signBits; + + if (in > 0) + { + signBits = ((uint32_t) (__CLZ( in) - 1)); + } + else + { + signBits = ((uint32_t) (__CLZ(-in) - 1)); + } + + /* Convert input sample to 1.31 format */ + in = (in << signBits); + + /* calculation of index for initial approximated Val */ + index = (uint32_t)(in >> 24); + index = (index & INDEX_MASK); + + /* 1.31 with exp 1 */ + out = pRecipTable[index]; + + /* calculation of reciprocal value */ + /* running approximation for two iterations */ + for (i = 0U; i < 2U; i++) + { + tempVal = (uint32_t) (((q63_t) in * out) >> 31); + tempVal = 0x7FFFFFFFu - tempVal; + /* 1.31 with exp 1 */ + /* out = (q31_t) (((q63_t) out * tempVal) >> 30); */ + out = clip_q63_to_q31(((q63_t) out * tempVal) >> 30); + } + + /* write output */ + *dst = out; + + /* return num of signbits of out = 1/in value */ + return (signBits + 1U); + } + + + /** + * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type. + */ + __STATIC_FORCEINLINE uint32_t arm_recip_q15( + q15_t in, + q15_t * dst, + const q15_t * pRecipTable) + { + q15_t out = 0; + uint32_t tempVal = 0; + uint32_t index = 0, i = 0; + uint32_t signBits = 0; + + if (in > 0) + { + signBits = ((uint32_t)(__CLZ( in) - 17)); + } + else + { + signBits = ((uint32_t)(__CLZ(-in) - 17)); + } + + /* Convert input sample to 1.15 format */ + in = (in << signBits); + + /* calculation of index for initial approximated Val */ + index = (uint32_t)(in >> 8); + index = (index & INDEX_MASK); + + /* 1.15 with exp 1 */ + out = pRecipTable[index]; + + /* calculation of reciprocal value */ + /* running approximation for two iterations */ + for (i = 0U; i < 2U; i++) + { + tempVal = (uint32_t) (((q31_t) in * out) >> 15); + tempVal = 0x7FFFu - tempVal; + /* 1.15 with exp 1 */ + out = (q15_t) (((q31_t) out * tempVal) >> 14); + /* out = clip_q31_to_q15(((q31_t) out * tempVal) >> 14); */ + } + + /* write output */ + *dst = out; + + /* return num of signbits of out = 1/in value */ + return (signBits + 1); + } + + +/** + * @brief 64-bit to 32-bit unsigned normalization + * @param[in] in is input unsigned long long value + * @param[out] normalized is the 32-bit normalized value + * @param[out] norm is norm scale + */ +__STATIC_INLINE void arm_norm_64_to_32u(uint64_t in, int32_t * normalized, int32_t *norm) +{ + int32_t n1; + int32_t hi = (int32_t) (in >> 32); + int32_t lo = (int32_t) ((in << 32) >> 32); + + n1 = __CLZ(hi) - 32; + if (!n1) + { + /* + * input fits in 32-bit + */ + n1 = __CLZ(lo); + if (!n1) + { + /* + * MSB set, need to scale down by 1 + */ + *norm = -1; + *normalized = (((uint32_t) lo) >> 1); + } else + { + if (n1 == 32) + { + /* + * input is zero + */ + *norm = 0; + *normalized = 0; + } else + { + /* + * 32-bit normalization + */ + *norm = n1 - 1; + *normalized = lo << *norm; + } + } + } else + { + /* + * input fits in 64-bit + */ + n1 = 1 - n1; + *norm = -n1; + /* + * 64 bit normalization + */ + *normalized = (((uint32_t) lo) >> n1) | (hi << (32 - n1)); + } +} + +__STATIC_INLINE q31_t arm_div_q63_to_q31(q63_t num, q31_t den) +{ + q31_t result; + uint64_t absNum; + int32_t normalized; + int32_t norm; + + /* + * if sum fits in 32bits + * avoid costly 64-bit division + */ + absNum = num > 0 ? num : -num; + arm_norm_64_to_32u(absNum, &normalized, &norm); + if (norm > 0) + /* + * 32-bit division + */ + result = (q31_t) num / den; + else + /* + * 64-bit division + */ + result = (q31_t) (num / den); + + return result; +} + + +#ifdef __cplusplus +} +#endif + +#endif /*ifndef _ARM_MATH_UTILS_H_ */ |