summaryrefslogtreecommitdiffstats
path: root/Drivers/CMSIS/DSP/Include/dsp
diff options
context:
space:
mode:
Diffstat (limited to 'Drivers/CMSIS/DSP/Include/dsp')
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/basic_math_functions.h880
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/basic_math_functions_f16.h168
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/bayes_functions.h89
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/bayes_functions_f16.h80
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/complex_math_functions.h345
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/complex_math_functions_f16.h123
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/controller_functions.h791
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/controller_functions_f16.h41
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/distance_functions.h341
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/distance_functions_f16.h180
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/fast_math_functions.h389
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/fast_math_functions_f16.h125
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/filtering_functions.h2529
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/filtering_functions_f16.h237
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/interpolation_functions.h319
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/interpolation_functions_f16.h107
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/matrix_functions.h757
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/matrix_functions_f16.h221
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/none.h576
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/quaternion_math_functions.h159
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/statistics_functions.h977
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/statistics_functions_f16.h266
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/support_functions.h453
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/support_functions_f16.h187
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/svm_defines.h46
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/svm_functions.h299
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/svm_functions_f16.h281
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/transform_functions.h735
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/transform_functions_f16.h208
-rw-r--r--Drivers/CMSIS/DSP/Include/dsp/utils.h240
30 files changed, 12149 insertions, 0 deletions
diff --git a/Drivers/CMSIS/DSP/Include/dsp/basic_math_functions.h b/Drivers/CMSIS/DSP/Include/dsp/basic_math_functions.h
new file mode 100644
index 0000000..dcc1f2a
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/basic_math_functions.h
@@ -0,0 +1,880 @@
+/******************************************************************************
+ * @file basic_math_functions.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _BASIC_MATH_FUNCTIONS_H_
+#define _BASIC_MATH_FUNCTIONS_H_
+
+#include "arm_math_types.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+/**
+ * @defgroup groupMath Basic Math Functions
+ */
+
+ /**
+ * @brief Q7 vector multiplication.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_mult_q7(
+ const q7_t * pSrcA,
+ const q7_t * pSrcB,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q15 vector multiplication.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_mult_q15(
+ const q15_t * pSrcA,
+ const q15_t * pSrcB,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q31 vector multiplication.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_mult_q31(
+ const q31_t * pSrcA,
+ const q31_t * pSrcB,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Floating-point vector multiplication.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_mult_f32(
+ const float32_t * pSrcA,
+ const float32_t * pSrcB,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+
+/**
+ * @brief Floating-point vector multiplication.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+void arm_mult_f64(
+const float64_t * pSrcA,
+const float64_t * pSrcB,
+ float64_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @brief Floating-point vector addition.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_add_f32(
+ const float32_t * pSrcA,
+ const float32_t * pSrcB,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+
+/**
+ * @brief Floating-point vector addition.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_add_f64(
+ const float64_t * pSrcA,
+ const float64_t * pSrcB,
+ float64_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @brief Q7 vector addition.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_add_q7(
+ const q7_t * pSrcA,
+ const q7_t * pSrcB,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q15 vector addition.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_add_q15(
+ const q15_t * pSrcA,
+ const q15_t * pSrcB,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q31 vector addition.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_add_q31(
+ const q31_t * pSrcA,
+ const q31_t * pSrcB,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Floating-point vector subtraction.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_sub_f32(
+ const float32_t * pSrcA,
+ const float32_t * pSrcB,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @brief Floating-point vector subtraction.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_sub_f64(
+ const float64_t * pSrcA,
+ const float64_t * pSrcB,
+ float64_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @brief Q7 vector subtraction.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_sub_q7(
+ const q7_t * pSrcA,
+ const q7_t * pSrcB,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q15 vector subtraction.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_sub_q15(
+ const q15_t * pSrcA,
+ const q15_t * pSrcB,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q31 vector subtraction.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_sub_q31(
+ const q31_t * pSrcA,
+ const q31_t * pSrcB,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Multiplies a floating-point vector by a scalar.
+ * @param[in] pSrc points to the input vector
+ * @param[in] scale scale factor to be applied
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_scale_f32(
+ const float32_t * pSrc,
+ float32_t scale,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @brief Multiplies a floating-point vector by a scalar.
+ * @param[in] pSrc points to the input vector
+ * @param[in] scale scale factor to be applied
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_scale_f64(
+ const float64_t * pSrc,
+ float64_t scale,
+ float64_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @brief Multiplies a Q7 vector by a scalar.
+ * @param[in] pSrc points to the input vector
+ * @param[in] scaleFract fractional portion of the scale value
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_scale_q7(
+ const q7_t * pSrc,
+ q7_t scaleFract,
+ int8_t shift,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Multiplies a Q15 vector by a scalar.
+ * @param[in] pSrc points to the input vector
+ * @param[in] scaleFract fractional portion of the scale value
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_scale_q15(
+ const q15_t * pSrc,
+ q15_t scaleFract,
+ int8_t shift,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Multiplies a Q31 vector by a scalar.
+ * @param[in] pSrc points to the input vector
+ * @param[in] scaleFract fractional portion of the scale value
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_scale_q31(
+ const q31_t * pSrc,
+ q31_t scaleFract,
+ int8_t shift,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q7 vector absolute value.
+ * @param[in] pSrc points to the input buffer
+ * @param[out] pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_abs_q7(
+ const q7_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Floating-point vector absolute value.
+ * @param[in] pSrc points to the input buffer
+ * @param[out] pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_abs_f32(
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+
+/**
+ * @brief Floating-point vector absolute value.
+ * @param[in] pSrc points to the input buffer
+ * @param[out] pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ */
+void arm_abs_f64(
+const float64_t * pSrc,
+ float64_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @brief Q15 vector absolute value.
+ * @param[in] pSrc points to the input buffer
+ * @param[out] pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_abs_q15(
+ const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q31 vector absolute value.
+ * @param[in] pSrc points to the input buffer
+ * @param[out] pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_abs_q31(
+ const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Dot product of floating-point vectors.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] result output result returned here
+ */
+ void arm_dot_prod_f32(
+ const float32_t * pSrcA,
+ const float32_t * pSrcB,
+ uint32_t blockSize,
+ float32_t * result);
+
+
+
+/**
+ * @brief Dot product of floating-point vectors.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] result output result returned here
+ */
+void arm_dot_prod_f64(
+const float64_t * pSrcA,
+const float64_t * pSrcB,
+ uint32_t blockSize,
+ float64_t * result);
+
+
+
+ /**
+ * @brief Dot product of Q7 vectors.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] result output result returned here
+ */
+ void arm_dot_prod_q7(
+ const q7_t * pSrcA,
+ const q7_t * pSrcB,
+ uint32_t blockSize,
+ q31_t * result);
+
+
+ /**
+ * @brief Dot product of Q15 vectors.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] result output result returned here
+ */
+ void arm_dot_prod_q15(
+ const q15_t * pSrcA,
+ const q15_t * pSrcB,
+ uint32_t blockSize,
+ q63_t * result);
+
+
+ /**
+ * @brief Dot product of Q31 vectors.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] result output result returned here
+ */
+ void arm_dot_prod_q31(
+ const q31_t * pSrcA,
+ const q31_t * pSrcB,
+ uint32_t blockSize,
+ q63_t * result);
+
+
+ /**
+ * @brief Shifts the elements of a Q7 vector a specified number of bits.
+ * @param[in] pSrc points to the input vector
+ * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_shift_q7(
+ const q7_t * pSrc,
+ int8_t shiftBits,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Shifts the elements of a Q15 vector a specified number of bits.
+ * @param[in] pSrc points to the input vector
+ * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_shift_q15(
+ const q15_t * pSrc,
+ int8_t shiftBits,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Shifts the elements of a Q31 vector a specified number of bits.
+ * @param[in] pSrc points to the input vector
+ * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_shift_q31(
+ const q31_t * pSrc,
+ int8_t shiftBits,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+/**
+ * @brief Adds a constant offset to a floating-point vector.
+ * @param[in] pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+void arm_offset_f64(
+const float64_t * pSrc,
+ float64_t offset,
+ float64_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @brief Adds a constant offset to a floating-point vector.
+ * @param[in] pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_offset_f32(
+ const float32_t * pSrc,
+ float32_t offset,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @brief Adds a constant offset to a Q7 vector.
+ * @param[in] pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_offset_q7(
+ const q7_t * pSrc,
+ q7_t offset,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Adds a constant offset to a Q15 vector.
+ * @param[in] pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_offset_q15(
+ const q15_t * pSrc,
+ q15_t offset,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Adds a constant offset to a Q31 vector.
+ * @param[in] pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_offset_q31(
+ const q31_t * pSrc,
+ q31_t offset,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Negates the elements of a floating-point vector.
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_negate_f32(
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+
+/**
+ * @brief Negates the elements of a floating-point vector.
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+void arm_negate_f64(
+const float64_t * pSrc,
+ float64_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @brief Negates the elements of a Q7 vector.
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_negate_q7(
+ const q7_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Negates the elements of a Q15 vector.
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_negate_q15(
+ const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Negates the elements of a Q31 vector.
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_negate_q31(
+ const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+/**
+ * @brief Compute the logical bitwise AND of two fixed-point vectors.
+ * @param[in] pSrcA points to input vector A
+ * @param[in] pSrcB points to input vector B
+ * @param[out] pDst points to output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none
+ */
+ void arm_and_u16(
+ const uint16_t * pSrcA,
+ const uint16_t * pSrcB,
+ uint16_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Compute the logical bitwise AND of two fixed-point vectors.
+ * @param[in] pSrcA points to input vector A
+ * @param[in] pSrcB points to input vector B
+ * @param[out] pDst points to output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none
+ */
+ void arm_and_u32(
+ const uint32_t * pSrcA,
+ const uint32_t * pSrcB,
+ uint32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Compute the logical bitwise AND of two fixed-point vectors.
+ * @param[in] pSrcA points to input vector A
+ * @param[in] pSrcB points to input vector B
+ * @param[out] pDst points to output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none
+ */
+ void arm_and_u8(
+ const uint8_t * pSrcA,
+ const uint8_t * pSrcB,
+ uint8_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Compute the logical bitwise OR of two fixed-point vectors.
+ * @param[in] pSrcA points to input vector A
+ * @param[in] pSrcB points to input vector B
+ * @param[out] pDst points to output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none
+ */
+ void arm_or_u16(
+ const uint16_t * pSrcA,
+ const uint16_t * pSrcB,
+ uint16_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Compute the logical bitwise OR of two fixed-point vectors.
+ * @param[in] pSrcA points to input vector A
+ * @param[in] pSrcB points to input vector B
+ * @param[out] pDst points to output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none
+ */
+ void arm_or_u32(
+ const uint32_t * pSrcA,
+ const uint32_t * pSrcB,
+ uint32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Compute the logical bitwise OR of two fixed-point vectors.
+ * @param[in] pSrcA points to input vector A
+ * @param[in] pSrcB points to input vector B
+ * @param[out] pDst points to output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none
+ */
+ void arm_or_u8(
+ const uint8_t * pSrcA,
+ const uint8_t * pSrcB,
+ uint8_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Compute the logical bitwise NOT of a fixed-point vector.
+ * @param[in] pSrc points to input vector
+ * @param[out] pDst points to output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none
+ */
+ void arm_not_u16(
+ const uint16_t * pSrc,
+ uint16_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Compute the logical bitwise NOT of a fixed-point vector.
+ * @param[in] pSrc points to input vector
+ * @param[out] pDst points to output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none
+ */
+ void arm_not_u32(
+ const uint32_t * pSrc,
+ uint32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Compute the logical bitwise NOT of a fixed-point vector.
+ * @param[in] pSrc points to input vector
+ * @param[out] pDst points to output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none
+ */
+ void arm_not_u8(
+ const uint8_t * pSrc,
+ uint8_t * pDst,
+ uint32_t blockSize);
+
+/**
+ * @brief Compute the logical bitwise XOR of two fixed-point vectors.
+ * @param[in] pSrcA points to input vector A
+ * @param[in] pSrcB points to input vector B
+ * @param[out] pDst points to output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none
+ */
+ void arm_xor_u16(
+ const uint16_t * pSrcA,
+ const uint16_t * pSrcB,
+ uint16_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Compute the logical bitwise XOR of two fixed-point vectors.
+ * @param[in] pSrcA points to input vector A
+ * @param[in] pSrcB points to input vector B
+ * @param[out] pDst points to output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none
+ */
+ void arm_xor_u32(
+ const uint32_t * pSrcA,
+ const uint32_t * pSrcB,
+ uint32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Compute the logical bitwise XOR of two fixed-point vectors.
+ * @param[in] pSrcA points to input vector A
+ * @param[in] pSrcB points to input vector B
+ * @param[out] pDst points to output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none
+ */
+ void arm_xor_u8(
+ const uint8_t * pSrcA,
+ const uint8_t * pSrcB,
+ uint8_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ @brief Elementwise floating-point clipping
+ @param[in] pSrc points to input values
+ @param[out] pDst points to output clipped values
+ @param[in] low lower bound
+ @param[in] high higher bound
+ @param[in] numSamples number of samples to clip
+ @return none
+ */
+
+void arm_clip_f32(const float32_t * pSrc,
+ float32_t * pDst,
+ float32_t low,
+ float32_t high,
+ uint32_t numSamples);
+
+ /**
+ @brief Elementwise fixed-point clipping
+ @param[in] pSrc points to input values
+ @param[out] pDst points to output clipped values
+ @param[in] low lower bound
+ @param[in] high higher bound
+ @param[in] numSamples number of samples to clip
+ @return none
+ */
+
+void arm_clip_q31(const q31_t * pSrc,
+ q31_t * pDst,
+ q31_t low,
+ q31_t high,
+ uint32_t numSamples);
+
+ /**
+ @brief Elementwise fixed-point clipping
+ @param[in] pSrc points to input values
+ @param[out] pDst points to output clipped values
+ @param[in] low lower bound
+ @param[in] high higher bound
+ @param[in] numSamples number of samples to clip
+ @return none
+ */
+
+void arm_clip_q15(const q15_t * pSrc,
+ q15_t * pDst,
+ q15_t low,
+ q15_t high,
+ uint32_t numSamples);
+
+ /**
+ @brief Elementwise fixed-point clipping
+ @param[in] pSrc points to input values
+ @param[out] pDst points to output clipped values
+ @param[in] low lower bound
+ @param[in] high higher bound
+ @param[in] numSamples number of samples to clip
+ @return none
+ */
+
+void arm_clip_q7(const q7_t * pSrc,
+ q7_t * pDst,
+ q7_t low,
+ q7_t high,
+ uint32_t numSamples);
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _BASIC_MATH_FUNCTIONS_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/basic_math_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/basic_math_functions_f16.h
new file mode 100644
index 0000000..de9f58b
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/basic_math_functions_f16.h
@@ -0,0 +1,168 @@
+/******************************************************************************
+ * @file basic_math_functions_f16.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _BASIC_MATH_FUNCTIONS_F16_H_
+#define _BASIC_MATH_FUNCTIONS_F16_H_
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#include "arm_math_types_f16.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+
+#if defined(ARM_FLOAT16_SUPPORTED)
+
+
+ /**
+ * @brief Floating-point vector addition.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_add_f16(
+ const float16_t * pSrcA,
+ const float16_t * pSrcB,
+ float16_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Floating-point vector subtraction.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_sub_f16(
+ const float16_t * pSrcA,
+ const float16_t * pSrcB,
+ float16_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Multiplies a floating-point vector by a scalar.
+ * @param[in] pSrc points to the input vector
+ * @param[in] scale scale factor to be applied
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_scale_f16(
+ const float16_t * pSrc,
+ float16_t scale,
+ float16_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Floating-point vector absolute value.
+ * @param[in] pSrc points to the input buffer
+ * @param[out] pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_abs_f16(
+ const float16_t * pSrc,
+ float16_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Adds a constant offset to a floating-point vector.
+ * @param[in] pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_offset_f16(
+ const float16_t * pSrc,
+ float16_t offset,
+ float16_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Dot product of floating-point vectors.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] result output result returned here
+ */
+ void arm_dot_prod_f16(
+ const float16_t * pSrcA,
+ const float16_t * pSrcB,
+ uint32_t blockSize,
+ float16_t * result);
+
+ /**
+ * @brief Floating-point vector multiplication.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_mult_f16(
+ const float16_t * pSrcA,
+ const float16_t * pSrcB,
+ float16_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Negates the elements of a floating-point vector.
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_negate_f16(
+ const float16_t * pSrc,
+ float16_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ @brief Elementwise floating-point clipping
+ @param[in] pSrc points to input values
+ @param[out] pDst points to output clipped values
+ @param[in] low lower bound
+ @param[in] high higher bound
+ @param[in] numSamples number of samples to clip
+ @return none
+ */
+
+void arm_clip_f16(const float16_t * pSrc,
+ float16_t * pDst,
+ float16_t low,
+ float16_t high,
+ uint32_t numSamples);
+
+#endif /* defined(ARM_FLOAT16_SUPPORTED)*/
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _BASIC_MATH_FUNCTIONS_F16_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/bayes_functions.h b/Drivers/CMSIS/DSP/Include/dsp/bayes_functions.h
new file mode 100644
index 0000000..824c50e
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/bayes_functions.h
@@ -0,0 +1,89 @@
+/******************************************************************************
+ * @file bayes_functions.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _BAYES_FUNCTIONS_H_
+#define _BAYES_FUNCTIONS_H_
+
+#include "arm_math_types.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+#include "dsp/statistics_functions.h"
+
+/**
+ * @defgroup groupBayes Bayesian estimators
+ *
+ * Implement the naive gaussian Bayes estimator.
+ * The training must be done from scikit-learn.
+ *
+ * The parameters can be easily
+ * generated from the scikit-learn object. Some examples are given in
+ * DSP/Testing/PatternGeneration/Bayes.py
+ */
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+/**
+ * @brief Instance structure for Naive Gaussian Bayesian estimator.
+ */
+typedef struct
+{
+ uint32_t vectorDimension; /**< Dimension of vector space */
+ uint32_t numberOfClasses; /**< Number of different classes */
+ const float32_t *theta; /**< Mean values for the Gaussians */
+ const float32_t *sigma; /**< Variances for the Gaussians */
+ const float32_t *classPriors; /**< Class prior probabilities */
+ float32_t epsilon; /**< Additive value to variances */
+} arm_gaussian_naive_bayes_instance_f32;
+
+/**
+ * @brief Naive Gaussian Bayesian Estimator
+ *
+ * @param[in] S points to a naive bayes instance structure
+ * @param[in] in points to the elements of the input vector.
+ * @param[out] *pOutputProbabilities points to a buffer of length numberOfClasses containing estimated probabilities
+ * @param[out] *pBufferB points to a temporary buffer of length numberOfClasses
+ * @return The predicted class
+ *
+ */
+
+
+uint32_t arm_gaussian_naive_bayes_predict_f32(const arm_gaussian_naive_bayes_instance_f32 *S,
+ const float32_t * in,
+ float32_t *pOutputProbabilities,
+ float32_t *pBufferB);
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _BAYES_FUNCTIONS_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/bayes_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/bayes_functions_f16.h
new file mode 100644
index 0000000..5c4ae42
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/bayes_functions_f16.h
@@ -0,0 +1,80 @@
+/******************************************************************************
+ * @file bayes_functions_f16.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _BAYES_FUNCTIONS_F16_H_
+#define _BAYES_FUNCTIONS_F16_H_
+
+#include "arm_math_types_f16.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+#include "dsp/statistics_functions_f16.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#if defined(ARM_FLOAT16_SUPPORTED)
+
+/**
+ * @brief Instance structure for Naive Gaussian Bayesian estimator.
+ */
+typedef struct
+{
+ uint32_t vectorDimension; /**< Dimension of vector space */
+ uint32_t numberOfClasses; /**< Number of different classes */
+ const float16_t *theta; /**< Mean values for the Gaussians */
+ const float16_t *sigma; /**< Variances for the Gaussians */
+ const float16_t *classPriors; /**< Class prior probabilities */
+ float16_t epsilon; /**< Additive value to variances */
+} arm_gaussian_naive_bayes_instance_f16;
+
+/**
+ * @brief Naive Gaussian Bayesian Estimator
+ *
+ * @param[in] S points to a naive bayes instance structure
+ * @param[in] in points to the elements of the input vector.
+ * @param[out] *pOutputProbabilities points to a buffer of length numberOfClasses containing estimated probabilities
+ * @param[out] *pBufferB points to a temporary buffer of length numberOfClasses
+ * @return The predicted class
+ *
+ */
+
+
+uint32_t arm_gaussian_naive_bayes_predict_f16(const arm_gaussian_naive_bayes_instance_f16 *S,
+ const float16_t * in,
+ float16_t *pOutputProbabilities,
+ float16_t *pBufferB);
+
+#endif /*defined(ARM_FLOAT16_SUPPORTED)*/
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _BAYES_FUNCTIONS_F16_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/complex_math_functions.h b/Drivers/CMSIS/DSP/Include/dsp/complex_math_functions.h
new file mode 100644
index 0000000..1339eba
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/complex_math_functions.h
@@ -0,0 +1,345 @@
+/******************************************************************************
+ * @file complex_math_functions.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _COMPLEX_MATH_FUNCTIONS_H_
+#define _COMPLEX_MATH_FUNCTIONS_H_
+
+#include "arm_math_types.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+#include "dsp/fast_math_functions.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+/**
+ * @defgroup groupCmplxMath Complex Math Functions
+ * This set of functions operates on complex data vectors.
+ * The data in the complex arrays is stored in an interleaved fashion
+ * (real, imag, real, imag, ...).
+ * In the API functions, the number of samples in a complex array refers
+ * to the number of complex values; the array contains twice this number of
+ * real values.
+ */
+
+ /**
+ * @brief Floating-point complex conjugate.
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
+ void arm_cmplx_conj_f32(
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q31 complex conjugate.
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
+ void arm_cmplx_conj_q31(
+ const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Q15 complex conjugate.
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
+ void arm_cmplx_conj_q15(
+ const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Floating-point complex magnitude squared
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
+ void arm_cmplx_mag_squared_f32(
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Floating-point complex magnitude squared
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
+ void arm_cmplx_mag_squared_f64(
+ const float64_t * pSrc,
+ float64_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Q31 complex magnitude squared
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
+ void arm_cmplx_mag_squared_q31(
+ const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Q15 complex magnitude squared
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
+ void arm_cmplx_mag_squared_q15(
+ const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t numSamples);
+
+
+/**
+ * @brief Floating-point complex magnitude
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
+ void arm_cmplx_mag_f32(
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t numSamples);
+
+
+/**
+ * @brief Floating-point complex magnitude
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
+ void arm_cmplx_mag_f64(
+ const float64_t * pSrc,
+ float64_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Q31 complex magnitude
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
+ void arm_cmplx_mag_q31(
+ const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Q15 complex magnitude
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
+ void arm_cmplx_mag_q15(
+ const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q15 complex magnitude
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
+ void arm_cmplx_mag_fast_q15(
+ const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Q15 complex dot product
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @param[out] realResult real part of the result returned here
+ * @param[out] imagResult imaginary part of the result returned here
+ */
+ void arm_cmplx_dot_prod_q15(
+ const q15_t * pSrcA,
+ const q15_t * pSrcB,
+ uint32_t numSamples,
+ q31_t * realResult,
+ q31_t * imagResult);
+
+
+ /**
+ * @brief Q31 complex dot product
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @param[out] realResult real part of the result returned here
+ * @param[out] imagResult imaginary part of the result returned here
+ */
+ void arm_cmplx_dot_prod_q31(
+ const q31_t * pSrcA,
+ const q31_t * pSrcB,
+ uint32_t numSamples,
+ q63_t * realResult,
+ q63_t * imagResult);
+
+
+ /**
+ * @brief Floating-point complex dot product
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @param[out] realResult real part of the result returned here
+ * @param[out] imagResult imaginary part of the result returned here
+ */
+ void arm_cmplx_dot_prod_f32(
+ const float32_t * pSrcA,
+ const float32_t * pSrcB,
+ uint32_t numSamples,
+ float32_t * realResult,
+ float32_t * imagResult);
+
+
+ /**
+ * @brief Q15 complex-by-real multiplication
+ * @param[in] pSrcCmplx points to the complex input vector
+ * @param[in] pSrcReal points to the real input vector
+ * @param[out] pCmplxDst points to the complex output vector
+ * @param[in] numSamples number of samples in each vector
+ */
+ void arm_cmplx_mult_real_q15(
+ const q15_t * pSrcCmplx,
+ const q15_t * pSrcReal,
+ q15_t * pCmplxDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Q31 complex-by-real multiplication
+ * @param[in] pSrcCmplx points to the complex input vector
+ * @param[in] pSrcReal points to the real input vector
+ * @param[out] pCmplxDst points to the complex output vector
+ * @param[in] numSamples number of samples in each vector
+ */
+ void arm_cmplx_mult_real_q31(
+ const q31_t * pSrcCmplx,
+ const q31_t * pSrcReal,
+ q31_t * pCmplxDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Floating-point complex-by-real multiplication
+ * @param[in] pSrcCmplx points to the complex input vector
+ * @param[in] pSrcReal points to the real input vector
+ * @param[out] pCmplxDst points to the complex output vector
+ * @param[in] numSamples number of samples in each vector
+ */
+ void arm_cmplx_mult_real_f32(
+ const float32_t * pSrcCmplx,
+ const float32_t * pSrcReal,
+ float32_t * pCmplxDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q15 complex-by-complex multiplication
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
+ void arm_cmplx_mult_cmplx_q15(
+ const q15_t * pSrcA,
+ const q15_t * pSrcB,
+ q15_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Q31 complex-by-complex multiplication
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
+ void arm_cmplx_mult_cmplx_q31(
+ const q31_t * pSrcA,
+ const q31_t * pSrcB,
+ q31_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Floating-point complex-by-complex multiplication
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
+ void arm_cmplx_mult_cmplx_f32(
+ const float32_t * pSrcA,
+ const float32_t * pSrcB,
+ float32_t * pDst,
+ uint32_t numSamples);
+
+
+
+/**
+ * @brief Floating-point complex-by-complex multiplication
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
+void arm_cmplx_mult_cmplx_f64(
+const float64_t * pSrcA,
+const float64_t * pSrcB,
+ float64_t * pDst,
+ uint32_t numSamples);
+
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _COMPLEX_MATH_FUNCTIONS_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/complex_math_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/complex_math_functions_f16.h
new file mode 100644
index 0000000..b17f931
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/complex_math_functions_f16.h
@@ -0,0 +1,123 @@
+/******************************************************************************
+ * @file complex_math_functions_f16.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _COMPLEX_MATH_FUNCTIONS_F16_H_
+#define _COMPLEX_MATH_FUNCTIONS_F16_H_
+
+#include "arm_math_types_f16.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+#include "dsp/fast_math_functions_f16.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#if defined(ARM_FLOAT16_SUPPORTED)
+
+ /**
+ * @brief Floating-point complex conjugate.
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
+ void arm_cmplx_conj_f16(
+ const float16_t * pSrc,
+ float16_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Floating-point complex magnitude squared
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
+ void arm_cmplx_mag_squared_f16(
+ const float16_t * pSrc,
+ float16_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Floating-point complex magnitude
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
+ void arm_cmplx_mag_f16(
+ const float16_t * pSrc,
+ float16_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Floating-point complex dot product
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @param[out] realResult real part of the result returned here
+ * @param[out] imagResult imaginary part of the result returned here
+ */
+ void arm_cmplx_dot_prod_f16(
+ const float16_t * pSrcA,
+ const float16_t * pSrcB,
+ uint32_t numSamples,
+ float16_t * realResult,
+ float16_t * imagResult);
+
+ /**
+ * @brief Floating-point complex-by-real multiplication
+ * @param[in] pSrcCmplx points to the complex input vector
+ * @param[in] pSrcReal points to the real input vector
+ * @param[out] pCmplxDst points to the complex output vector
+ * @param[in] numSamples number of samples in each vector
+ */
+ void arm_cmplx_mult_real_f16(
+ const float16_t * pSrcCmplx,
+ const float16_t * pSrcReal,
+ float16_t * pCmplxDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Floating-point complex-by-complex multiplication
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
+ void arm_cmplx_mult_cmplx_f16(
+ const float16_t * pSrcA,
+ const float16_t * pSrcB,
+ float16_t * pDst,
+ uint32_t numSamples);
+
+#endif /*defined(ARM_FLOAT16_SUPPORTED)*/
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _COMPLEX_MATH_FUNCTIONS_F16_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/controller_functions.h b/Drivers/CMSIS/DSP/Include/dsp/controller_functions.h
new file mode 100644
index 0000000..7c08c24
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/controller_functions.h
@@ -0,0 +1,791 @@
+/******************************************************************************
+ * @file controller_functions.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _CONTROLLER_FUNCTIONS_H_
+#define _CONTROLLER_FUNCTIONS_H_
+
+#include "arm_math_types.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+ /**
+ * @brief Macros required for SINE and COSINE Controller functions
+ */
+
+#define CONTROLLER_Q31_SHIFT (32 - 9)
+ /* 1.31(q31) Fixed value of 2/360 */
+ /* -1 to +1 is divided into 360 values so total spacing is (2/360) */
+#define INPUT_SPACING 0xB60B61
+
+/**
+ * @defgroup groupController Controller Functions
+ */
+
+
+ /**
+ * @ingroup groupController
+ */
+
+ /**
+ * @addtogroup SinCos
+ * @{
+ */
+
+/**
+ * @brief Floating-point sin_cos function.
+ * @param[in] theta input value in degrees
+ * @param[out] pSinVal points to the processed sine output.
+ * @param[out] pCosVal points to the processed cos output.
+ */
+ void arm_sin_cos_f32(
+ float32_t theta,
+ float32_t * pSinVal,
+ float32_t * pCosVal);
+
+
+ /**
+ * @brief Q31 sin_cos function.
+ * @param[in] theta scaled input value in degrees
+ * @param[out] pSinVal points to the processed sine output.
+ * @param[out] pCosVal points to the processed cosine output.
+ */
+ void arm_sin_cos_q31(
+ q31_t theta,
+ q31_t * pSinVal,
+ q31_t * pCosVal);
+
+ /**
+ * @} end of SinCos group
+ */
+
+ /**
+ * @ingroup groupController
+ */
+
+/**
+ * @defgroup PID PID Motor Control
+ *
+ * A Proportional Integral Derivative (PID) controller is a generic feedback control
+ * loop mechanism widely used in industrial control systems.
+ * A PID controller is the most commonly used type of feedback controller.
+ *
+ * This set of functions implements (PID) controllers
+ * for Q15, Q31, and floating-point data types. The functions operate on a single sample
+ * of data and each call to the function returns a single processed value.
+ * <code>S</code> points to an instance of the PID control data structure. <code>in</code>
+ * is the input sample value. The functions return the output value.
+ *
+ * \par Algorithm:
+ * <pre>
+ * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]
+ * A0 = Kp + Ki + Kd
+ * A1 = (-Kp ) - (2 * Kd )
+ * A2 = Kd
+ * </pre>
+ *
+ * \par
+ * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant
+ *
+ * \par
+ * \image html PID.gif "Proportional Integral Derivative Controller"
+ *
+ * \par
+ * The PID controller calculates an "error" value as the difference between
+ * the measured output and the reference input.
+ * The controller attempts to minimize the error by adjusting the process control inputs.
+ * The proportional value determines the reaction to the current error,
+ * the integral value determines the reaction based on the sum of recent errors,
+ * and the derivative value determines the reaction based on the rate at which the error has been changing.
+ *
+ * \par Instance Structure
+ * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure.
+ * A separate instance structure must be defined for each PID Controller.
+ * There are separate instance structure declarations for each of the 3 supported data types.
+ *
+ * \par Reset Functions
+ * There is also an associated reset function for each data type which clears the state array.
+ *
+ * \par Initialization Functions
+ * There is also an associated initialization function for each data type.
+ * The initialization function performs the following operations:
+ * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains.
+ * - Zeros out the values in the state buffer.
+ *
+ * \par
+ * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function.
+ *
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the fixed-point versions of the PID Controller functions.
+ * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+
+ /**
+ * @brief Instance structure for the Q15 PID Control.
+ */
+ typedef struct
+ {
+ q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
+#if !defined (ARM_MATH_DSP)
+ q15_t A1; /**< The derived gain A1 = -Kp - 2Kd */
+ q15_t A2; /**< The derived gain A1 = Kd. */
+#else
+ q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
+#endif
+ q15_t state[3]; /**< The state array of length 3. */
+ q15_t Kp; /**< The proportional gain. */
+ q15_t Ki; /**< The integral gain. */
+ q15_t Kd; /**< The derivative gain. */
+ } arm_pid_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 PID Control.
+ */
+ typedef struct
+ {
+ q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
+ q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
+ q31_t A2; /**< The derived gain, A2 = Kd . */
+ q31_t state[3]; /**< The state array of length 3. */
+ q31_t Kp; /**< The proportional gain. */
+ q31_t Ki; /**< The integral gain. */
+ q31_t Kd; /**< The derivative gain. */
+ } arm_pid_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point PID Control.
+ */
+ typedef struct
+ {
+ float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
+ float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
+ float32_t A2; /**< The derived gain, A2 = Kd . */
+ float32_t state[3]; /**< The state array of length 3. */
+ float32_t Kp; /**< The proportional gain. */
+ float32_t Ki; /**< The integral gain. */
+ float32_t Kd; /**< The derivative gain. */
+ } arm_pid_instance_f32;
+
+
+
+ /**
+ * @brief Initialization function for the floating-point PID Control.
+ * @param[in,out] S points to an instance of the PID structure.
+ * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
+ */
+ void arm_pid_init_f32(
+ arm_pid_instance_f32 * S,
+ int32_t resetStateFlag);
+
+
+ /**
+ * @brief Reset function for the floating-point PID Control.
+ * @param[in,out] S is an instance of the floating-point PID Control structure
+ */
+ void arm_pid_reset_f32(
+ arm_pid_instance_f32 * S);
+
+
+ /**
+ * @brief Initialization function for the Q31 PID Control.
+ * @param[in,out] S points to an instance of the Q15 PID structure.
+ * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
+ */
+ void arm_pid_init_q31(
+ arm_pid_instance_q31 * S,
+ int32_t resetStateFlag);
+
+
+ /**
+ * @brief Reset function for the Q31 PID Control.
+ * @param[in,out] S points to an instance of the Q31 PID Control structure
+ */
+
+ void arm_pid_reset_q31(
+ arm_pid_instance_q31 * S);
+
+
+ /**
+ * @brief Initialization function for the Q15 PID Control.
+ * @param[in,out] S points to an instance of the Q15 PID structure.
+ * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
+ */
+ void arm_pid_init_q15(
+ arm_pid_instance_q15 * S,
+ int32_t resetStateFlag);
+
+
+ /**
+ * @brief Reset function for the Q15 PID Control.
+ * @param[in,out] S points to an instance of the q15 PID Control structure
+ */
+ void arm_pid_reset_q15(
+ arm_pid_instance_q15 * S);
+
+
+
+ /**
+ * @addtogroup PID
+ * @{
+ */
+
+ /**
+ * @brief Process function for the floating-point PID Control.
+ * @param[in,out] S is an instance of the floating-point PID Control structure
+ * @param[in] in input sample to process
+ * @return processed output sample.
+ */
+ __STATIC_FORCEINLINE float32_t arm_pid_f32(
+ arm_pid_instance_f32 * S,
+ float32_t in)
+ {
+ float32_t out;
+
+ /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */
+ out = (S->A0 * in) +
+ (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]);
+
+ /* Update state */
+ S->state[1] = S->state[0];
+ S->state[0] = in;
+ S->state[2] = out;
+
+ /* return to application */
+ return (out);
+
+ }
+
+/**
+ @brief Process function for the Q31 PID Control.
+ @param[in,out] S points to an instance of the Q31 PID Control structure
+ @param[in] in input sample to process
+ @return processed output sample.
+
+ \par Scaling and Overflow Behavior
+ The function is implemented using an internal 64-bit accumulator.
+ The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
+ Thus, if the accumulator result overflows it wraps around rather than clip.
+ In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions.
+ After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
+ */
+__STATIC_FORCEINLINE q31_t arm_pid_q31(
+ arm_pid_instance_q31 * S,
+ q31_t in)
+ {
+ q63_t acc;
+ q31_t out;
+
+ /* acc = A0 * x[n] */
+ acc = (q63_t) S->A0 * in;
+
+ /* acc += A1 * x[n-1] */
+ acc += (q63_t) S->A1 * S->state[0];
+
+ /* acc += A2 * x[n-2] */
+ acc += (q63_t) S->A2 * S->state[1];
+
+ /* convert output to 1.31 format to add y[n-1] */
+ out = (q31_t) (acc >> 31U);
+
+ /* out += y[n-1] */
+ out += S->state[2];
+
+ /* Update state */
+ S->state[1] = S->state[0];
+ S->state[0] = in;
+ S->state[2] = out;
+
+ /* return to application */
+ return (out);
+ }
+
+
+/**
+ @brief Process function for the Q15 PID Control.
+ @param[in,out] S points to an instance of the Q15 PID Control structure
+ @param[in] in input sample to process
+ @return processed output sample.
+
+ \par Scaling and Overflow Behavior
+ The function is implemented using a 64-bit internal accumulator.
+ Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
+ The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
+ There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
+ After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
+ Lastly, the accumulator is saturated to yield a result in 1.15 format.
+ */
+__STATIC_FORCEINLINE q15_t arm_pid_q15(
+ arm_pid_instance_q15 * S,
+ q15_t in)
+ {
+ q63_t acc;
+ q15_t out;
+
+#if defined (ARM_MATH_DSP)
+ /* Implementation of PID controller */
+
+ /* acc = A0 * x[n] */
+ acc = (q31_t) __SMUAD((uint32_t)S->A0, (uint32_t)in);
+
+ /* acc += A1 * x[n-1] + A2 * x[n-2] */
+ acc = (q63_t)__SMLALD((uint32_t)S->A1, (uint32_t)read_q15x2 (S->state), (uint64_t)acc);
+#else
+ /* acc = A0 * x[n] */
+ acc = ((q31_t) S->A0) * in;
+
+ /* acc += A1 * x[n-1] + A2 * x[n-2] */
+ acc += (q31_t) S->A1 * S->state[0];
+ acc += (q31_t) S->A2 * S->state[1];
+#endif
+
+ /* acc += y[n-1] */
+ acc += (q31_t) S->state[2] << 15;
+
+ /* saturate the output */
+ out = (q15_t) (__SSAT((q31_t)(acc >> 15), 16));
+
+ /* Update state */
+ S->state[1] = S->state[0];
+ S->state[0] = in;
+ S->state[2] = out;
+
+ /* return to application */
+ return (out);
+ }
+
+ /**
+ * @} end of PID group
+ */
+
+ /**
+ * @ingroup groupController
+ */
+
+ /**
+ * @defgroup park Vector Park Transform
+ *
+ * Forward Park transform converts the input two-coordinate vector to flux and torque components.
+ * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents
+ * from the stationary to the moving reference frame and control the spatial relationship between
+ * the stator vector current and rotor flux vector.
+ * If we consider the d axis aligned with the rotor flux, the diagram below shows the
+ * current vector and the relationship from the two reference frames:
+ * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"
+ *
+ * The function operates on a single sample of data and each call to the function returns the processed output.
+ * The library provides separate functions for Q31 and floating-point data types.
+ * \par Algorithm
+ * \image html parkFormula.gif
+ * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components,
+ * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
+ * cosine and sine values of theta (rotor flux position).
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the Q31 version of the Park transform.
+ * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup park
+ * @{
+ */
+
+ /**
+ * @brief Floating-point Park transform
+ * @param[in] Ialpha input two-phase vector coordinate alpha
+ * @param[in] Ibeta input two-phase vector coordinate beta
+ * @param[out] pId points to output rotor reference frame d
+ * @param[out] pIq points to output rotor reference frame q
+ * @param[in] sinVal sine value of rotation angle theta
+ * @param[in] cosVal cosine value of rotation angle theta
+ * @return none
+ *
+ * The function implements the forward Park transform.
+ *
+ */
+ __STATIC_FORCEINLINE void arm_park_f32(
+ float32_t Ialpha,
+ float32_t Ibeta,
+ float32_t * pId,
+ float32_t * pIq,
+ float32_t sinVal,
+ float32_t cosVal)
+ {
+ /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
+ *pId = Ialpha * cosVal + Ibeta * sinVal;
+
+ /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
+ *pIq = -Ialpha * sinVal + Ibeta * cosVal;
+ }
+
+
+/**
+ @brief Park transform for Q31 version
+ @param[in] Ialpha input two-phase vector coordinate alpha
+ @param[in] Ibeta input two-phase vector coordinate beta
+ @param[out] pId points to output rotor reference frame d
+ @param[out] pIq points to output rotor reference frame q
+ @param[in] sinVal sine value of rotation angle theta
+ @param[in] cosVal cosine value of rotation angle theta
+ @return none
+
+ \par Scaling and Overflow Behavior
+ The function is implemented using an internal 32-bit accumulator.
+ The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+ There is saturation on the addition and subtraction, hence there is no risk of overflow.
+ */
+__STATIC_FORCEINLINE void arm_park_q31(
+ q31_t Ialpha,
+ q31_t Ibeta,
+ q31_t * pId,
+ q31_t * pIq,
+ q31_t sinVal,
+ q31_t cosVal)
+ {
+ q31_t product1, product2; /* Temporary variables used to store intermediate results */
+ q31_t product3, product4; /* Temporary variables used to store intermediate results */
+
+ /* Intermediate product is calculated by (Ialpha * cosVal) */
+ product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31);
+
+ /* Intermediate product is calculated by (Ibeta * sinVal) */
+ product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31);
+
+
+ /* Intermediate product is calculated by (Ialpha * sinVal) */
+ product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31);
+
+ /* Intermediate product is calculated by (Ibeta * cosVal) */
+ product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31);
+
+ /* Calculate pId by adding the two intermediate products 1 and 2 */
+ *pId = __QADD(product1, product2);
+
+ /* Calculate pIq by subtracting the two intermediate products 3 from 4 */
+ *pIq = __QSUB(product4, product3);
+ }
+
+ /**
+ * @} end of park group
+ */
+
+
+ /**
+ * @ingroup groupController
+ */
+
+ /**
+ * @defgroup inv_park Vector Inverse Park transform
+ * Inverse Park transform converts the input flux and torque components to two-coordinate vector.
+ *
+ * The function operates on a single sample of data and each call to the function returns the processed output.
+ * The library provides separate functions for Q31 and floating-point data types.
+ * \par Algorithm
+ * \image html parkInvFormula.gif
+ * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components,
+ * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
+ * cosine and sine values of theta (rotor flux position).
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the Q31 version of the Park transform.
+ * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup inv_park
+ * @{
+ */
+
+ /**
+ * @brief Floating-point Inverse Park transform
+ * @param[in] Id input coordinate of rotor reference frame d
+ * @param[in] Iq input coordinate of rotor reference frame q
+ * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
+ * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
+ * @param[in] sinVal sine value of rotation angle theta
+ * @param[in] cosVal cosine value of rotation angle theta
+ * @return none
+ */
+ __STATIC_FORCEINLINE void arm_inv_park_f32(
+ float32_t Id,
+ float32_t Iq,
+ float32_t * pIalpha,
+ float32_t * pIbeta,
+ float32_t sinVal,
+ float32_t cosVal)
+ {
+ /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
+ *pIalpha = Id * cosVal - Iq * sinVal;
+
+ /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
+ *pIbeta = Id * sinVal + Iq * cosVal;
+ }
+
+
+/**
+ @brief Inverse Park transform for Q31 version
+ @param[in] Id input coordinate of rotor reference frame d
+ @param[in] Iq input coordinate of rotor reference frame q
+ @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
+ @param[out] pIbeta points to output two-phase orthogonal vector axis beta
+ @param[in] sinVal sine value of rotation angle theta
+ @param[in] cosVal cosine value of rotation angle theta
+ @return none
+
+ @par Scaling and Overflow Behavior
+ The function is implemented using an internal 32-bit accumulator.
+ The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+ There is saturation on the addition, hence there is no risk of overflow.
+ */
+__STATIC_FORCEINLINE void arm_inv_park_q31(
+ q31_t Id,
+ q31_t Iq,
+ q31_t * pIalpha,
+ q31_t * pIbeta,
+ q31_t sinVal,
+ q31_t cosVal)
+ {
+ q31_t product1, product2; /* Temporary variables used to store intermediate results */
+ q31_t product3, product4; /* Temporary variables used to store intermediate results */
+
+ /* Intermediate product is calculated by (Id * cosVal) */
+ product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31);
+
+ /* Intermediate product is calculated by (Iq * sinVal) */
+ product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31);
+
+
+ /* Intermediate product is calculated by (Id * sinVal) */
+ product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31);
+
+ /* Intermediate product is calculated by (Iq * cosVal) */
+ product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31);
+
+ /* Calculate pIalpha by using the two intermediate products 1 and 2 */
+ *pIalpha = __QSUB(product1, product2);
+
+ /* Calculate pIbeta by using the two intermediate products 3 and 4 */
+ *pIbeta = __QADD(product4, product3);
+ }
+
+ /**
+ * @} end of Inverse park group
+ */
+
+/**
+ * @ingroup groupController
+ */
+
+ /**
+ * @defgroup clarke Vector Clarke Transform
+ * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector.
+ * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents
+ * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>.
+ * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below
+ * \image html clarke.gif Stator current space vector and its components in (a,b).
+ * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code>
+ * can be calculated using only <code>Ia</code> and <code>Ib</code>.
+ *
+ * The function operates on a single sample of data and each call to the function returns the processed output.
+ * The library provides separate functions for Q31 and floating-point data types.
+ * \par Algorithm
+ * \image html clarkeFormula.gif
+ * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and
+ * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector.
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the Q31 version of the Clarke transform.
+ * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup clarke
+ * @{
+ */
+
+ /**
+ *
+ * @brief Floating-point Clarke transform
+ * @param[in] Ia input three-phase coordinate <code>a</code>
+ * @param[in] Ib input three-phase coordinate <code>b</code>
+ * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
+ * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
+ * @return none
+ */
+ __STATIC_FORCEINLINE void arm_clarke_f32(
+ float32_t Ia,
+ float32_t Ib,
+ float32_t * pIalpha,
+ float32_t * pIbeta)
+ {
+ /* Calculate pIalpha using the equation, pIalpha = Ia */
+ *pIalpha = Ia;
+
+ /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
+ *pIbeta = (0.57735026919f * Ia + 1.15470053838f * Ib);
+ }
+
+
+/**
+ @brief Clarke transform for Q31 version
+ @param[in] Ia input three-phase coordinate <code>a</code>
+ @param[in] Ib input three-phase coordinate <code>b</code>
+ @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
+ @param[out] pIbeta points to output two-phase orthogonal vector axis beta
+ @return none
+
+ \par Scaling and Overflow Behavior
+ The function is implemented using an internal 32-bit accumulator.
+ The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+ There is saturation on the addition, hence there is no risk of overflow.
+ */
+__STATIC_FORCEINLINE void arm_clarke_q31(
+ q31_t Ia,
+ q31_t Ib,
+ q31_t * pIalpha,
+ q31_t * pIbeta)
+ {
+ q31_t product1, product2; /* Temporary variables used to store intermediate results */
+
+ /* Calculating pIalpha from Ia by equation pIalpha = Ia */
+ *pIalpha = Ia;
+
+ /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
+ product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);
+
+ /* Intermediate product is calculated by (2/sqrt(3) * Ib) */
+ product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);
+
+ /* pIbeta is calculated by adding the intermediate products */
+ *pIbeta = __QADD(product1, product2);
+ }
+
+ /**
+ * @} end of clarke group
+ */
+
+
+ /**
+ * @ingroup groupController
+ */
+
+ /**
+ * @defgroup inv_clarke Vector Inverse Clarke Transform
+ * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.
+ *
+ * The function operates on a single sample of data and each call to the function returns the processed output.
+ * The library provides separate functions for Q31 and floating-point data types.
+ * \par Algorithm
+ * \image html clarkeInvFormula.gif
+ * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and
+ * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector.
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the Q31 version of the Clarke transform.
+ * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup inv_clarke
+ * @{
+ */
+
+ /**
+ * @brief Floating-point Inverse Clarke transform
+ * @param[in] Ialpha input two-phase orthogonal vector axis alpha
+ * @param[in] Ibeta input two-phase orthogonal vector axis beta
+ * @param[out] pIa points to output three-phase coordinate <code>a</code>
+ * @param[out] pIb points to output three-phase coordinate <code>b</code>
+ * @return none
+ */
+ __STATIC_FORCEINLINE void arm_inv_clarke_f32(
+ float32_t Ialpha,
+ float32_t Ibeta,
+ float32_t * pIa,
+ float32_t * pIb)
+ {
+ /* Calculating pIa from Ialpha by equation pIa = Ialpha */
+ *pIa = Ialpha;
+
+ /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
+ *pIb = -0.5f * Ialpha + 0.8660254039f * Ibeta;
+ }
+
+
+/**
+ @brief Inverse Clarke transform for Q31 version
+ @param[in] Ialpha input two-phase orthogonal vector axis alpha
+ @param[in] Ibeta input two-phase orthogonal vector axis beta
+ @param[out] pIa points to output three-phase coordinate <code>a</code>
+ @param[out] pIb points to output three-phase coordinate <code>b</code>
+ @return none
+
+ \par Scaling and Overflow Behavior
+ The function is implemented using an internal 32-bit accumulator.
+ The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+ There is saturation on the subtraction, hence there is no risk of overflow.
+ */
+__STATIC_FORCEINLINE void arm_inv_clarke_q31(
+ q31_t Ialpha,
+ q31_t Ibeta,
+ q31_t * pIa,
+ q31_t * pIb)
+ {
+ q31_t product1, product2; /* Temporary variables used to store intermediate results */
+
+ /* Calculating pIa from Ialpha by equation pIa = Ialpha */
+ *pIa = Ialpha;
+
+ /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
+ product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);
+
+ /* Intermediate product is calculated by (1/sqrt(3) * pIb) */
+ product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);
+
+ /* pIb is calculated by subtracting the products */
+ *pIb = __QSUB(product2, product1);
+ }
+
+ /**
+ * @} end of inv_clarke group
+ */
+
+
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _CONTROLLER_FUNCTIONS_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/controller_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/controller_functions_f16.h
new file mode 100644
index 0000000..8fae483
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/controller_functions_f16.h
@@ -0,0 +1,41 @@
+/******************************************************************************
+ * @file controller_functions_f16.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _CONTROLLER_FUNCTIONS_F16_H_
+#define _CONTROLLER_FUNCTIONS_F16_H_
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#if defined(ARM_FLOAT16_SUPPORTED)
+#endif /*defined(ARM_FLOAT16_SUPPORTED)*/
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _CONTROLLER_FUNCTIONS_F16_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/distance_functions.h b/Drivers/CMSIS/DSP/Include/dsp/distance_functions.h
new file mode 100644
index 0000000..3123fc3
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/distance_functions.h
@@ -0,0 +1,341 @@
+/******************************************************************************
+ * @file distance_functions.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _DISTANCE_FUNCTIONS_H_
+#define _DISTANCE_FUNCTIONS_H_
+
+#include "arm_math_types.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+#include "dsp/statistics_functions.h"
+#include "dsp/basic_math_functions.h"
+#include "dsp/fast_math_functions.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+
+/**
+ * @defgroup groupDistance Distance functions
+ *
+ * Distance functions for use with clustering algorithms.
+ * There are distance functions for float vectors and boolean vectors.
+ *
+ */
+
+/* 6.14 bug */
+#if defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6100100) && (__ARMCC_VERSION < 6150001)
+
+__attribute__((weak)) float __powisf2(float a, int b);
+
+#endif
+
+/**
+ * @brief Euclidean distance between two vectors
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+
+float32_t arm_euclidean_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize);
+
+/**
+ * @brief Euclidean distance between two vectors
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+
+float64_t arm_euclidean_distance_f64(const float64_t *pA,const float64_t *pB, uint32_t blockSize);
+
+/**
+ * @brief Bray-Curtis distance between two vectors
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+float32_t arm_braycurtis_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize);
+
+/**
+ * @brief Canberra distance between two vectors
+ *
+ * This function may divide by zero when samples pA[i] and pB[i] are both zero.
+ * The result of the computation will be correct. So the division per zero may be
+ * ignored.
+ *
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+float32_t arm_canberra_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize);
+
+
+/**
+ * @brief Chebyshev distance between two vectors
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+float32_t arm_chebyshev_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize);
+
+
+/**
+ * @brief Chebyshev distance between two vectors
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+float64_t arm_chebyshev_distance_f64(const float64_t *pA,const float64_t *pB, uint32_t blockSize);
+
+
+/**
+ * @brief Cityblock (Manhattan) distance between two vectors
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+float32_t arm_cityblock_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize);
+
+/**
+ * @brief Cityblock (Manhattan) distance between two vectors
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+float64_t arm_cityblock_distance_f64(const float64_t *pA,const float64_t *pB, uint32_t blockSize);
+
+/**
+ * @brief Correlation distance between two vectors
+ *
+ * The input vectors are modified in place !
+ *
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+float32_t arm_correlation_distance_f32(float32_t *pA,float32_t *pB, uint32_t blockSize);
+
+/**
+ * @brief Cosine distance between two vectors
+ *
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+
+float32_t arm_cosine_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize);
+
+/**
+ * @brief Cosine distance between two vectors
+ *
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+
+float64_t arm_cosine_distance_f64(const float64_t *pA,const float64_t *pB, uint32_t blockSize);
+
+/**
+ * @brief Jensen-Shannon distance between two vectors
+ *
+ * This function is assuming that elements of second vector are > 0
+ * and 0 only when the corresponding element of first vector is 0.
+ * Otherwise the result of the computation does not make sense
+ * and for speed reasons, the cases returning NaN or Infinity are not
+ * managed.
+ *
+ * When the function is computing x log (x / y) with x 0 and y 0,
+ * it will compute the right value (0) but a division per zero will occur
+ * and shoudl be ignored in client code.
+ *
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+
+float32_t arm_jensenshannon_distance_f32(const float32_t *pA,const float32_t *pB,uint32_t blockSize);
+
+/**
+ * @brief Minkowski distance between two vectors
+ *
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] n Norm order (>= 2)
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+
+
+
+float32_t arm_minkowski_distance_f32(const float32_t *pA,const float32_t *pB, int32_t order, uint32_t blockSize);
+
+/**
+ * @brief Dice distance between two vectors
+ *
+ * @param[in] pA First vector of packed booleans
+ * @param[in] pB Second vector of packed booleans
+ * @param[in] order Distance order
+ * @param[in] blockSize Number of samples
+ * @return distance
+ *
+ */
+
+
+float32_t arm_dice_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);
+
+/**
+ * @brief Hamming distance between two vectors
+ *
+ * @param[in] pA First vector of packed booleans
+ * @param[in] pB Second vector of packed booleans
+ * @param[in] numberOfBools Number of booleans
+ * @return distance
+ *
+ */
+
+float32_t arm_hamming_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);
+
+/**
+ * @brief Jaccard distance between two vectors
+ *
+ * @param[in] pA First vector of packed booleans
+ * @param[in] pB Second vector of packed booleans
+ * @param[in] numberOfBools Number of booleans
+ * @return distance
+ *
+ */
+
+float32_t arm_jaccard_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);
+
+/**
+ * @brief Kulsinski distance between two vectors
+ *
+ * @param[in] pA First vector of packed booleans
+ * @param[in] pB Second vector of packed booleans
+ * @param[in] numberOfBools Number of booleans
+ * @return distance
+ *
+ */
+
+float32_t arm_kulsinski_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);
+
+/**
+ * @brief Roger Stanimoto distance between two vectors
+ *
+ * @param[in] pA First vector of packed booleans
+ * @param[in] pB Second vector of packed booleans
+ * @param[in] numberOfBools Number of booleans
+ * @return distance
+ *
+ */
+
+float32_t arm_rogerstanimoto_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);
+
+/**
+ * @brief Russell-Rao distance between two vectors
+ *
+ * @param[in] pA First vector of packed booleans
+ * @param[in] pB Second vector of packed booleans
+ * @param[in] numberOfBools Number of booleans
+ * @return distance
+ *
+ */
+
+float32_t arm_russellrao_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);
+
+/**
+ * @brief Sokal-Michener distance between two vectors
+ *
+ * @param[in] pA First vector of packed booleans
+ * @param[in] pB Second vector of packed booleans
+ * @param[in] numberOfBools Number of booleans
+ * @return distance
+ *
+ */
+
+float32_t arm_sokalmichener_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);
+
+/**
+ * @brief Sokal-Sneath distance between two vectors
+ *
+ * @param[in] pA First vector of packed booleans
+ * @param[in] pB Second vector of packed booleans
+ * @param[in] numberOfBools Number of booleans
+ * @return distance
+ *
+ */
+
+float32_t arm_sokalsneath_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);
+
+/**
+ * @brief Yule distance between two vectors
+ *
+ * @param[in] pA First vector of packed booleans
+ * @param[in] pB Second vector of packed booleans
+ * @param[in] numberOfBools Number of booleans
+ * @return distance
+ *
+ */
+
+float32_t arm_yule_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);
+
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _DISTANCE_FUNCTIONS_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/distance_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/distance_functions_f16.h
new file mode 100644
index 0000000..a7ceb3c
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/distance_functions_f16.h
@@ -0,0 +1,180 @@
+/******************************************************************************
+ * @file distance_functions_f16.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _DISTANCE_FUNCTIONS_F16_H_
+#define _DISTANCE_FUNCTIONS_F16_H_
+
+#include "arm_math_types_f16.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+/* 6.14 bug */
+#if defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6100100) && (__ARMCC_VERSION < 6150001)
+/* Defined in minkowski_f32 */
+__attribute__((weak)) float __powisf2(float a, int b);
+#endif
+
+#include "dsp/statistics_functions_f16.h"
+#include "dsp/basic_math_functions_f16.h"
+
+#include "dsp/fast_math_functions_f16.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#if defined(ARM_FLOAT16_SUPPORTED)
+
+/**
+ * @brief Euclidean distance between two vectors
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+
+float16_t arm_euclidean_distance_f16(const float16_t *pA,const float16_t *pB, uint32_t blockSize);
+
+/**
+ * @brief Bray-Curtis distance between two vectors
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+float16_t arm_braycurtis_distance_f16(const float16_t *pA,const float16_t *pB, uint32_t blockSize);
+
+/**
+ * @brief Canberra distance between two vectors
+ *
+ * This function may divide by zero when samples pA[i] and pB[i] are both zero.
+ * The result of the computation will be correct. So the division per zero may be
+ * ignored.
+ *
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+float16_t arm_canberra_distance_f16(const float16_t *pA,const float16_t *pB, uint32_t blockSize);
+
+
+/**
+ * @brief Chebyshev distance between two vectors
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+float16_t arm_chebyshev_distance_f16(const float16_t *pA,const float16_t *pB, uint32_t blockSize);
+
+
+/**
+ * @brief Cityblock (Manhattan) distance between two vectors
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+float16_t arm_cityblock_distance_f16(const float16_t *pA,const float16_t *pB, uint32_t blockSize);
+
+/**
+ * @brief Correlation distance between two vectors
+ *
+ * The input vectors are modified in place !
+ *
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+float16_t arm_correlation_distance_f16(float16_t *pA,float16_t *pB, uint32_t blockSize);
+
+/**
+ * @brief Cosine distance between two vectors
+ *
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+
+float16_t arm_cosine_distance_f16(const float16_t *pA,const float16_t *pB, uint32_t blockSize);
+
+/**
+ * @brief Jensen-Shannon distance between two vectors
+ *
+ * This function is assuming that elements of second vector are > 0
+ * and 0 only when the corresponding element of first vector is 0.
+ * Otherwise the result of the computation does not make sense
+ * and for speed reasons, the cases returning NaN or Infinity are not
+ * managed.
+ *
+ * When the function is computing x log (x / y) with x 0 and y 0,
+ * it will compute the right value (0) but a division per zero will occur
+ * and shoudl be ignored in client code.
+ *
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+
+float16_t arm_jensenshannon_distance_f16(const float16_t *pA,const float16_t *pB,uint32_t blockSize);
+
+/**
+ * @brief Minkowski distance between two vectors
+ *
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] n Norm order (>= 2)
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+
+
+
+float16_t arm_minkowski_distance_f16(const float16_t *pA,const float16_t *pB, int32_t order, uint32_t blockSize);
+
+
+#endif /*defined(ARM_FLOAT16_SUPPORTED)*/
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _DISTANCE_FUNCTIONS_F16_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/fast_math_functions.h b/Drivers/CMSIS/DSP/Include/dsp/fast_math_functions.h
new file mode 100644
index 0000000..489f214
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/fast_math_functions.h
@@ -0,0 +1,389 @@
+/******************************************************************************
+ * @file fast_math_functions.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _FAST_MATH_FUNCTIONS_H_
+#define _FAST_MATH_FUNCTIONS_H_
+
+#include "arm_math_types.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+#include "dsp/basic_math_functions.h"
+
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+ /**
+ * @brief Macros required for SINE and COSINE Fast math approximations
+ */
+
+#define FAST_MATH_TABLE_SIZE 512
+#define FAST_MATH_Q31_SHIFT (32 - 10)
+#define FAST_MATH_Q15_SHIFT (16 - 10)
+
+#ifndef PI
+ #define PI 3.14159265358979f
+#endif
+
+
+/**
+ * @defgroup groupFastMath Fast Math Functions
+ * This set of functions provides a fast approximation to sine, cosine, and square root.
+ * As compared to most of the other functions in the CMSIS math library, the fast math functions
+ * operate on individual values and not arrays.
+ * There are separate functions for Q15, Q31, and floating-point data.
+ *
+ */
+
+ /**
+ * @ingroup groupFastMath
+ */
+
+
+/**
+ @addtogroup sin
+ @{
+ */
+
+/**
+ * @brief Fast approximation to the trigonometric sine function for floating-point data.
+ * @param[in] x input value in radians.
+ * @return sin(x).
+ */
+ float32_t arm_sin_f32(
+ float32_t x);
+
+
+ /**
+ * @brief Fast approximation to the trigonometric sine function for Q31 data.
+ * @param[in] x Scaled input value in radians.
+ * @return sin(x).
+ */
+ q31_t arm_sin_q31(
+ q31_t x);
+
+
+ /**
+ * @brief Fast approximation to the trigonometric sine function for Q15 data.
+ * @param[in] x Scaled input value in radians.
+ * @return sin(x).
+ */
+ q15_t arm_sin_q15(
+ q15_t x);
+
+/**
+ @} end of sin group
+ */
+
+/**
+ @addtogroup cos
+ @{
+ */
+
+ /**
+ * @brief Fast approximation to the trigonometric cosine function for floating-point data.
+ * @param[in] x input value in radians.
+ * @return cos(x).
+ */
+ float32_t arm_cos_f32(
+ float32_t x);
+
+
+ /**
+ * @brief Fast approximation to the trigonometric cosine function for Q31 data.
+ * @param[in] x Scaled input value in radians.
+ * @return cos(x).
+ */
+ q31_t arm_cos_q31(
+ q31_t x);
+
+
+ /**
+ * @brief Fast approximation to the trigonometric cosine function for Q15 data.
+ * @param[in] x Scaled input value in radians.
+ * @return cos(x).
+ */
+ q15_t arm_cos_q15(
+ q15_t x);
+
+/**
+ @} end of cos group
+ */
+
+
+/**
+ @brief Floating-point vector of log values.
+ @param[in] pSrc points to the input vector
+ @param[out] pDst points to the output vector
+ @param[in] blockSize number of samples in each vector
+ @return none
+ */
+ void arm_vlog_f32(
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+
+/**
+ @brief Floating-point vector of log values.
+ @param[in] pSrc points to the input vector
+ @param[out] pDst points to the output vector
+ @param[in] blockSize number of samples in each vector
+ @return none
+ */
+ void arm_vlog_f64(
+ const float64_t * pSrc,
+ float64_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @brief q31 vector of log values.
+ * @param[in] pSrc points to the input vector in q31
+ * @param[out] pDst points to the output vector in q5.26
+ * @param[in] blockSize number of samples in each vector
+ * @return none
+ */
+ void arm_vlog_q31(const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief q15 vector of log values.
+ * @param[in] pSrc points to the input vector in q15
+ * @param[out] pDst points to the output vector in q4.11
+ * @param[in] blockSize number of samples in each vector
+ * @return none
+ */
+ void arm_vlog_q15(const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+
+/**
+ @brief Floating-point vector of exp values.
+ @param[in] pSrc points to the input vector
+ @param[out] pDst points to the output vector
+ @param[in] blockSize number of samples in each vector
+ @return none
+ */
+ void arm_vexp_f32(
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+
+/**
+ @brief Floating-point vector of exp values.
+ @param[in] pSrc points to the input vector
+ @param[out] pDst points to the output vector
+ @param[in] blockSize number of samples in each vector
+ @return none
+ */
+ void arm_vexp_f64(
+ const float64_t * pSrc,
+ float64_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @defgroup SQRT Square Root
+ *
+ * Computes the square root of a number.
+ * There are separate functions for Q15, Q31, and floating-point data types.
+ * The square root function is computed using the Newton-Raphson algorithm.
+ * This is an iterative algorithm of the form:
+ * <pre>
+ * x1 = x0 - f(x0)/f'(x0)
+ * </pre>
+ * where <code>x1</code> is the current estimate,
+ * <code>x0</code> is the previous estimate, and
+ * <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>.
+ * For the square root function, the algorithm reduces to:
+ * <pre>
+ * x0 = in/2 [initial guess]
+ * x1 = 1/2 * ( x0 + in / x0) [each iteration]
+ * </pre>
+ */
+
+
+ /**
+ * @addtogroup SQRT
+ * @{
+ */
+
+/**
+ @brief Floating-point square root function.
+ @param[in] in input value
+ @param[out] pOut square root of input value
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : input value is positive
+ - \ref ARM_MATH_ARGUMENT_ERROR : input value is negative; *pOut is set to 0
+ */
+__STATIC_FORCEINLINE arm_status arm_sqrt_f32(
+ const float32_t in,
+ float32_t * pOut)
+ {
+ if (in >= 0.0f)
+ {
+#if defined ( __CC_ARM )
+ #if defined __TARGET_FPU_VFP
+ *pOut = __sqrtf(in);
+ #else
+ *pOut = sqrtf(in);
+ #endif
+
+#elif defined ( __ICCARM__ )
+ #if defined __ARMVFP__
+ __ASM("VSQRT.F32 %0,%1" : "=t"(*pOut) : "t"(in));
+ #else
+ *pOut = sqrtf(in);
+ #endif
+
+#else
+ *pOut = sqrtf(in);
+#endif
+
+ return (ARM_MATH_SUCCESS);
+ }
+ else
+ {
+ *pOut = 0.0f;
+ return (ARM_MATH_ARGUMENT_ERROR);
+ }
+ }
+
+
+/**
+ @brief Q31 square root function.
+ @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF
+ @param[out] pOut points to square root of input value
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : input value is positive
+ - \ref ARM_MATH_ARGUMENT_ERROR : input value is negative; *pOut is set to 0
+ */
+arm_status arm_sqrt_q31(
+ q31_t in,
+ q31_t * pOut);
+
+
+/**
+ @brief Q15 square root function.
+ @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF
+ @param[out] pOut points to square root of input value
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : input value is positive
+ - \ref ARM_MATH_ARGUMENT_ERROR : input value is negative; *pOut is set to 0
+ */
+arm_status arm_sqrt_q15(
+ q15_t in,
+ q15_t * pOut);
+
+
+
+ /**
+ * @} end of SQRT group
+ */
+
+ /**
+ @brief Fixed point division
+ @param[in] numerator Numerator
+ @param[in] denominator Denominator
+ @param[out] quotient Quotient value normalized between -1.0 and 1.0
+ @param[out] shift Shift left value to get the unnormalized quotient
+ @return error status
+
+ When dividing by 0, an error ARM_MATH_NANINF is returned. And the quotient is forced
+ to the saturated negative or positive value.
+ */
+
+arm_status arm_divide_q15(q15_t numerator,
+ q15_t denominator,
+ q15_t *quotient,
+ int16_t *shift);
+
+ /**
+ @brief Fixed point division
+ @param[in] numerator Numerator
+ @param[in] denominator Denominator
+ @param[out] quotient Quotient value normalized between -1.0 and 1.0
+ @param[out] shift Shift left value to get the unnormalized quotient
+ @return error status
+
+ When dividing by 0, an error ARM_MATH_NANINF is returned. And the quotient is forced
+ to the saturated negative or positive value.
+ */
+
+arm_status arm_divide_q31(q31_t numerator,
+ q31_t denominator,
+ q31_t *quotient,
+ int16_t *shift);
+
+
+
+ /**
+ @brief Arc tangent in radian of y/x using sign of x and y to determine right quadrant.
+ @param[in] y y coordinate
+ @param[in] x x coordinate
+ @param[out] result Result
+ @return error status.
+ */
+ arm_status arm_atan2_f32(float32_t y,float32_t x,float32_t *result);
+
+
+ /**
+ @brief Arc tangent in radian of y/x using sign of x and y to determine right quadrant.
+ @param[in] y y coordinate
+ @param[in] x x coordinate
+ @param[out] result Result in Q2.29
+ @return error status.
+ */
+ arm_status arm_atan2_q31(q31_t y,q31_t x,q31_t *result);
+
+ /**
+ @brief Arc tangent in radian of y/x using sign of x and y to determine right quadrant.
+ @param[in] y y coordinate
+ @param[in] x x coordinate
+ @param[out] result Result in Q2.13
+ @return error status.
+ */
+ arm_status arm_atan2_q15(q15_t y,q15_t x,q15_t *result);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _FAST_MATH_FUNCTIONS_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/fast_math_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/fast_math_functions_f16.h
new file mode 100644
index 0000000..46ae06d
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/fast_math_functions_f16.h
@@ -0,0 +1,125 @@
+/******************************************************************************
+ * @file fast_math_functions_f16.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _FAST_MATH_FUNCTIONS_F16_H_
+#define _FAST_MATH_FUNCTIONS_F16_H_
+
+#include "arm_math_types_f16.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+/* For sqrt_f32 */
+#include "dsp/fast_math_functions.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#if defined(ARM_FLOAT16_SUPPORTED)
+
+ /**
+ * @addtogroup SQRT
+ * @{
+ */
+
+/**
+ @brief Floating-point square root function.
+ @param[in] in input value
+ @param[out] pOut square root of input value
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : input value is positive
+ - \ref ARM_MATH_ARGUMENT_ERROR : input value is negative; *pOut is set to 0
+ */
+__STATIC_FORCEINLINE arm_status arm_sqrt_f16(
+ float16_t in,
+ float16_t * pOut)
+ {
+ float32_t r;
+ arm_status status;
+ status=arm_sqrt_f32((float32_t)in,&r);
+ *pOut=(float16_t)r;
+ return(status);
+ }
+
+
+/**
+ @} end of SQRT group
+ */
+
+/**
+ @brief Floating-point vector of log values.
+ @param[in] pSrc points to the input vector
+ @param[out] pDst points to the output vector
+ @param[in] blockSize number of samples in each vector
+ @return none
+ */
+ void arm_vlog_f16(
+ const float16_t * pSrc,
+ float16_t * pDst,
+ uint32_t blockSize);
+
+/**
+ @brief Floating-point vector of exp values.
+ @param[in] pSrc points to the input vector
+ @param[out] pDst points to the output vector
+ @param[in] blockSize number of samples in each vector
+ @return none
+ */
+ void arm_vexp_f16(
+ const float16_t * pSrc,
+ float16_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ @brief Floating-point vector of inverse values.
+ @param[in] pSrc points to the input vector
+ @param[out] pDst points to the output vector
+ @param[in] blockSize number of samples in each vector
+ @return none
+ */
+ void arm_vinverse_f16(
+ const float16_t * pSrc,
+ float16_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ @brief Arc tangent in radian of y/x using sign of x and y to determine right quadrant.
+ @param[in] y y coordinate
+ @param[in] x x coordinate
+ @param[out] result Result
+ @return error status.
+ */
+ arm_status arm_atan2_f16(float16_t y,float16_t x,float16_t *result);
+
+#endif /*defined(ARM_FLOAT16_SUPPORTED)*/
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _FAST_MATH_FUNCTIONS_F16_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/filtering_functions.h b/Drivers/CMSIS/DSP/Include/dsp/filtering_functions.h
new file mode 100644
index 0000000..28a9568
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/filtering_functions.h
@@ -0,0 +1,2529 @@
+/******************************************************************************
+ * @file filtering_functions.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _FILTERING_FUNCTIONS_H_
+#define _FILTERING_FUNCTIONS_H_
+
+#include "arm_math_types.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+#include "dsp/support_functions.h"
+#include "dsp/fast_math_functions.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+
+
+#define DELTA_Q31 ((q31_t)(0x100))
+#define DELTA_Q15 ((q15_t)0x5)
+
+/**
+ * @defgroup groupFilters Filtering Functions
+ */
+
+ /**
+ * @brief Instance structure for the Q7 FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ const q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ } arm_fir_instance_q7;
+
+ /**
+ * @brief Instance structure for the Q15 FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ const q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ } arm_fir_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ const q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ } arm_fir_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ const float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ } arm_fir_instance_f32;
+
+ /**
+ * @brief Instance structure for the floating-point FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ float64_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ const float64_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ } arm_fir_instance_f64;
+
+ /**
+ * @brief Processing function for the Q7 FIR filter.
+ * @param[in] S points to an instance of the Q7 FIR filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_q7(
+ const arm_fir_instance_q7 * S,
+ const q7_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q7 FIR filter.
+ * @param[in,out] S points to an instance of the Q7 FIR structure.
+ * @param[in] numTaps Number of filter coefficients in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed.
+ *
+ * For the MVE version, the coefficient length must be a multiple of 16.
+ * You can pad with zeros if you have less coefficients.
+ */
+ void arm_fir_init_q7(
+ arm_fir_instance_q7 * S,
+ uint16_t numTaps,
+ const q7_t * pCoeffs,
+ q7_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q15 FIR filter.
+ * @param[in] S points to an instance of the Q15 FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_q15(
+ const arm_fir_instance_q15 * S,
+ const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the fast Q15 FIR filter (fast version).
+ * @param[in] S points to an instance of the Q15 FIR filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_fast_q15(
+ const arm_fir_instance_q15 * S,
+ const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q15 FIR filter.
+ * @param[in,out] S points to an instance of the Q15 FIR filter structure.
+ * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed at a time.
+ * @return The function returns either
+ * <code>ARM_MATH_SUCCESS</code> if initialization was successful or
+ * <code>ARM_MATH_ARGUMENT_ERROR</code> if <code>numTaps</code> is not a supported value.
+ *
+ * For the MVE version, the coefficient length must be a multiple of 8.
+ * You can pad with zeros if you have less coefficients.
+ *
+ */
+ arm_status arm_fir_init_q15(
+ arm_fir_instance_q15 * S,
+ uint16_t numTaps,
+ const q15_t * pCoeffs,
+ q15_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q31 FIR filter.
+ * @param[in] S points to an instance of the Q31 FIR filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_q31(
+ const arm_fir_instance_q31 * S,
+ const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the fast Q31 FIR filter (fast version).
+ * @param[in] S points to an instance of the Q31 FIR filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_fast_q31(
+ const arm_fir_instance_q31 * S,
+ const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q31 FIR filter.
+ * @param[in,out] S points to an instance of the Q31 FIR structure.
+ * @param[in] numTaps Number of filter coefficients in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed at a time.
+ *
+ * For the MVE version, the coefficient length must be a multiple of 4.
+ * You can pad with zeros if you have less coefficients.
+ */
+ void arm_fir_init_q31(
+ arm_fir_instance_q31 * S,
+ uint16_t numTaps,
+ const q31_t * pCoeffs,
+ q31_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the floating-point FIR filter.
+ * @param[in] S points to an instance of the floating-point FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_f32(
+ const arm_fir_instance_f32 * S,
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the floating-point FIR filter.
+ * @param[in] S points to an instance of the floating-point FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_f64(
+ const arm_fir_instance_f64 * S,
+ const float64_t * pSrc,
+ float64_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the floating-point FIR filter.
+ * @param[in,out] S points to an instance of the floating-point FIR filter structure.
+ * @param[in] numTaps Number of filter coefficients in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed at a time.
+ */
+ void arm_fir_init_f32(
+ arm_fir_instance_f32 * S,
+ uint16_t numTaps,
+ const float32_t * pCoeffs,
+ float32_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the floating-point FIR filter.
+ * @param[in,out] S points to an instance of the floating-point FIR filter structure.
+ * @param[in] numTaps Number of filter coefficients in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed at a time.
+ */
+ void arm_fir_init_f64(
+ arm_fir_instance_f64 * S,
+ uint16_t numTaps,
+ const float64_t * pCoeffs,
+ float64_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Instance structure for the Q15 Biquad cascade filter.
+ */
+ typedef struct
+ {
+ int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
+ const q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
+ int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
+ } arm_biquad_casd_df1_inst_q15;
+
+ /**
+ * @brief Instance structure for the Q31 Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
+ const q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
+ uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
+ } arm_biquad_casd_df1_inst_q31;
+
+ /**
+ * @brief Instance structure for the floating-point Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
+ const float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
+ } arm_biquad_casd_df1_inst_f32;
+
+#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
+ /**
+ * @brief Instance structure for the modified Biquad coefs required by vectorized code.
+ */
+ typedef struct
+ {
+ float32_t coeffs[8][4]; /**< Points to the array of modified coefficients. The array is of length 32. There is one per stage */
+ } arm_biquad_mod_coef_f32;
+#endif
+
+ /**
+ * @brief Processing function for the Q15 Biquad cascade filter.
+ * @param[in] S points to an instance of the Q15 Biquad cascade structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_df1_q15(
+ const arm_biquad_casd_df1_inst_q15 * S,
+ const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q15 Biquad cascade filter.
+ * @param[in,out] S points to an instance of the Q15 Biquad cascade structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
+ */
+ void arm_biquad_cascade_df1_init_q15(
+ arm_biquad_casd_df1_inst_q15 * S,
+ uint8_t numStages,
+ const q15_t * pCoeffs,
+ q15_t * pState,
+ int8_t postShift);
+
+ /**
+ * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
+ * @param[in] S points to an instance of the Q15 Biquad cascade structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_df1_fast_q15(
+ const arm_biquad_casd_df1_inst_q15 * S,
+ const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q31 Biquad cascade filter
+ * @param[in] S points to an instance of the Q31 Biquad cascade structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_df1_q31(
+ const arm_biquad_casd_df1_inst_q31 * S,
+ const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
+ * @param[in] S points to an instance of the Q31 Biquad cascade structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_df1_fast_q31(
+ const arm_biquad_casd_df1_inst_q31 * S,
+ const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q31 Biquad cascade filter.
+ * @param[in,out] S points to an instance of the Q31 Biquad cascade structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
+ */
+ void arm_biquad_cascade_df1_init_q31(
+ arm_biquad_casd_df1_inst_q31 * S,
+ uint8_t numStages,
+ const q31_t * pCoeffs,
+ q31_t * pState,
+ int8_t postShift);
+
+ /**
+ * @brief Processing function for the floating-point Biquad cascade filter.
+ * @param[in] S points to an instance of the floating-point Biquad cascade structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_df1_f32(
+ const arm_biquad_casd_df1_inst_f32 * S,
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the floating-point Biquad cascade filter.
+ * @param[in,out] S points to an instance of the floating-point Biquad cascade structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pCoeffsMod points to the modified filter coefficients (only MVE version).
+ * @param[in] pState points to the state buffer.
+ */
+#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
+ void arm_biquad_cascade_df1_mve_init_f32(
+ arm_biquad_casd_df1_inst_f32 * S,
+ uint8_t numStages,
+ const float32_t * pCoeffs,
+ arm_biquad_mod_coef_f32 * pCoeffsMod,
+ float32_t * pState);
+#endif
+
+ void arm_biquad_cascade_df1_init_f32(
+ arm_biquad_casd_df1_inst_f32 * S,
+ uint8_t numStages,
+ const float32_t * pCoeffs,
+ float32_t * pState);
+
+
+/**
+ * @brief Convolution of floating-point sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
+ */
+ void arm_conv_f32(
+ const float32_t * pSrcA,
+ uint32_t srcALen,
+ const float32_t * pSrcB,
+ uint32_t srcBLen,
+ float32_t * pDst);
+
+
+ /**
+ * @brief Convolution of Q15 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
+ */
+ void arm_conv_opt_q15(
+ const q15_t * pSrcA,
+ uint32_t srcALen,
+ const q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+/**
+ * @brief Convolution of Q15 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
+ */
+ void arm_conv_q15(
+ const q15_t * pSrcA,
+ uint32_t srcALen,
+ const q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst);
+
+
+ /**
+ * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ */
+ void arm_conv_fast_q15(
+ const q15_t * pSrcA,
+ uint32_t srcALen,
+ const q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst);
+
+
+ /**
+ * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
+ */
+ void arm_conv_fast_opt_q15(
+ const q15_t * pSrcA,
+ uint32_t srcALen,
+ const q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+ /**
+ * @brief Convolution of Q31 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ */
+ void arm_conv_q31(
+ const q31_t * pSrcA,
+ uint32_t srcALen,
+ const q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst);
+
+
+ /**
+ * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ */
+ void arm_conv_fast_q31(
+ const q31_t * pSrcA,
+ uint32_t srcALen,
+ const q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst);
+
+
+ /**
+ * @brief Convolution of Q7 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
+ */
+ void arm_conv_opt_q7(
+ const q7_t * pSrcA,
+ uint32_t srcALen,
+ const q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+ /**
+ * @brief Convolution of Q7 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ */
+ void arm_conv_q7(
+ const q7_t * pSrcA,
+ uint32_t srcALen,
+ const q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst);
+
+
+ /**
+ * @brief Partial convolution of floating-point sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_f32(
+ const float32_t * pSrcA,
+ uint32_t srcALen,
+ const float32_t * pSrcB,
+ uint32_t srcBLen,
+ float32_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+ /**
+ * @brief Partial convolution of Q15 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_opt_q15(
+ const q15_t * pSrcA,
+ uint32_t srcALen,
+ const q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+ /**
+ * @brief Partial convolution of Q15 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_q15(
+ const q15_t * pSrcA,
+ uint32_t srcALen,
+ const q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+ /**
+ * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_fast_q15(
+ const q15_t * pSrcA,
+ uint32_t srcALen,
+ const q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+ /**
+ * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_fast_opt_q15(
+ const q15_t * pSrcA,
+ uint32_t srcALen,
+ const q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+ /**
+ * @brief Partial convolution of Q31 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_q31(
+ const q31_t * pSrcA,
+ uint32_t srcALen,
+ const q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+ /**
+ * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_fast_q31(
+ const q31_t * pSrcA,
+ uint32_t srcALen,
+ const q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+ /**
+ * @brief Partial convolution of Q7 sequences
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_opt_q7(
+ const q7_t * pSrcA,
+ uint32_t srcALen,
+ const q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+/**
+ * @brief Partial convolution of Q7 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_q7(
+ const q7_t * pSrcA,
+ uint32_t srcALen,
+ const q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+ /**
+ * @brief Instance structure for the Q15 FIR decimator.
+ */
+ typedef struct
+ {
+ uint8_t M; /**< decimation factor. */
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ const q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ } arm_fir_decimate_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 FIR decimator.
+ */
+ typedef struct
+ {
+ uint8_t M; /**< decimation factor. */
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ const q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ } arm_fir_decimate_instance_q31;
+
+/**
+ @brief Instance structure for floating-point FIR decimator.
+ */
+typedef struct
+ {
+ uint8_t M; /**< decimation factor. */
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ const float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ } arm_fir_decimate_instance_f32;
+
+
+/**
+ @brief Processing function for floating-point FIR decimator.
+ @param[in] S points to an instance of the floating-point FIR decimator structure
+ @param[in] pSrc points to the block of input data
+ @param[out] pDst points to the block of output data
+ @param[in] blockSize number of samples to process
+ */
+void arm_fir_decimate_f32(
+ const arm_fir_decimate_instance_f32 * S,
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+/**
+ @brief Initialization function for the floating-point FIR decimator.
+ @param[in,out] S points to an instance of the floating-point FIR decimator structure
+ @param[in] numTaps number of coefficients in the filter
+ @param[in] M decimation factor
+ @param[in] pCoeffs points to the filter coefficients
+ @param[in] pState points to the state buffer
+ @param[in] blockSize number of input samples to process per call
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : Operation successful
+ - \ref ARM_MATH_LENGTH_ERROR : <code>blockSize</code> is not a multiple of <code>M</code>
+ */
+arm_status arm_fir_decimate_init_f32(
+ arm_fir_decimate_instance_f32 * S,
+ uint16_t numTaps,
+ uint8_t M,
+ const float32_t * pCoeffs,
+ float32_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q15 FIR decimator.
+ * @param[in] S points to an instance of the Q15 FIR decimator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_decimate_q15(
+ const arm_fir_decimate_instance_q15 * S,
+ const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
+ * @param[in] S points to an instance of the Q15 FIR decimator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_decimate_fast_q15(
+ const arm_fir_decimate_instance_q15 * S,
+ const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q15 FIR decimator.
+ * @param[in,out] S points to an instance of the Q15 FIR decimator structure.
+ * @param[in] numTaps number of coefficients in the filter.
+ * @param[in] M decimation factor.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * <code>blockSize</code> is not a multiple of <code>M</code>.
+ */
+ arm_status arm_fir_decimate_init_q15(
+ arm_fir_decimate_instance_q15 * S,
+ uint16_t numTaps,
+ uint8_t M,
+ const q15_t * pCoeffs,
+ q15_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q31 FIR decimator.
+ * @param[in] S points to an instance of the Q31 FIR decimator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_decimate_q31(
+ const arm_fir_decimate_instance_q31 * S,
+ const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
+ * @param[in] S points to an instance of the Q31 FIR decimator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_decimate_fast_q31(
+ const arm_fir_decimate_instance_q31 * S,
+ const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q31 FIR decimator.
+ * @param[in,out] S points to an instance of the Q31 FIR decimator structure.
+ * @param[in] numTaps number of coefficients in the filter.
+ * @param[in] M decimation factor.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * <code>blockSize</code> is not a multiple of <code>M</code>.
+ */
+ arm_status arm_fir_decimate_init_q31(
+ arm_fir_decimate_instance_q31 * S,
+ uint16_t numTaps,
+ uint8_t M,
+ const q31_t * pCoeffs,
+ q31_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q15 FIR interpolator.
+ */
+ typedef struct
+ {
+ uint8_t L; /**< upsample factor. */
+ uint16_t phaseLength; /**< length of each polyphase filter component. */
+ const q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
+ q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
+ } arm_fir_interpolate_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 FIR interpolator.
+ */
+ typedef struct
+ {
+ uint8_t L; /**< upsample factor. */
+ uint16_t phaseLength; /**< length of each polyphase filter component. */
+ const q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
+ q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
+ } arm_fir_interpolate_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point FIR interpolator.
+ */
+ typedef struct
+ {
+ uint8_t L; /**< upsample factor. */
+ uint16_t phaseLength; /**< length of each polyphase filter component. */
+ const float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
+ float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
+ } arm_fir_interpolate_instance_f32;
+
+
+ /**
+ * @brief Processing function for the Q15 FIR interpolator.
+ * @param[in] S points to an instance of the Q15 FIR interpolator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_interpolate_q15(
+ const arm_fir_interpolate_instance_q15 * S,
+ const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q15 FIR interpolator.
+ * @param[in,out] S points to an instance of the Q15 FIR interpolator structure.
+ * @param[in] L upsample factor.
+ * @param[in] numTaps number of filter coefficients in the filter.
+ * @param[in] pCoeffs points to the filter coefficient buffer.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
+ */
+ arm_status arm_fir_interpolate_init_q15(
+ arm_fir_interpolate_instance_q15 * S,
+ uint8_t L,
+ uint16_t numTaps,
+ const q15_t * pCoeffs,
+ q15_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q31 FIR interpolator.
+ * @param[in] S points to an instance of the Q15 FIR interpolator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_interpolate_q31(
+ const arm_fir_interpolate_instance_q31 * S,
+ const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q31 FIR interpolator.
+ * @param[in,out] S points to an instance of the Q31 FIR interpolator structure.
+ * @param[in] L upsample factor.
+ * @param[in] numTaps number of filter coefficients in the filter.
+ * @param[in] pCoeffs points to the filter coefficient buffer.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
+ */
+ arm_status arm_fir_interpolate_init_q31(
+ arm_fir_interpolate_instance_q31 * S,
+ uint8_t L,
+ uint16_t numTaps,
+ const q31_t * pCoeffs,
+ q31_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the floating-point FIR interpolator.
+ * @param[in] S points to an instance of the floating-point FIR interpolator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_interpolate_f32(
+ const arm_fir_interpolate_instance_f32 * S,
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the floating-point FIR interpolator.
+ * @param[in,out] S points to an instance of the floating-point FIR interpolator structure.
+ * @param[in] L upsample factor.
+ * @param[in] numTaps number of filter coefficients in the filter.
+ * @param[in] pCoeffs points to the filter coefficient buffer.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
+ */
+ arm_status arm_fir_interpolate_init_f32(
+ arm_fir_interpolate_instance_f32 * S,
+ uint8_t L,
+ uint16_t numTaps,
+ const float32_t * pCoeffs,
+ float32_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the high precision Q31 Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
+ const q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
+ uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */
+ } arm_biquad_cas_df1_32x64_ins_q31;
+
+
+ /**
+ * @param[in] S points to an instance of the high precision Q31 Biquad cascade filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cas_df1_32x64_q31(
+ const arm_biquad_cas_df1_32x64_ins_q31 * S,
+ const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @param[in,out] S points to an instance of the high precision Q31 Biquad cascade filter structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format
+ */
+ void arm_biquad_cas_df1_32x64_init_q31(
+ arm_biquad_cas_df1_32x64_ins_q31 * S,
+ uint8_t numStages,
+ const q31_t * pCoeffs,
+ q63_t * pState,
+ uint8_t postShift);
+
+
+ /**
+ * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
+ const float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
+ } arm_biquad_cascade_df2T_instance_f32;
+
+ /**
+ * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
+ const float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
+ } arm_biquad_cascade_stereo_df2T_instance_f32;
+
+ /**
+ * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
+ const float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
+ } arm_biquad_cascade_df2T_instance_f64;
+
+
+ /**
+ * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in] S points to an instance of the filter data structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_df2T_f32(
+ const arm_biquad_cascade_df2T_instance_f32 * S,
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels
+ * @param[in] S points to an instance of the filter data structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_stereo_df2T_f32(
+ const arm_biquad_cascade_stereo_df2T_instance_f32 * S,
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in] S points to an instance of the filter data structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_df2T_f64(
+ const arm_biquad_cascade_df2T_instance_f64 * S,
+ const float64_t * pSrc,
+ float64_t * pDst,
+ uint32_t blockSize);
+
+
+#if defined(ARM_MATH_NEON)
+/**
+ @brief Compute new coefficient arrays for use in vectorized filter (Neon only).
+ @param[in] numStages number of 2nd order stages in the filter.
+ @param[in] pCoeffs points to the original filter coefficients.
+ @param[in] pComputedCoeffs points to the new computed coefficients for the vectorized version.
+ @return none
+*/
+void arm_biquad_cascade_df2T_compute_coefs_f32(
+ uint8_t numStages,
+ const float32_t * pCoeffs,
+ float32_t * pComputedCoeffs);
+#endif
+ /**
+ * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in,out] S points to an instance of the filter data structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ */
+ void arm_biquad_cascade_df2T_init_f32(
+ arm_biquad_cascade_df2T_instance_f32 * S,
+ uint8_t numStages,
+ const float32_t * pCoeffs,
+ float32_t * pState);
+
+
+ /**
+ * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in,out] S points to an instance of the filter data structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ */
+ void arm_biquad_cascade_stereo_df2T_init_f32(
+ arm_biquad_cascade_stereo_df2T_instance_f32 * S,
+ uint8_t numStages,
+ const float32_t * pCoeffs,
+ float32_t * pState);
+
+
+ /**
+ * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in,out] S points to an instance of the filter data structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ */
+ void arm_biquad_cascade_df2T_init_f64(
+ arm_biquad_cascade_df2T_instance_f64 * S,
+ uint8_t numStages,
+ const float64_t * pCoeffs,
+ float64_t * pState);
+
+
+ /**
+ * @brief Instance structure for the Q15 FIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of filter stages. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numStages. */
+ const q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
+ } arm_fir_lattice_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 FIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of filter stages. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numStages. */
+ const q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
+ } arm_fir_lattice_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point FIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of filter stages. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numStages. */
+ const float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
+ } arm_fir_lattice_instance_f32;
+
+
+ /**
+ * @brief Initialization function for the Q15 FIR lattice filter.
+ * @param[in] S points to an instance of the Q15 FIR lattice structure.
+ * @param[in] numStages number of filter stages.
+ * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
+ * @param[in] pState points to the state buffer. The array is of length numStages.
+ */
+ void arm_fir_lattice_init_q15(
+ arm_fir_lattice_instance_q15 * S,
+ uint16_t numStages,
+ const q15_t * pCoeffs,
+ q15_t * pState);
+
+
+ /**
+ * @brief Processing function for the Q15 FIR lattice filter.
+ * @param[in] S points to an instance of the Q15 FIR lattice structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_lattice_q15(
+ const arm_fir_lattice_instance_q15 * S,
+ const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q31 FIR lattice filter.
+ * @param[in] S points to an instance of the Q31 FIR lattice structure.
+ * @param[in] numStages number of filter stages.
+ * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
+ * @param[in] pState points to the state buffer. The array is of length numStages.
+ */
+ void arm_fir_lattice_init_q31(
+ arm_fir_lattice_instance_q31 * S,
+ uint16_t numStages,
+ const q31_t * pCoeffs,
+ q31_t * pState);
+
+
+ /**
+ * @brief Processing function for the Q31 FIR lattice filter.
+ * @param[in] S points to an instance of the Q31 FIR lattice structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_lattice_q31(
+ const arm_fir_lattice_instance_q31 * S,
+ const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+/**
+ * @brief Initialization function for the floating-point FIR lattice filter.
+ * @param[in] S points to an instance of the floating-point FIR lattice structure.
+ * @param[in] numStages number of filter stages.
+ * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
+ * @param[in] pState points to the state buffer. The array is of length numStages.
+ */
+ void arm_fir_lattice_init_f32(
+ arm_fir_lattice_instance_f32 * S,
+ uint16_t numStages,
+ const float32_t * pCoeffs,
+ float32_t * pState);
+
+
+ /**
+ * @brief Processing function for the floating-point FIR lattice filter.
+ * @param[in] S points to an instance of the floating-point FIR lattice structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_lattice_f32(
+ const arm_fir_lattice_instance_f32 * S,
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q15 IIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of stages in the filter. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
+ q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
+ q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
+ } arm_iir_lattice_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 IIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of stages in the filter. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
+ q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
+ q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
+ } arm_iir_lattice_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point IIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of stages in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
+ float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
+ float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
+ } arm_iir_lattice_instance_f32;
+
+
+ /**
+ * @brief Processing function for the floating-point IIR lattice filter.
+ * @param[in] S points to an instance of the floating-point IIR lattice structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_iir_lattice_f32(
+ const arm_iir_lattice_instance_f32 * S,
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the floating-point IIR lattice filter.
+ * @param[in] S points to an instance of the floating-point IIR lattice structure.
+ * @param[in] numStages number of stages in the filter.
+ * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
+ * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
+ * @param[in] pState points to the state buffer. The array is of length numStages+blockSize-1.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_iir_lattice_init_f32(
+ arm_iir_lattice_instance_f32 * S,
+ uint16_t numStages,
+ float32_t * pkCoeffs,
+ float32_t * pvCoeffs,
+ float32_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q31 IIR lattice filter.
+ * @param[in] S points to an instance of the Q31 IIR lattice structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_iir_lattice_q31(
+ const arm_iir_lattice_instance_q31 * S,
+ const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q31 IIR lattice filter.
+ * @param[in] S points to an instance of the Q31 IIR lattice structure.
+ * @param[in] numStages number of stages in the filter.
+ * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
+ * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
+ * @param[in] pState points to the state buffer. The array is of length numStages+blockSize.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_iir_lattice_init_q31(
+ arm_iir_lattice_instance_q31 * S,
+ uint16_t numStages,
+ q31_t * pkCoeffs,
+ q31_t * pvCoeffs,
+ q31_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q15 IIR lattice filter.
+ * @param[in] S points to an instance of the Q15 IIR lattice structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_iir_lattice_q15(
+ const arm_iir_lattice_instance_q15 * S,
+ const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+/**
+ * @brief Initialization function for the Q15 IIR lattice filter.
+ * @param[in] S points to an instance of the fixed-point Q15 IIR lattice structure.
+ * @param[in] numStages number of stages in the filter.
+ * @param[in] pkCoeffs points to reflection coefficient buffer. The array is of length numStages.
+ * @param[in] pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1.
+ * @param[in] pState points to state buffer. The array is of length numStages+blockSize.
+ * @param[in] blockSize number of samples to process per call.
+ */
+ void arm_iir_lattice_init_q15(
+ arm_iir_lattice_instance_q15 * S,
+ uint16_t numStages,
+ q15_t * pkCoeffs,
+ q15_t * pvCoeffs,
+ q15_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the floating-point LMS filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ float32_t mu; /**< step size that controls filter coefficient updates. */
+ } arm_lms_instance_f32;
+
+
+ /**
+ * @brief Processing function for floating-point LMS filter.
+ * @param[in] S points to an instance of the floating-point LMS filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[in] pRef points to the block of reference data.
+ * @param[out] pOut points to the block of output data.
+ * @param[out] pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_lms_f32(
+ const arm_lms_instance_f32 * S,
+ const float32_t * pSrc,
+ float32_t * pRef,
+ float32_t * pOut,
+ float32_t * pErr,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for floating-point LMS filter.
+ * @param[in] S points to an instance of the floating-point LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] pCoeffs points to the coefficient buffer.
+ * @param[in] pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_lms_init_f32(
+ arm_lms_instance_f32 * S,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ float32_t mu,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q15 LMS filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ q15_t mu; /**< step size that controls filter coefficient updates. */
+ uint32_t postShift; /**< bit shift applied to coefficients. */
+ } arm_lms_instance_q15;
+
+
+ /**
+ * @brief Initialization function for the Q15 LMS filter.
+ * @param[in] S points to an instance of the Q15 LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] pCoeffs points to the coefficient buffer.
+ * @param[in] pState points to the state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ */
+ void arm_lms_init_q15(
+ arm_lms_instance_q15 * S,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ q15_t mu,
+ uint32_t blockSize,
+ uint32_t postShift);
+
+
+ /**
+ * @brief Processing function for Q15 LMS filter.
+ * @param[in] S points to an instance of the Q15 LMS filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[in] pRef points to the block of reference data.
+ * @param[out] pOut points to the block of output data.
+ * @param[out] pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_lms_q15(
+ const arm_lms_instance_q15 * S,
+ const q15_t * pSrc,
+ q15_t * pRef,
+ q15_t * pOut,
+ q15_t * pErr,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q31 LMS filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ q31_t mu; /**< step size that controls filter coefficient updates. */
+ uint32_t postShift; /**< bit shift applied to coefficients. */
+ } arm_lms_instance_q31;
+
+
+ /**
+ * @brief Processing function for Q31 LMS filter.
+ * @param[in] S points to an instance of the Q15 LMS filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[in] pRef points to the block of reference data.
+ * @param[out] pOut points to the block of output data.
+ * @param[out] pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_lms_q31(
+ const arm_lms_instance_q31 * S,
+ const q31_t * pSrc,
+ q31_t * pRef,
+ q31_t * pOut,
+ q31_t * pErr,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for Q31 LMS filter.
+ * @param[in] S points to an instance of the Q31 LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] pCoeffs points to coefficient buffer.
+ * @param[in] pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ */
+ void arm_lms_init_q31(
+ arm_lms_instance_q31 * S,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ q31_t mu,
+ uint32_t blockSize,
+ uint32_t postShift);
+
+
+ /**
+ * @brief Instance structure for the floating-point normalized LMS filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ float32_t mu; /**< step size that control filter coefficient updates. */
+ float32_t energy; /**< saves previous frame energy. */
+ float32_t x0; /**< saves previous input sample. */
+ } arm_lms_norm_instance_f32;
+
+
+ /**
+ * @brief Processing function for floating-point normalized LMS filter.
+ * @param[in] S points to an instance of the floating-point normalized LMS filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[in] pRef points to the block of reference data.
+ * @param[out] pOut points to the block of output data.
+ * @param[out] pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_lms_norm_f32(
+ arm_lms_norm_instance_f32 * S,
+ const float32_t * pSrc,
+ float32_t * pRef,
+ float32_t * pOut,
+ float32_t * pErr,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for floating-point normalized LMS filter.
+ * @param[in] S points to an instance of the floating-point LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] pCoeffs points to coefficient buffer.
+ * @param[in] pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_lms_norm_init_f32(
+ arm_lms_norm_instance_f32 * S,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ float32_t mu,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q31 normalized LMS filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ q31_t mu; /**< step size that controls filter coefficient updates. */
+ uint8_t postShift; /**< bit shift applied to coefficients. */
+ const q31_t *recipTable; /**< points to the reciprocal initial value table. */
+ q31_t energy; /**< saves previous frame energy. */
+ q31_t x0; /**< saves previous input sample. */
+ } arm_lms_norm_instance_q31;
+
+
+ /**
+ * @brief Processing function for Q31 normalized LMS filter.
+ * @param[in] S points to an instance of the Q31 normalized LMS filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[in] pRef points to the block of reference data.
+ * @param[out] pOut points to the block of output data.
+ * @param[out] pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_lms_norm_q31(
+ arm_lms_norm_instance_q31 * S,
+ const q31_t * pSrc,
+ q31_t * pRef,
+ q31_t * pOut,
+ q31_t * pErr,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for Q31 normalized LMS filter.
+ * @param[in] S points to an instance of the Q31 normalized LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] pCoeffs points to coefficient buffer.
+ * @param[in] pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ */
+ void arm_lms_norm_init_q31(
+ arm_lms_norm_instance_q31 * S,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ q31_t mu,
+ uint32_t blockSize,
+ uint8_t postShift);
+
+
+ /**
+ * @brief Instance structure for the Q15 normalized LMS filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< Number of coefficients in the filter. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ q15_t mu; /**< step size that controls filter coefficient updates. */
+ uint8_t postShift; /**< bit shift applied to coefficients. */
+ const q15_t *recipTable; /**< Points to the reciprocal initial value table. */
+ q15_t energy; /**< saves previous frame energy. */
+ q15_t x0; /**< saves previous input sample. */
+ } arm_lms_norm_instance_q15;
+
+
+ /**
+ * @brief Processing function for Q15 normalized LMS filter.
+ * @param[in] S points to an instance of the Q15 normalized LMS filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[in] pRef points to the block of reference data.
+ * @param[out] pOut points to the block of output data.
+ * @param[out] pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_lms_norm_q15(
+ arm_lms_norm_instance_q15 * S,
+ const q15_t * pSrc,
+ q15_t * pRef,
+ q15_t * pOut,
+ q15_t * pErr,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for Q15 normalized LMS filter.
+ * @param[in] S points to an instance of the Q15 normalized LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] pCoeffs points to coefficient buffer.
+ * @param[in] pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ */
+ void arm_lms_norm_init_q15(
+ arm_lms_norm_instance_q15 * S,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ q15_t mu,
+ uint32_t blockSize,
+ uint8_t postShift);
+
+
+ /**
+ * @brief Correlation of floating-point sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ */
+ void arm_correlate_f32(
+ const float32_t * pSrcA,
+ uint32_t srcALen,
+ const float32_t * pSrcB,
+ uint32_t srcBLen,
+ float32_t * pDst);
+
+
+ /**
+ * @brief Correlation of floating-point sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ */
+ void arm_correlate_f64(
+ const float64_t * pSrcA,
+ uint32_t srcALen,
+ const float64_t * pSrcB,
+ uint32_t srcBLen,
+ float64_t * pDst);
+
+
+/**
+ @brief Correlation of Q15 sequences
+ @param[in] pSrcA points to the first input sequence
+ @param[in] srcALen length of the first input sequence
+ @param[in] pSrcB points to the second input sequence
+ @param[in] srcBLen length of the second input sequence
+ @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+*/
+void arm_correlate_opt_q15(
+ const q15_t * pSrcA,
+ uint32_t srcALen,
+ const q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ q15_t * pScratch);
+
+
+/**
+ @brief Correlation of Q15 sequences.
+ @param[in] pSrcA points to the first input sequence
+ @param[in] srcALen length of the first input sequence
+ @param[in] pSrcB points to the second input sequence
+ @param[in] srcBLen length of the second input sequence
+ @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ */
+ void arm_correlate_q15(
+ const q15_t * pSrcA,
+ uint32_t srcALen,
+ const q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst);
+
+
+/**
+ @brief Correlation of Q15 sequences (fast version).
+ @param[in] pSrcA points to the first input sequence
+ @param[in] srcALen length of the first input sequence
+ @param[in] pSrcB points to the second input sequence
+ @param[in] srcBLen length of the second input sequence
+ @param[out] pDst points to the location where the output result is written. Length 2 * max(srcALen, srcBLen) - 1.
+ @return none
+ */
+void arm_correlate_fast_q15(
+ const q15_t * pSrcA,
+ uint32_t srcALen,
+ const q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst);
+
+
+/**
+ @brief Correlation of Q15 sequences (fast version).
+ @param[in] pSrcA points to the first input sequence.
+ @param[in] srcALen length of the first input sequence.
+ @param[in] pSrcB points to the second input sequence.
+ @param[in] srcBLen length of the second input sequence.
+ @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ */
+void arm_correlate_fast_opt_q15(
+ const q15_t * pSrcA,
+ uint32_t srcALen,
+ const q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ q15_t * pScratch);
+
+
+ /**
+ * @brief Correlation of Q31 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ */
+ void arm_correlate_q31(
+ const q31_t * pSrcA,
+ uint32_t srcALen,
+ const q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst);
+
+
+/**
+ @brief Correlation of Q31 sequences (fast version).
+ @param[in] pSrcA points to the first input sequence
+ @param[in] srcALen length of the first input sequence
+ @param[in] pSrcB points to the second input sequence
+ @param[in] srcBLen length of the second input sequence
+ @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ */
+void arm_correlate_fast_q31(
+ const q31_t * pSrcA,
+ uint32_t srcALen,
+ const q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst);
+
+
+ /**
+ * @brief Correlation of Q7 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
+ */
+ void arm_correlate_opt_q7(
+ const q7_t * pSrcA,
+ uint32_t srcALen,
+ const q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+ /**
+ * @brief Correlation of Q7 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ */
+ void arm_correlate_q7(
+ const q7_t * pSrcA,
+ uint32_t srcALen,
+ const q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst);
+
+
+ /**
+ * @brief Instance structure for the floating-point sparse FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
+ float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+ const float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
+ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
+ } arm_fir_sparse_instance_f32;
+
+ /**
+ * @brief Instance structure for the Q31 sparse FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
+ q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+ const q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
+ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
+ } arm_fir_sparse_instance_q31;
+
+ /**
+ * @brief Instance structure for the Q15 sparse FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
+ q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+ const q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
+ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
+ } arm_fir_sparse_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q7 sparse FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
+ q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+ const q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
+ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
+ } arm_fir_sparse_instance_q7;
+
+
+ /**
+ * @brief Processing function for the floating-point sparse FIR filter.
+ * @param[in] S points to an instance of the floating-point sparse FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_sparse_f32(
+ arm_fir_sparse_instance_f32 * S,
+ const float32_t * pSrc,
+ float32_t * pDst,
+ float32_t * pScratchIn,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the floating-point sparse FIR filter.
+ * @param[in,out] S points to an instance of the floating-point sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] pCoeffs points to the array of filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ */
+ void arm_fir_sparse_init_f32(
+ arm_fir_sparse_instance_f32 * S,
+ uint16_t numTaps,
+ const float32_t * pCoeffs,
+ float32_t * pState,
+ int32_t * pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q31 sparse FIR filter.
+ * @param[in] S points to an instance of the Q31 sparse FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_sparse_q31(
+ arm_fir_sparse_instance_q31 * S,
+ const q31_t * pSrc,
+ q31_t * pDst,
+ q31_t * pScratchIn,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q31 sparse FIR filter.
+ * @param[in,out] S points to an instance of the Q31 sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] pCoeffs points to the array of filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ */
+ void arm_fir_sparse_init_q31(
+ arm_fir_sparse_instance_q31 * S,
+ uint16_t numTaps,
+ const q31_t * pCoeffs,
+ q31_t * pState,
+ int32_t * pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q15 sparse FIR filter.
+ * @param[in] S points to an instance of the Q15 sparse FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] pScratchOut points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_sparse_q15(
+ arm_fir_sparse_instance_q15 * S,
+ const q15_t * pSrc,
+ q15_t * pDst,
+ q15_t * pScratchIn,
+ q31_t * pScratchOut,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q15 sparse FIR filter.
+ * @param[in,out] S points to an instance of the Q15 sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] pCoeffs points to the array of filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ */
+ void arm_fir_sparse_init_q15(
+ arm_fir_sparse_instance_q15 * S,
+ uint16_t numTaps,
+ const q15_t * pCoeffs,
+ q15_t * pState,
+ int32_t * pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q7 sparse FIR filter.
+ * @param[in] S points to an instance of the Q7 sparse FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] pScratchOut points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_sparse_q7(
+ arm_fir_sparse_instance_q7 * S,
+ const q7_t * pSrc,
+ q7_t * pDst,
+ q7_t * pScratchIn,
+ q31_t * pScratchOut,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q7 sparse FIR filter.
+ * @param[in,out] S points to an instance of the Q7 sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] pCoeffs points to the array of filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ */
+ void arm_fir_sparse_init_q7(
+ arm_fir_sparse_instance_q7 * S,
+ uint16_t numTaps,
+ const q7_t * pCoeffs,
+ q7_t * pState,
+ int32_t * pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize);
+
+
+
+
+
+
+ /**
+ * @brief floating-point Circular write function.
+ */
+ __STATIC_FORCEINLINE void arm_circularWrite_f32(
+ int32_t * circBuffer,
+ int32_t L,
+ uint16_t * writeOffset,
+ int32_t bufferInc,
+ const int32_t * src,
+ int32_t srcInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0U;
+ int32_t wOffset;
+
+ /* Copy the value of Index pointer that points
+ * to the current location where the input samples to be copied */
+ wOffset = *writeOffset;
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while (i > 0U)
+ {
+ /* copy the input sample to the circular buffer */
+ circBuffer[wOffset] = *src;
+
+ /* Update the input pointer */
+ src += srcInc;
+
+ /* Circularly update wOffset. Watch out for positive and negative value */
+ wOffset += bufferInc;
+ if (wOffset >= L)
+ wOffset -= L;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *writeOffset = (uint16_t)wOffset;
+ }
+
+
+
+ /**
+ * @brief floating-point Circular Read function.
+ */
+ __STATIC_FORCEINLINE void arm_circularRead_f32(
+ int32_t * circBuffer,
+ int32_t L,
+ int32_t * readOffset,
+ int32_t bufferInc,
+ int32_t * dst,
+ int32_t * dst_base,
+ int32_t dst_length,
+ int32_t dstInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0U;
+ int32_t rOffset;
+ int32_t* dst_end;
+
+ /* Copy the value of Index pointer that points
+ * to the current location from where the input samples to be read */
+ rOffset = *readOffset;
+ dst_end = dst_base + dst_length;
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while (i > 0U)
+ {
+ /* copy the sample from the circular buffer to the destination buffer */
+ *dst = circBuffer[rOffset];
+
+ /* Update the input pointer */
+ dst += dstInc;
+
+ if (dst == dst_end)
+ {
+ dst = dst_base;
+ }
+
+ /* Circularly update rOffset. Watch out for positive and negative value */
+ rOffset += bufferInc;
+
+ if (rOffset >= L)
+ {
+ rOffset -= L;
+ }
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *readOffset = rOffset;
+ }
+
+
+ /**
+ * @brief Q15 Circular write function.
+ */
+ __STATIC_FORCEINLINE void arm_circularWrite_q15(
+ q15_t * circBuffer,
+ int32_t L,
+ uint16_t * writeOffset,
+ int32_t bufferInc,
+ const q15_t * src,
+ int32_t srcInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0U;
+ int32_t wOffset;
+
+ /* Copy the value of Index pointer that points
+ * to the current location where the input samples to be copied */
+ wOffset = *writeOffset;
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while (i > 0U)
+ {
+ /* copy the input sample to the circular buffer */
+ circBuffer[wOffset] = *src;
+
+ /* Update the input pointer */
+ src += srcInc;
+
+ /* Circularly update wOffset. Watch out for positive and negative value */
+ wOffset += bufferInc;
+ if (wOffset >= L)
+ wOffset -= L;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *writeOffset = (uint16_t)wOffset;
+ }
+
+
+ /**
+ * @brief Q15 Circular Read function.
+ */
+ __STATIC_FORCEINLINE void arm_circularRead_q15(
+ q15_t * circBuffer,
+ int32_t L,
+ int32_t * readOffset,
+ int32_t bufferInc,
+ q15_t * dst,
+ q15_t * dst_base,
+ int32_t dst_length,
+ int32_t dstInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0;
+ int32_t rOffset;
+ q15_t* dst_end;
+
+ /* Copy the value of Index pointer that points
+ * to the current location from where the input samples to be read */
+ rOffset = *readOffset;
+
+ dst_end = dst_base + dst_length;
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while (i > 0U)
+ {
+ /* copy the sample from the circular buffer to the destination buffer */
+ *dst = circBuffer[rOffset];
+
+ /* Update the input pointer */
+ dst += dstInc;
+
+ if (dst == dst_end)
+ {
+ dst = dst_base;
+ }
+
+ /* Circularly update wOffset. Watch out for positive and negative value */
+ rOffset += bufferInc;
+
+ if (rOffset >= L)
+ {
+ rOffset -= L;
+ }
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *readOffset = rOffset;
+ }
+
+
+ /**
+ * @brief Q7 Circular write function.
+ */
+ __STATIC_FORCEINLINE void arm_circularWrite_q7(
+ q7_t * circBuffer,
+ int32_t L,
+ uint16_t * writeOffset,
+ int32_t bufferInc,
+ const q7_t * src,
+ int32_t srcInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0U;
+ int32_t wOffset;
+
+ /* Copy the value of Index pointer that points
+ * to the current location where the input samples to be copied */
+ wOffset = *writeOffset;
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while (i > 0U)
+ {
+ /* copy the input sample to the circular buffer */
+ circBuffer[wOffset] = *src;
+
+ /* Update the input pointer */
+ src += srcInc;
+
+ /* Circularly update wOffset. Watch out for positive and negative value */
+ wOffset += bufferInc;
+ if (wOffset >= L)
+ wOffset -= L;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *writeOffset = (uint16_t)wOffset;
+ }
+
+
+ /**
+ * @brief Q7 Circular Read function.
+ */
+ __STATIC_FORCEINLINE void arm_circularRead_q7(
+ q7_t * circBuffer,
+ int32_t L,
+ int32_t * readOffset,
+ int32_t bufferInc,
+ q7_t * dst,
+ q7_t * dst_base,
+ int32_t dst_length,
+ int32_t dstInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0;
+ int32_t rOffset;
+ q7_t* dst_end;
+
+ /* Copy the value of Index pointer that points
+ * to the current location from where the input samples to be read */
+ rOffset = *readOffset;
+
+ dst_end = dst_base + dst_length;
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while (i > 0U)
+ {
+ /* copy the sample from the circular buffer to the destination buffer */
+ *dst = circBuffer[rOffset];
+
+ /* Update the input pointer */
+ dst += dstInc;
+
+ if (dst == dst_end)
+ {
+ dst = dst_base;
+ }
+
+ /* Circularly update rOffset. Watch out for positive and negative value */
+ rOffset += bufferInc;
+
+ if (rOffset >= L)
+ {
+ rOffset -= L;
+ }
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *readOffset = rOffset;
+ }
+
+
+/**
+ @brief Levinson Durbin
+ @param[in] phi autocovariance vector starting with lag 0 (length is nbCoefs + 1)
+ @param[out] a autoregressive coefficients
+ @param[out] err prediction error (variance)
+ @param[in] nbCoefs number of autoregressive coefficients
+ @return none
+ */
+void arm_levinson_durbin_f32(const float32_t *phi,
+ float32_t *a,
+ float32_t *err,
+ int nbCoefs);
+
+
+/**
+ @brief Levinson Durbin
+ @param[in] phi autocovariance vector starting with lag 0 (length is nbCoefs + 1)
+ @param[out] a autoregressive coefficients
+ @param[out] err prediction error (variance)
+ @param[in] nbCoefs number of autoregressive coefficients
+ @return none
+ */
+void arm_levinson_durbin_q31(const q31_t *phi,
+ q31_t *a,
+ q31_t *err,
+ int nbCoefs);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _FILTERING_FUNCTIONS_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/filtering_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/filtering_functions_f16.h
new file mode 100644
index 0000000..fd8b0bb
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/filtering_functions_f16.h
@@ -0,0 +1,237 @@
+/******************************************************************************
+ * @file filtering_functions_f16.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _FILTERING_FUNCTIONS_F16_H_
+#define _FILTERING_FUNCTIONS_F16_H_
+
+#include "arm_math_types_f16.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#if defined(ARM_FLOAT16_SUPPORTED)
+
+ /**
+ * @brief Instance structure for the floating-point FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ float16_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ const float16_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ } arm_fir_instance_f16;
+
+ /**
+ * @brief Initialization function for the floating-point FIR filter.
+ * @param[in,out] S points to an instance of the floating-point FIR filter structure.
+ * @param[in] numTaps Number of filter coefficients in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed at a time.
+ */
+ void arm_fir_init_f16(
+ arm_fir_instance_f16 * S,
+ uint16_t numTaps,
+ const float16_t * pCoeffs,
+ float16_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the floating-point FIR filter.
+ * @param[in] S points to an instance of the floating-point FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_f16(
+ const arm_fir_instance_f16 * S,
+ const float16_t * pSrc,
+ float16_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the floating-point Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ float16_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
+ const float16_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
+ } arm_biquad_casd_df1_inst_f16;
+
+#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
+ /**
+ * @brief Instance structure for the modified Biquad coefs required by vectorized code.
+ */
+ typedef struct
+ {
+ float16_t coeffs[12][8]; /**< Points to the array of modified coefficients. The array is of length 32. There is one per stage */
+ } arm_biquad_mod_coef_f16;
+#endif
+
+ /**
+ * @brief Processing function for the floating-point Biquad cascade filter.
+ * @param[in] S points to an instance of the floating-point Biquad cascade structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_df1_f16(
+ const arm_biquad_casd_df1_inst_f16 * S,
+ const float16_t * pSrc,
+ float16_t * pDst,
+ uint32_t blockSize);
+
+#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
+ void arm_biquad_cascade_df1_mve_init_f16(
+ arm_biquad_casd_df1_inst_f16 * S,
+ uint8_t numStages,
+ const float16_t * pCoeffs,
+ arm_biquad_mod_coef_f16 * pCoeffsMod,
+ float16_t * pState);
+#endif
+
+ void arm_biquad_cascade_df1_init_f16(
+ arm_biquad_casd_df1_inst_f16 * S,
+ uint8_t numStages,
+ const float16_t * pCoeffs,
+ float16_t * pState);
+
+ /**
+ * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ float16_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
+ const float16_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
+ } arm_biquad_cascade_df2T_instance_f16;
+
+ /**
+ * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ float16_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
+ const float16_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
+ } arm_biquad_cascade_stereo_df2T_instance_f16;
+
+ /**
+ * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in] S points to an instance of the filter data structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_df2T_f16(
+ const arm_biquad_cascade_df2T_instance_f16 * S,
+ const float16_t * pSrc,
+ float16_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels
+ * @param[in] S points to an instance of the filter data structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_stereo_df2T_f16(
+ const arm_biquad_cascade_stereo_df2T_instance_f16 * S,
+ const float16_t * pSrc,
+ float16_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in,out] S points to an instance of the filter data structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ */
+ void arm_biquad_cascade_df2T_init_f16(
+ arm_biquad_cascade_df2T_instance_f16 * S,
+ uint8_t numStages,
+ const float16_t * pCoeffs,
+ float16_t * pState);
+
+ /**
+ * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in,out] S points to an instance of the filter data structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ */
+ void arm_biquad_cascade_stereo_df2T_init_f16(
+ arm_biquad_cascade_stereo_df2T_instance_f16 * S,
+ uint8_t numStages,
+ const float16_t * pCoeffs,
+ float16_t * pState);
+
+ /**
+ * @brief Correlation of floating-point sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ */
+ void arm_correlate_f16(
+ const float16_t * pSrcA,
+ uint32_t srcALen,
+ const float16_t * pSrcB,
+ uint32_t srcBLen,
+ float16_t * pDst);
+
+
+/**
+ @brief Levinson Durbin
+ @param[in] phi autocovariance vector starting with lag 0 (length is nbCoefs + 1)
+ @param[out] a autoregressive coefficients
+ @param[out] err prediction error (variance)
+ @param[in] nbCoefs number of autoregressive coefficients
+ @return none
+ */
+void arm_levinson_durbin_f16(const float16_t *phi,
+ float16_t *a,
+ float16_t *err,
+ int nbCoefs);
+
+#endif /*defined(ARM_FLOAT16_SUPPORTED)*/
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _FILTERING_FUNCTIONS_F16_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/interpolation_functions.h b/Drivers/CMSIS/DSP/Include/dsp/interpolation_functions.h
new file mode 100644
index 0000000..6e51f7c
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/interpolation_functions.h
@@ -0,0 +1,319 @@
+/******************************************************************************
+ * @file interpolation_functions.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _INTERPOLATION_FUNCTIONS_H_
+#define _INTERPOLATION_FUNCTIONS_H_
+
+#include "arm_math_types.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+
+/**
+ * @defgroup groupInterpolation Interpolation Functions
+ * These functions perform 1- and 2-dimensional interpolation of data.
+ * Linear interpolation is used for 1-dimensional data and
+ * bilinear interpolation is used for 2-dimensional data.
+ */
+
+
+ /**
+ * @brief Instance structure for the floating-point Linear Interpolate function.
+ */
+ typedef struct
+ {
+ uint32_t nValues; /**< nValues */
+ float32_t x1; /**< x1 */
+ float32_t xSpacing; /**< xSpacing */
+ float32_t *pYData; /**< pointer to the table of Y values */
+ } arm_linear_interp_instance_f32;
+
+ /**
+ * @brief Instance structure for the floating-point bilinear interpolation function.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows in the data table. */
+ uint16_t numCols; /**< number of columns in the data table. */
+ float32_t *pData; /**< points to the data table. */
+ } arm_bilinear_interp_instance_f32;
+
+ /**
+ * @brief Instance structure for the Q31 bilinear interpolation function.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows in the data table. */
+ uint16_t numCols; /**< number of columns in the data table. */
+ q31_t *pData; /**< points to the data table. */
+ } arm_bilinear_interp_instance_q31;
+
+ /**
+ * @brief Instance structure for the Q15 bilinear interpolation function.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows in the data table. */
+ uint16_t numCols; /**< number of columns in the data table. */
+ q15_t *pData; /**< points to the data table. */
+ } arm_bilinear_interp_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q15 bilinear interpolation function.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows in the data table. */
+ uint16_t numCols; /**< number of columns in the data table. */
+ q7_t *pData; /**< points to the data table. */
+ } arm_bilinear_interp_instance_q7;
+
+
+ /**
+ * @brief Struct for specifying cubic spline type
+ */
+ typedef enum
+ {
+ ARM_SPLINE_NATURAL = 0, /**< Natural spline */
+ ARM_SPLINE_PARABOLIC_RUNOUT = 1 /**< Parabolic runout spline */
+ } arm_spline_type;
+
+ /**
+ * @brief Instance structure for the floating-point cubic spline interpolation.
+ */
+ typedef struct
+ {
+ arm_spline_type type; /**< Type (boundary conditions) */
+ const float32_t * x; /**< x values */
+ const float32_t * y; /**< y values */
+ uint32_t n_x; /**< Number of known data points */
+ float32_t * coeffs; /**< Coefficients buffer (b,c, and d) */
+ } arm_spline_instance_f32;
+
+
+
+
+ /**
+ * @ingroup groupInterpolation
+ */
+
+ /**
+ * @addtogroup SplineInterpolate
+ * @{
+ */
+
+
+ /**
+ * @brief Processing function for the floating-point cubic spline interpolation.
+ * @param[in] S points to an instance of the floating-point spline structure.
+ * @param[in] xq points to the x values ot the interpolated data points.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples of output data.
+ */
+ void arm_spline_f32(
+ arm_spline_instance_f32 * S,
+ const float32_t * xq,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the floating-point cubic spline interpolation.
+ * @param[in,out] S points to an instance of the floating-point spline structure.
+ * @param[in] type type of cubic spline interpolation (boundary conditions)
+ * @param[in] x points to the x values of the known data points.
+ * @param[in] y points to the y values of the known data points.
+ * @param[in] n number of known data points.
+ * @param[in] coeffs coefficients array for b, c, and d
+ * @param[in] tempBuffer buffer array for internal computations
+ */
+ void arm_spline_init_f32(
+ arm_spline_instance_f32 * S,
+ arm_spline_type type,
+ const float32_t * x,
+ const float32_t * y,
+ uint32_t n,
+ float32_t * coeffs,
+ float32_t * tempBuffer);
+
+
+ /**
+ * @} end of SplineInterpolate group
+ */
+
+
+
+ /**
+ * @addtogroup LinearInterpolate
+ * @{
+ */
+
+ /**
+ * @brief Process function for the floating-point Linear Interpolation Function.
+ * @param[in,out] S is an instance of the floating-point Linear Interpolation structure
+ * @param[in] x input sample to process
+ * @return y processed output sample.
+ *
+ */
+ float32_t arm_linear_interp_f32(
+ arm_linear_interp_instance_f32 * S,
+ float32_t x);
+
+ /**
+ *
+ * @brief Process function for the Q31 Linear Interpolation Function.
+ * @param[in] pYData pointer to Q31 Linear Interpolation table
+ * @param[in] x input sample to process
+ * @param[in] nValues number of table values
+ * @return y processed output sample.
+ *
+ * \par
+ * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
+ * This function can support maximum of table size 2^12.
+ *
+ */
+ q31_t arm_linear_interp_q31(
+ const q31_t * pYData,
+ q31_t x,
+ uint32_t nValues);
+
+ /**
+ *
+ * @brief Process function for the Q15 Linear Interpolation Function.
+ * @param[in] pYData pointer to Q15 Linear Interpolation table
+ * @param[in] x input sample to process
+ * @param[in] nValues number of table values
+ * @return y processed output sample.
+ *
+ * \par
+ * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
+ * This function can support maximum of table size 2^12.
+ *
+ */
+ q15_t arm_linear_interp_q15(
+ const q15_t * pYData,
+ q31_t x,
+ uint32_t nValues);
+
+ /**
+ *
+ * @brief Process function for the Q7 Linear Interpolation Function.
+ * @param[in] pYData pointer to Q7 Linear Interpolation table
+ * @param[in] x input sample to process
+ * @param[in] nValues number of table values
+ * @return y processed output sample.
+ *
+ * \par
+ * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
+ * This function can support maximum of table size 2^12.
+ */
+q7_t arm_linear_interp_q7(
+ const q7_t * pYData,
+ q31_t x,
+ uint32_t nValues);
+
+ /**
+ * @} end of LinearInterpolate group
+ */
+
+
+
+
+ /**
+ * @ingroup groupInterpolation
+ */
+
+
+ /**
+ * @addtogroup BilinearInterpolate
+ * @{
+ */
+
+ /**
+ * @brief Floating-point bilinear interpolation.
+ * @param[in,out] S points to an instance of the interpolation structure.
+ * @param[in] X interpolation coordinate.
+ * @param[in] Y interpolation coordinate.
+ * @return out interpolated value.
+ */
+ float32_t arm_bilinear_interp_f32(
+ const arm_bilinear_interp_instance_f32 * S,
+ float32_t X,
+ float32_t Y);
+
+ /**
+ * @brief Q31 bilinear interpolation.
+ * @param[in,out] S points to an instance of the interpolation structure.
+ * @param[in] X interpolation coordinate in 12.20 format.
+ * @param[in] Y interpolation coordinate in 12.20 format.
+ * @return out interpolated value.
+ */
+ q31_t arm_bilinear_interp_q31(
+ arm_bilinear_interp_instance_q31 * S,
+ q31_t X,
+ q31_t Y);
+
+
+ /**
+ * @brief Q15 bilinear interpolation.
+ * @param[in,out] S points to an instance of the interpolation structure.
+ * @param[in] X interpolation coordinate in 12.20 format.
+ * @param[in] Y interpolation coordinate in 12.20 format.
+ * @return out interpolated value.
+ */
+ q15_t arm_bilinear_interp_q15(
+ arm_bilinear_interp_instance_q15 * S,
+ q31_t X,
+ q31_t Y);
+
+ /**
+ * @brief Q7 bilinear interpolation.
+ * @param[in,out] S points to an instance of the interpolation structure.
+ * @param[in] X interpolation coordinate in 12.20 format.
+ * @param[in] Y interpolation coordinate in 12.20 format.
+ * @return out interpolated value.
+ */
+ q7_t arm_bilinear_interp_q7(
+ arm_bilinear_interp_instance_q7 * S,
+ q31_t X,
+ q31_t Y);
+ /**
+ * @} end of BilinearInterpolate group
+ */
+
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _INTERPOLATION_FUNCTIONS_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/interpolation_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/interpolation_functions_f16.h
new file mode 100644
index 0000000..8b6e6a9
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/interpolation_functions_f16.h
@@ -0,0 +1,107 @@
+/******************************************************************************
+ * @file interpolation_functions_f16.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _INTERPOLATION_FUNCTIONS_F16_H_
+#define _INTERPOLATION_FUNCTIONS_F16_H_
+
+#include "arm_math_types_f16.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#if defined(ARM_FLOAT16_SUPPORTED)
+
+typedef struct
+{
+ uint32_t nValues; /**< nValues */
+ float16_t x1; /**< x1 */
+ float16_t xSpacing; /**< xSpacing */
+ float16_t *pYData; /**< pointer to the table of Y values */
+} arm_linear_interp_instance_f16;
+
+/**
+ * @brief Instance structure for the floating-point bilinear interpolation function.
+ */
+typedef struct
+{
+ uint16_t numRows;/**< number of rows in the data table. */
+ uint16_t numCols;/**< number of columns in the data table. */
+ float16_t *pData; /**< points to the data table. */
+} arm_bilinear_interp_instance_f16;
+
+ /**
+ * @addtogroup LinearInterpolate
+ * @{
+ */
+
+ /**
+ * @brief Process function for the floating-point Linear Interpolation Function.
+ * @param[in,out] S is an instance of the floating-point Linear Interpolation structure
+ * @param[in] x input sample to process
+ * @return y processed output sample.
+ *
+ */
+ float16_t arm_linear_interp_f16(
+ arm_linear_interp_instance_f16 * S,
+ float16_t x);
+
+ /**
+ * @} end of LinearInterpolate group
+ */
+
+/**
+ * @addtogroup BilinearInterpolate
+ * @{
+ */
+
+ /**
+ * @brief Floating-point bilinear interpolation.
+ * @param[in,out] S points to an instance of the interpolation structure.
+ * @param[in] X interpolation coordinate.
+ * @param[in] Y interpolation coordinate.
+ * @return out interpolated value.
+ */
+ float16_t arm_bilinear_interp_f16(
+ const arm_bilinear_interp_instance_f16 * S,
+ float16_t X,
+ float16_t Y);
+
+
+ /**
+ * @} end of BilinearInterpolate group
+ */
+#endif /*defined(ARM_FLOAT16_SUPPORTED)*/
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _INTERPOLATION_FUNCTIONS_F16_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/matrix_functions.h b/Drivers/CMSIS/DSP/Include/dsp/matrix_functions.h
new file mode 100644
index 0000000..f3801a9
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/matrix_functions.h
@@ -0,0 +1,757 @@
+/******************************************************************************
+ * @file matrix_functions.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _MATRIX_FUNCTIONS_H_
+#define _MATRIX_FUNCTIONS_H_
+
+#include "arm_math_types.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+/**
+ * @defgroup groupMatrix Matrix Functions
+ *
+ * This set of functions provides basic matrix math operations.
+ * The functions operate on matrix data structures. For example,
+ * the type
+ * definition for the floating-point matrix structure is shown
+ * below:
+ * <pre>
+ * typedef struct
+ * {
+ * uint16_t numRows; // number of rows of the matrix.
+ * uint16_t numCols; // number of columns of the matrix.
+ * float32_t *pData; // points to the data of the matrix.
+ * } arm_matrix_instance_f32;
+ * </pre>
+ * There are similar definitions for Q15 and Q31 data types.
+ *
+ * The structure specifies the size of the matrix and then points to
+ * an array of data. The array is of size <code>numRows X numCols</code>
+ * and the values are arranged in row order. That is, the
+ * matrix element (i, j) is stored at:
+ * <pre>
+ * pData[i*numCols + j]
+ * </pre>
+ *
+ * \par Init Functions
+ * There is an associated initialization function for each type of matrix
+ * data structure.
+ * The initialization function sets the values of the internal structure fields.
+ * Refer to \ref arm_mat_init_f32(), \ref arm_mat_init_q31() and \ref arm_mat_init_q15()
+ * for floating-point, Q31 and Q15 types, respectively.
+ *
+ * \par
+ * Use of the initialization function is optional. However, if initialization function is used
+ * then the instance structure cannot be placed into a const data section.
+ * To place the instance structure in a const data
+ * section, manually initialize the data structure. For example:
+ * <pre>
+ * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code>
+ * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code>
+ * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code>
+ * </pre>
+ * where <code>nRows</code> specifies the number of rows, <code>nColumns</code>
+ * specifies the number of columns, and <code>pData</code> points to the
+ * data array.
+ *
+ * \par Size Checking
+ * By default all of the matrix functions perform size checking on the input and
+ * output matrices. For example, the matrix addition function verifies that the
+ * two input matrices and the output matrix all have the same number of rows and
+ * columns. If the size check fails the functions return:
+ * <pre>
+ * ARM_MATH_SIZE_MISMATCH
+ * </pre>
+ * Otherwise the functions return
+ * <pre>
+ * ARM_MATH_SUCCESS
+ * </pre>
+ * There is some overhead associated with this matrix size checking.
+ * The matrix size checking is enabled via the \#define
+ * <pre>
+ * ARM_MATH_MATRIX_CHECK
+ * </pre>
+ * within the library project settings. By default this macro is defined
+ * and size checking is enabled. By changing the project settings and
+ * undefining this macro size checking is eliminated and the functions
+ * run a bit faster. With size checking disabled the functions always
+ * return <code>ARM_MATH_SUCCESS</code>.
+ */
+
+ /**
+ * @brief Instance structure for the floating-point matrix structure.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows of the matrix. */
+ uint16_t numCols; /**< number of columns of the matrix. */
+ float32_t *pData; /**< points to the data of the matrix. */
+ } arm_matrix_instance_f32;
+
+ /**
+ * @brief Instance structure for the floating-point matrix structure.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows of the matrix. */
+ uint16_t numCols; /**< number of columns of the matrix. */
+ float64_t *pData; /**< points to the data of the matrix. */
+ } arm_matrix_instance_f64;
+
+ /**
+ * @brief Instance structure for the Q7 matrix structure.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows of the matrix. */
+ uint16_t numCols; /**< number of columns of the matrix. */
+ q7_t *pData; /**< points to the data of the matrix. */
+ } arm_matrix_instance_q7;
+
+ /**
+ * @brief Instance structure for the Q15 matrix structure.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows of the matrix. */
+ uint16_t numCols; /**< number of columns of the matrix. */
+ q15_t *pData; /**< points to the data of the matrix. */
+ } arm_matrix_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 matrix structure.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows of the matrix. */
+ uint16_t numCols; /**< number of columns of the matrix. */
+ q31_t *pData; /**< points to the data of the matrix. */
+ } arm_matrix_instance_q31;
+
+ /**
+ * @brief Floating-point matrix addition.
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_add_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst);
+
+ /**
+ * @brief Q15 matrix addition.
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_add_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst);
+
+ /**
+ * @brief Q31 matrix addition.
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_add_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+ /**
+ * @brief Floating-point, complex, matrix multiplication.
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_cmplx_mult_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst);
+
+ /**
+ * @brief Q15, complex, matrix multiplication.
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_cmplx_mult_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst,
+ q15_t * pScratch);
+
+ /**
+ * @brief Q31, complex, matrix multiplication.
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_cmplx_mult_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+ /**
+ * @brief Floating-point matrix transpose.
+ * @param[in] pSrc points to the input matrix
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
+ * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_trans_f32(
+ const arm_matrix_instance_f32 * pSrc,
+ arm_matrix_instance_f32 * pDst);
+
+/**
+ * @brief Floating-point matrix transpose.
+ * @param[in] pSrc points to the input matrix
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
+ * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_trans_f64(
+ const arm_matrix_instance_f64 * pSrc,
+ arm_matrix_instance_f64 * pDst);
+
+ /**
+ * @brief Floating-point complex matrix transpose.
+ * @param[in] pSrc points to the input matrix
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
+ * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_cmplx_trans_f32(
+ const arm_matrix_instance_f32 * pSrc,
+ arm_matrix_instance_f32 * pDst);
+
+
+ /**
+ * @brief Q15 matrix transpose.
+ * @param[in] pSrc points to the input matrix
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
+ * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_trans_q15(
+ const arm_matrix_instance_q15 * pSrc,
+ arm_matrix_instance_q15 * pDst);
+
+ /**
+ * @brief Q15 complex matrix transpose.
+ * @param[in] pSrc points to the input matrix
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
+ * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_cmplx_trans_q15(
+ const arm_matrix_instance_q15 * pSrc,
+ arm_matrix_instance_q15 * pDst);
+
+ /**
+ * @brief Q7 matrix transpose.
+ * @param[in] pSrc points to the input matrix
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
+ * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_trans_q7(
+ const arm_matrix_instance_q7 * pSrc,
+ arm_matrix_instance_q7 * pDst);
+
+ /**
+ * @brief Q31 matrix transpose.
+ * @param[in] pSrc points to the input matrix
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
+ * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_trans_q31(
+ const arm_matrix_instance_q31 * pSrc,
+ arm_matrix_instance_q31 * pDst);
+
+ /**
+ * @brief Q31 complex matrix transpose.
+ * @param[in] pSrc points to the input matrix
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
+ * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_cmplx_trans_q31(
+ const arm_matrix_instance_q31 * pSrc,
+ arm_matrix_instance_q31 * pDst);
+
+ /**
+ * @brief Floating-point matrix multiplication
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_mult_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst);
+
+ /**
+ * @brief Floating-point matrix multiplication
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_mult_f64(
+ const arm_matrix_instance_f64 * pSrcA,
+ const arm_matrix_instance_f64 * pSrcB,
+ arm_matrix_instance_f64 * pDst);
+
+ /**
+ * @brief Floating-point matrix and vector multiplication
+ * @param[in] pSrcMat points to the input matrix structure
+ * @param[in] pVec points to vector
+ * @param[out] pDst points to output vector
+ */
+void arm_mat_vec_mult_f32(
+ const arm_matrix_instance_f32 *pSrcMat,
+ const float32_t *pVec,
+ float32_t *pDst);
+
+ /**
+ * @brief Q7 matrix multiplication
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @param[in] pState points to the array for storing intermediate results
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_mult_q7(
+ const arm_matrix_instance_q7 * pSrcA,
+ const arm_matrix_instance_q7 * pSrcB,
+ arm_matrix_instance_q7 * pDst,
+ q7_t * pState);
+
+ /**
+ * @brief Q7 matrix and vector multiplication
+ * @param[in] pSrcMat points to the input matrix structure
+ * @param[in] pVec points to vector
+ * @param[out] pDst points to output vector
+ */
+void arm_mat_vec_mult_q7(
+ const arm_matrix_instance_q7 *pSrcMat,
+ const q7_t *pVec,
+ q7_t *pDst);
+
+ /**
+ * @brief Q15 matrix multiplication
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @param[in] pState points to the array for storing intermediate results
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_mult_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst,
+ q15_t * pState);
+
+ /**
+ * @brief Q15 matrix and vector multiplication
+ * @param[in] pSrcMat points to the input matrix structure
+ * @param[in] pVec points to vector
+ * @param[out] pDst points to output vector
+ */
+void arm_mat_vec_mult_q15(
+ const arm_matrix_instance_q15 *pSrcMat,
+ const q15_t *pVec,
+ q15_t *pDst);
+
+ /**
+ * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @param[in] pState points to the array for storing intermediate results
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_mult_fast_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst,
+ q15_t * pState);
+
+ /**
+ * @brief Q31 matrix multiplication
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_mult_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+ /**
+ * @brief Q31 matrix multiplication
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @param[in] pState points to the array for storing intermediate results
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_mult_opt_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst,
+ q31_t *pState);
+
+ /**
+ * @brief Q31 matrix and vector multiplication
+ * @param[in] pSrcMat points to the input matrix structure
+ * @param[in] pVec points to vector
+ * @param[out] pDst points to output vector
+ */
+void arm_mat_vec_mult_q31(
+ const arm_matrix_instance_q31 *pSrcMat,
+ const q31_t *pVec,
+ q31_t *pDst);
+
+ /**
+ * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_mult_fast_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+ /**
+ * @brief Floating-point matrix subtraction
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_sub_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst);
+
+ /**
+ * @brief Floating-point matrix subtraction
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_sub_f64(
+ const arm_matrix_instance_f64 * pSrcA,
+ const arm_matrix_instance_f64 * pSrcB,
+ arm_matrix_instance_f64 * pDst);
+
+ /**
+ * @brief Q15 matrix subtraction
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_sub_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst);
+
+ /**
+ * @brief Q31 matrix subtraction
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_sub_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+ /**
+ * @brief Floating-point matrix scaling.
+ * @param[in] pSrc points to the input matrix
+ * @param[in] scale scale factor
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_scale_f32(
+ const arm_matrix_instance_f32 * pSrc,
+ float32_t scale,
+ arm_matrix_instance_f32 * pDst);
+
+ /**
+ * @brief Q15 matrix scaling.
+ * @param[in] pSrc points to input matrix
+ * @param[in] scaleFract fractional portion of the scale factor
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] pDst points to output matrix
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_scale_q15(
+ const arm_matrix_instance_q15 * pSrc,
+ q15_t scaleFract,
+ int32_t shift,
+ arm_matrix_instance_q15 * pDst);
+
+ /**
+ * @brief Q31 matrix scaling.
+ * @param[in] pSrc points to input matrix
+ * @param[in] scaleFract fractional portion of the scale factor
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_scale_q31(
+ const arm_matrix_instance_q31 * pSrc,
+ q31_t scaleFract,
+ int32_t shift,
+ arm_matrix_instance_q31 * pDst);
+
+ /**
+ * @brief Q31 matrix initialization.
+ * @param[in,out] S points to an instance of the floating-point matrix structure.
+ * @param[in] nRows number of rows in the matrix.
+ * @param[in] nColumns number of columns in the matrix.
+ * @param[in] pData points to the matrix data array.
+ */
+void arm_mat_init_q31(
+ arm_matrix_instance_q31 * S,
+ uint16_t nRows,
+ uint16_t nColumns,
+ q31_t * pData);
+
+ /**
+ * @brief Q15 matrix initialization.
+ * @param[in,out] S points to an instance of the floating-point matrix structure.
+ * @param[in] nRows number of rows in the matrix.
+ * @param[in] nColumns number of columns in the matrix.
+ * @param[in] pData points to the matrix data array.
+ */
+void arm_mat_init_q15(
+ arm_matrix_instance_q15 * S,
+ uint16_t nRows,
+ uint16_t nColumns,
+ q15_t * pData);
+
+ /**
+ * @brief Floating-point matrix initialization.
+ * @param[in,out] S points to an instance of the floating-point matrix structure.
+ * @param[in] nRows number of rows in the matrix.
+ * @param[in] nColumns number of columns in the matrix.
+ * @param[in] pData points to the matrix data array.
+ */
+void arm_mat_init_f32(
+ arm_matrix_instance_f32 * S,
+ uint16_t nRows,
+ uint16_t nColumns,
+ float32_t * pData);
+
+
+
+ /**
+ * @brief Floating-point matrix inverse.
+ * @param[in] src points to the instance of the input floating-point matrix structure.
+ * @param[out] dst points to the instance of the output floating-point matrix structure.
+ * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
+ * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
+ */
+ arm_status arm_mat_inverse_f32(
+ const arm_matrix_instance_f32 * src,
+ arm_matrix_instance_f32 * dst);
+
+
+ /**
+ * @brief Floating-point matrix inverse.
+ * @param[in] src points to the instance of the input floating-point matrix structure.
+ * @param[out] dst points to the instance of the output floating-point matrix structure.
+ * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
+ * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
+ */
+ arm_status arm_mat_inverse_f64(
+ const arm_matrix_instance_f64 * src,
+ arm_matrix_instance_f64 * dst);
+
+ /**
+ * @brief Floating-point Cholesky decomposition of Symmetric Positive Definite Matrix.
+ * @param[in] src points to the instance of the input floating-point matrix structure.
+ * @param[out] dst points to the instance of the output floating-point matrix structure.
+ * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
+ * If the input matrix does not have a decomposition, then the algorithm terminates and returns error status ARM_MATH_DECOMPOSITION_FAILURE.
+ * If the matrix is ill conditioned or only semi-definite, then it is better using the LDL^t decomposition.
+ * The decomposition is returning a lower triangular matrix.
+ */
+ arm_status arm_mat_cholesky_f64(
+ const arm_matrix_instance_f64 * src,
+ arm_matrix_instance_f64 * dst);
+
+ /**
+ * @brief Floating-point Cholesky decomposition of Symmetric Positive Definite Matrix.
+ * @param[in] src points to the instance of the input floating-point matrix structure.
+ * @param[out] dst points to the instance of the output floating-point matrix structure.
+ * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
+ * If the input matrix does not have a decomposition, then the algorithm terminates and returns error status ARM_MATH_DECOMPOSITION_FAILURE.
+ * If the matrix is ill conditioned or only semi-definite, then it is better using the LDL^t decomposition.
+ * The decomposition is returning a lower triangular matrix.
+ */
+ arm_status arm_mat_cholesky_f32(
+ const arm_matrix_instance_f32 * src,
+ arm_matrix_instance_f32 * dst);
+
+ /**
+ * @brief Solve UT . X = A where UT is an upper triangular matrix
+ * @param[in] ut The upper triangular matrix
+ * @param[in] a The matrix a
+ * @param[out] dst The solution X of UT . X = A
+ * @return The function returns ARM_MATH_SINGULAR, if the system can't be solved.
+ */
+ arm_status arm_mat_solve_upper_triangular_f32(
+ const arm_matrix_instance_f32 * ut,
+ const arm_matrix_instance_f32 * a,
+ arm_matrix_instance_f32 * dst);
+
+ /**
+ * @brief Solve LT . X = A where LT is a lower triangular matrix
+ * @param[in] lt The lower triangular matrix
+ * @param[in] a The matrix a
+ * @param[out] dst The solution X of LT . X = A
+ * @return The function returns ARM_MATH_SINGULAR, if the system can't be solved.
+ */
+ arm_status arm_mat_solve_lower_triangular_f32(
+ const arm_matrix_instance_f32 * lt,
+ const arm_matrix_instance_f32 * a,
+ arm_matrix_instance_f32 * dst);
+
+
+ /**
+ * @brief Solve UT . X = A where UT is an upper triangular matrix
+ * @param[in] ut The upper triangular matrix
+ * @param[in] a The matrix a
+ * @param[out] dst The solution X of UT . X = A
+ * @return The function returns ARM_MATH_SINGULAR, if the system can't be solved.
+ */
+ arm_status arm_mat_solve_upper_triangular_f64(
+ const arm_matrix_instance_f64 * ut,
+ const arm_matrix_instance_f64 * a,
+ arm_matrix_instance_f64 * dst);
+
+ /**
+ * @brief Solve LT . X = A where LT is a lower triangular matrix
+ * @param[in] lt The lower triangular matrix
+ * @param[in] a The matrix a
+ * @param[out] dst The solution X of LT . X = A
+ * @return The function returns ARM_MATH_SINGULAR, if the system can't be solved.
+ */
+ arm_status arm_mat_solve_lower_triangular_f64(
+ const arm_matrix_instance_f64 * lt,
+ const arm_matrix_instance_f64 * a,
+ arm_matrix_instance_f64 * dst);
+
+
+ /**
+ * @brief Floating-point LDL decomposition of Symmetric Positive Semi-Definite Matrix.
+ * @param[in] src points to the instance of the input floating-point matrix structure.
+ * @param[out] l points to the instance of the output floating-point triangular matrix structure.
+ * @param[out] d points to the instance of the output floating-point diagonal matrix structure.
+ * @param[out] p points to the instance of the output floating-point permutation vector.
+ * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
+ * If the input matrix does not have a decomposition, then the algorithm terminates and returns error status ARM_MATH_DECOMPOSITION_FAILURE.
+ * The decomposition is returning a lower triangular matrix.
+ */
+ arm_status arm_mat_ldlt_f32(
+ const arm_matrix_instance_f32 * src,
+ arm_matrix_instance_f32 * l,
+ arm_matrix_instance_f32 * d,
+ uint16_t * pp);
+
+ /**
+ * @brief Floating-point LDL decomposition of Symmetric Positive Semi-Definite Matrix.
+ * @param[in] src points to the instance of the input floating-point matrix structure.
+ * @param[out] l points to the instance of the output floating-point triangular matrix structure.
+ * @param[out] d points to the instance of the output floating-point diagonal matrix structure.
+ * @param[out] p points to the instance of the output floating-point permutation vector.
+ * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
+ * If the input matrix does not have a decomposition, then the algorithm terminates and returns error status ARM_MATH_DECOMPOSITION_FAILURE.
+ * The decomposition is returning a lower triangular matrix.
+ */
+ arm_status arm_mat_ldlt_f64(
+ const arm_matrix_instance_f64 * src,
+ arm_matrix_instance_f64 * l,
+ arm_matrix_instance_f64 * d,
+ uint16_t * pp);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _MATRIX_FUNCTIONS_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/matrix_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/matrix_functions_f16.h
new file mode 100644
index 0000000..3693ec4
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/matrix_functions_f16.h
@@ -0,0 +1,221 @@
+/******************************************************************************
+ * @file matrix_functions_f16.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _MATRIX_FUNCTIONS_F16_H_
+#define _MATRIX_FUNCTIONS_F16_H_
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+
+#include "arm_math_types_f16.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+#if defined(ARM_FLOAT16_SUPPORTED)
+
+ /**
+ * @brief Instance structure for the floating-point matrix structure.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows of the matrix. */
+ uint16_t numCols; /**< number of columns of the matrix. */
+ float16_t *pData; /**< points to the data of the matrix. */
+ } arm_matrix_instance_f16;
+
+ /**
+ * @brief Floating-point matrix addition.
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_add_f16(
+ const arm_matrix_instance_f16 * pSrcA,
+ const arm_matrix_instance_f16 * pSrcB,
+ arm_matrix_instance_f16 * pDst);
+
+ /**
+ * @brief Floating-point, complex, matrix multiplication.
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_cmplx_mult_f16(
+ const arm_matrix_instance_f16 * pSrcA,
+ const arm_matrix_instance_f16 * pSrcB,
+ arm_matrix_instance_f16 * pDst);
+
+ /**
+ * @brief Floating-point matrix transpose.
+ * @param[in] pSrc points to the input matrix
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
+ * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_trans_f16(
+ const arm_matrix_instance_f16 * pSrc,
+ arm_matrix_instance_f16 * pDst);
+
+ /**
+ * @brief Floating-point complex matrix transpose.
+ * @param[in] pSrc points to the input matrix
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
+ * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_cmplx_trans_f16(
+ const arm_matrix_instance_f16 * pSrc,
+ arm_matrix_instance_f16 * pDst);
+
+ /**
+ * @brief Floating-point matrix multiplication
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_mult_f16(
+ const arm_matrix_instance_f16 * pSrcA,
+ const arm_matrix_instance_f16 * pSrcB,
+ arm_matrix_instance_f16 * pDst);
+ /**
+ * @brief Floating-point matrix and vector multiplication
+ * @param[in] pSrcMat points to the input matrix structure
+ * @param[in] pVec points to vector
+ * @param[out] pDst points to output vector
+ */
+void arm_mat_vec_mult_f16(
+ const arm_matrix_instance_f16 *pSrcMat,
+ const float16_t *pVec,
+ float16_t *pDst);
+
+ /**
+ * @brief Floating-point matrix subtraction
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_sub_f16(
+ const arm_matrix_instance_f16 * pSrcA,
+ const arm_matrix_instance_f16 * pSrcB,
+ arm_matrix_instance_f16 * pDst);
+
+ /**
+ * @brief Floating-point matrix scaling.
+ * @param[in] pSrc points to the input matrix
+ * @param[in] scale scale factor
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+arm_status arm_mat_scale_f16(
+ const arm_matrix_instance_f16 * pSrc,
+ float16_t scale,
+ arm_matrix_instance_f16 * pDst);
+
+ /**
+ * @brief Floating-point matrix initialization.
+ * @param[in,out] S points to an instance of the floating-point matrix structure.
+ * @param[in] nRows number of rows in the matrix.
+ * @param[in] nColumns number of columns in the matrix.
+ * @param[in] pData points to the matrix data array.
+ */
+void arm_mat_init_f16(
+ arm_matrix_instance_f16 * S,
+ uint16_t nRows,
+ uint16_t nColumns,
+ float16_t * pData);
+
+
+ /**
+ * @brief Floating-point matrix inverse.
+ * @param[in] src points to the instance of the input floating-point matrix structure.
+ * @param[out] dst points to the instance of the output floating-point matrix structure.
+ * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
+ * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
+ */
+ arm_status arm_mat_inverse_f16(
+ const arm_matrix_instance_f16 * src,
+ arm_matrix_instance_f16 * dst);
+
+
+ /**
+ * @brief Floating-point Cholesky decomposition of Symmetric Positive Definite Matrix.
+ * @param[in] src points to the instance of the input floating-point matrix structure.
+ * @param[out] dst points to the instance of the output floating-point matrix structure.
+ * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
+ * If the input matrix does not have a decomposition, then the algorithm terminates and returns error status ARM_MATH_DECOMPOSITION_FAILURE.
+ * If the matrix is ill conditioned or only semi-definite, then it is better using the LDL^t decomposition.
+ * The decomposition is returning a lower triangular matrix.
+ */
+ arm_status arm_mat_cholesky_f16(
+ const arm_matrix_instance_f16 * src,
+ arm_matrix_instance_f16 * dst);
+
+ /**
+ * @brief Solve UT . X = A where UT is an upper triangular matrix
+ * @param[in] ut The upper triangular matrix
+ * @param[in] a The matrix a
+ * @param[out] dst The solution X of UT . X = A
+ * @return The function returns ARM_MATH_SINGULAR, if the system can't be solved.
+ */
+ arm_status arm_mat_solve_upper_triangular_f16(
+ const arm_matrix_instance_f16 * ut,
+ const arm_matrix_instance_f16 * a,
+ arm_matrix_instance_f16 * dst);
+
+ /**
+ * @brief Solve LT . X = A where LT is a lower triangular matrix
+ * @param[in] lt The lower triangular matrix
+ * @param[in] a The matrix a
+ * @param[out] dst The solution X of LT . X = A
+ * @return The function returns ARM_MATH_SINGULAR, if the system can't be solved.
+ */
+ arm_status arm_mat_solve_lower_triangular_f16(
+ const arm_matrix_instance_f16 * lt,
+ const arm_matrix_instance_f16 * a,
+ arm_matrix_instance_f16 * dst);
+
+
+
+#endif /*defined(ARM_FLOAT16_SUPPORTED)*/
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _MATRIX_FUNCTIONS_F16_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/none.h b/Drivers/CMSIS/DSP/Include/dsp/none.h
new file mode 100644
index 0000000..130386e
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/none.h
@@ -0,0 +1,576 @@
+/******************************************************************************
+ * @file none.h
+ * @brief Intrinsincs when no DSP extension available
+ * @version V1.9.0
+ * @date 20. July 2020
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/*
+
+Definitions in this file are allowing to reuse some versions of the
+CMSIS-DSP to build on a core (M0 for instance) or a host where
+DSP extension are not available.
+
+Ideally a pure C version should have been used instead.
+But those are not always available or use a restricted set
+of intrinsics.
+
+*/
+
+#ifndef _NONE_H_
+#define _NONE_H_
+
+#include "arm_math_types.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+
+
+/*
+
+Normally those kind of definitions are in a compiler file
+in Core or Core_A.
+
+But for MSVC compiler it is a bit special. The goal is very specific
+to CMSIS-DSP and only to allow the use of this library from other
+systems like Python or Matlab.
+
+MSVC is not going to be used to cross-compile to ARM. So, having a MSVC
+compiler file in Core or Core_A would not make sense.
+
+*/
+#if defined ( _MSC_VER ) || defined(__GNUC_PYTHON__) || defined(__APPLE_CC__)
+ __STATIC_FORCEINLINE uint8_t __CLZ(uint32_t data)
+ {
+ if (data == 0U) { return 32U; }
+
+ uint32_t count = 0U;
+ uint32_t mask = 0x80000000U;
+
+ while ((data & mask) == 0U)
+ {
+ count += 1U;
+ mask = mask >> 1U;
+ }
+ return count;
+ }
+
+ __STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat)
+ {
+ if ((sat >= 1U) && (sat <= 32U))
+ {
+ const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
+ const int32_t min = -1 - max ;
+ if (val > max)
+ {
+ return max;
+ }
+ else if (val < min)
+ {
+ return min;
+ }
+ }
+ return val;
+ }
+
+ __STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat)
+ {
+ if (sat <= 31U)
+ {
+ const uint32_t max = ((1U << sat) - 1U);
+ if (val > (int32_t)max)
+ {
+ return max;
+ }
+ else if (val < 0)
+ {
+ return 0U;
+ }
+ }
+ return (uint32_t)val;
+ }
+
+ /**
+ \brief Rotate Right in unsigned value (32 bit)
+ \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
+ \param [in] op1 Value to rotate
+ \param [in] op2 Number of Bits to rotate
+ \return Rotated value
+ */
+__STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
+{
+ op2 %= 32U;
+ if (op2 == 0U)
+ {
+ return op1;
+ }
+ return (op1 >> op2) | (op1 << (32U - op2));
+}
+
+
+#endif
+
+/**
+ * @brief Clips Q63 to Q31 values.
+ */
+ __STATIC_FORCEINLINE q31_t clip_q63_to_q31(
+ q63_t x)
+ {
+ return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
+ ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
+ }
+
+ /**
+ * @brief Clips Q63 to Q15 values.
+ */
+ __STATIC_FORCEINLINE q15_t clip_q63_to_q15(
+ q63_t x)
+ {
+ return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
+ ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
+ }
+
+ /**
+ * @brief Clips Q31 to Q7 values.
+ */
+ __STATIC_FORCEINLINE q7_t clip_q31_to_q7(
+ q31_t x)
+ {
+ return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
+ ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
+ }
+
+ /**
+ * @brief Clips Q31 to Q15 values.
+ */
+ __STATIC_FORCEINLINE q15_t clip_q31_to_q15(
+ q31_t x)
+ {
+ return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
+ ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
+ }
+
+ /**
+ * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
+ */
+ __STATIC_FORCEINLINE q63_t mult32x64(
+ q63_t x,
+ q31_t y)
+ {
+ return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
+ (((q63_t) (x >> 32) * y) ) );
+ }
+
+/* SMMLAR */
+#define multAcc_32x32_keep32_R(a, x, y) \
+ a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32)
+
+/* SMMLSR */
+#define multSub_32x32_keep32_R(a, x, y) \
+ a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32)
+
+/* SMMULR */
+#define mult_32x32_keep32_R(a, x, y) \
+ a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32)
+
+/* SMMLA */
+#define multAcc_32x32_keep32(a, x, y) \
+ a += (q31_t) (((q63_t) x * y) >> 32)
+
+/* SMMLS */
+#define multSub_32x32_keep32(a, x, y) \
+ a -= (q31_t) (((q63_t) x * y) >> 32)
+
+/* SMMUL */
+#define mult_32x32_keep32(a, x, y) \
+ a = (q31_t) (((q63_t) x * y ) >> 32)
+
+#ifndef ARM_MATH_DSP
+ /**
+ * @brief definition to pack two 16 bit values.
+ */
+ #define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \
+ (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) )
+ #define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \
+ (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) )
+#endif
+
+ /**
+ * @brief definition to pack four 8 bit values.
+ */
+#ifndef ARM_MATH_BIG_ENDIAN
+ #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \
+ (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
+ (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
+ (((int32_t)(v3) << 24) & (int32_t)0xFF000000) )
+#else
+ #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \
+ (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \
+ (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
+ (((int32_t)(v0) << 24) & (int32_t)0xFF000000) )
+#endif
+
+
+
+
+/*
+ * @brief C custom defined intrinsic functions
+ */
+#if !defined (ARM_MATH_DSP)
+
+
+ /*
+ * @brief C custom defined QADD8
+ */
+ __STATIC_FORCEINLINE uint32_t __QADD8(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s, t, u;
+
+ r = __SSAT(((((q31_t)x << 24) >> 24) + (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
+ s = __SSAT(((((q31_t)x << 16) >> 24) + (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
+ t = __SSAT(((((q31_t)x << 8) >> 24) + (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF;
+ u = __SSAT(((((q31_t)x ) >> 24) + (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF;
+
+ return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined QSUB8
+ */
+ __STATIC_FORCEINLINE uint32_t __QSUB8(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s, t, u;
+
+ r = __SSAT(((((q31_t)x << 24) >> 24) - (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
+ s = __SSAT(((((q31_t)x << 16) >> 24) - (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
+ t = __SSAT(((((q31_t)x << 8) >> 24) - (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF;
+ u = __SSAT(((((q31_t)x ) >> 24) - (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF;
+
+ return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined QADD16
+ */
+ __STATIC_FORCEINLINE uint32_t __QADD16(
+ uint32_t x,
+ uint32_t y)
+ {
+/* q31_t r, s; without initialisation 'arm_offset_q15 test' fails but 'intrinsic' tests pass! for armCC */
+ q31_t r = 0, s = 0;
+
+ r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
+ s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined SHADD16
+ */
+ __STATIC_FORCEINLINE uint32_t __SHADD16(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s;
+
+ r = (((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+ s = (((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined QSUB16
+ */
+ __STATIC_FORCEINLINE uint32_t __QSUB16(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s;
+
+ r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
+ s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined SHSUB16
+ */
+ __STATIC_FORCEINLINE uint32_t __SHSUB16(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s;
+
+ r = (((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+ s = (((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined QASX
+ */
+ __STATIC_FORCEINLINE uint32_t __QASX(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s;
+
+ r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
+ s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined SHASX
+ */
+ __STATIC_FORCEINLINE uint32_t __SHASX(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s;
+
+ r = (((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+ s = (((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined QSAX
+ */
+ __STATIC_FORCEINLINE uint32_t __QSAX(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s;
+
+ r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
+ s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined SHSAX
+ */
+ __STATIC_FORCEINLINE uint32_t __SHSAX(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s;
+
+ r = (((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+ s = (((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined SMUSDX
+ */
+ __STATIC_FORCEINLINE uint32_t __SMUSDX(
+ uint32_t x,
+ uint32_t y)
+ {
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) -
+ ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ));
+ }
+
+ /*
+ * @brief C custom defined SMUADX
+ */
+ __STATIC_FORCEINLINE uint32_t __SMUADX(
+ uint32_t x,
+ uint32_t y)
+ {
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
+ ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ));
+ }
+
+
+ /*
+ * @brief C custom defined QADD
+ */
+ __STATIC_FORCEINLINE int32_t __QADD(
+ int32_t x,
+ int32_t y)
+ {
+ return ((int32_t)(clip_q63_to_q31((q63_t)x + (q31_t)y)));
+ }
+
+
+ /*
+ * @brief C custom defined QSUB
+ */
+ __STATIC_FORCEINLINE int32_t __QSUB(
+ int32_t x,
+ int32_t y)
+ {
+ return ((int32_t)(clip_q63_to_q31((q63_t)x - (q31_t)y)));
+ }
+
+
+ /*
+ * @brief C custom defined SMLAD
+ */
+ __STATIC_FORCEINLINE uint32_t __SMLAD(
+ uint32_t x,
+ uint32_t y,
+ uint32_t sum)
+ {
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
+ ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) +
+ ( ((q31_t)sum ) ) ));
+ }
+
+
+ /*
+ * @brief C custom defined SMLADX
+ */
+ __STATIC_FORCEINLINE uint32_t __SMLADX(
+ uint32_t x,
+ uint32_t y,
+ uint32_t sum)
+ {
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
+ ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
+ ( ((q31_t)sum ) ) ));
+ }
+
+
+ /*
+ * @brief C custom defined SMLSDX
+ */
+ __STATIC_FORCEINLINE uint32_t __SMLSDX(
+ uint32_t x,
+ uint32_t y,
+ uint32_t sum)
+ {
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) -
+ ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
+ ( ((q31_t)sum ) ) ));
+ }
+
+
+ /*
+ * @brief C custom defined SMLALD
+ */
+ __STATIC_FORCEINLINE uint64_t __SMLALD(
+ uint32_t x,
+ uint32_t y,
+ uint64_t sum)
+ {
+/* return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + ((q15_t) x * (q15_t) y)); */
+ return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
+ ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) +
+ ( ((q63_t)sum ) ) ));
+ }
+
+
+ /*
+ * @brief C custom defined SMLALDX
+ */
+ __STATIC_FORCEINLINE uint64_t __SMLALDX(
+ uint32_t x,
+ uint32_t y,
+ uint64_t sum)
+ {
+/* return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + ((q15_t) x * (q15_t) (y >> 16)); */
+ return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
+ ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
+ ( ((q63_t)sum ) ) ));
+ }
+
+
+ /*
+ * @brief C custom defined SMUAD
+ */
+ __STATIC_FORCEINLINE uint32_t __SMUAD(
+ uint32_t x,
+ uint32_t y)
+ {
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
+ ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) ));
+ }
+
+
+ /*
+ * @brief C custom defined SMUSD
+ */
+ __STATIC_FORCEINLINE uint32_t __SMUSD(
+ uint32_t x,
+ uint32_t y)
+ {
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) -
+ ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) ));
+ }
+
+
+ /*
+ * @brief C custom defined SXTB16
+ */
+ __STATIC_FORCEINLINE uint32_t __SXTB16(
+ uint32_t x)
+ {
+ return ((uint32_t)(((((q31_t)x << 24) >> 24) & (q31_t)0x0000FFFF) |
+ ((((q31_t)x << 8) >> 8) & (q31_t)0xFFFF0000) ));
+ }
+
+ /*
+ * @brief C custom defined SMMLA
+ */
+ __STATIC_FORCEINLINE int32_t __SMMLA(
+ int32_t x,
+ int32_t y,
+ int32_t sum)
+ {
+ return (sum + (int32_t) (((int64_t) x * y) >> 32));
+ }
+
+#endif /* !defined (ARM_MATH_DSP) */
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _TRANSFORM_FUNCTIONS_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/quaternion_math_functions.h b/Drivers/CMSIS/DSP/Include/dsp/quaternion_math_functions.h
new file mode 100644
index 0000000..0c5d067
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/quaternion_math_functions.h
@@ -0,0 +1,159 @@
+/******************************************************************************
+ * @file quaternion_math_functions.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ *
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2021 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _QUATERNION_MATH_FUNCTIONS_H_
+#define _QUATERNION_MATH_FUNCTIONS_H_
+
+#include "arm_math_types.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+/**
+ * @defgroup groupQuaternionMath Quaternion Math Functions
+ * Functions to operates on quaternions and convert between a
+ * rotation and quaternion representation.
+ */
+
+
+/**
+ @brief Floating-point quaternion Norm.
+ @param[in] pInputQuaternions points to the input vector of quaternions
+ @param[out] pNorms points to the output vector of norms
+ @param[in] nbQuaternions number of quaternions in each vector
+ @return none
+ */
+
+
+
+void arm_quaternion_norm_f32(const float32_t *pInputQuaternions,
+ float32_t *pNorms,
+ uint32_t nbQuaternions);
+
+
+/**
+ @brief Floating-point quaternion inverse.
+ @param[in] pInputQuaternions points to the input vector of quaternions
+ @param[out] pInverseQuaternions points to the output vector of inverse quaternions
+ @param[in] nbQuaternions number of quaternions in each vector
+ @return none
+ */
+
+void arm_quaternion_inverse_f32(const float32_t *pInputQuaternions,
+ float32_t *pInverseQuaternions,
+ uint32_t nbQuaternions);
+
+/**
+ @brief Floating-point quaternion conjugates.
+ @param[in] pInputQuaternions points to the input vector of quaternions
+ @param[out] pConjugateQuaternions points to the output vector of conjugate quaternions
+ @param[in] nbQuaternions number of quaternions in each vector
+ @return none
+ */
+void arm_quaternion_conjugate_f32(const float32_t *inputQuaternions,
+ float32_t *pConjugateQuaternions,
+ uint32_t nbQuaternions);
+
+/**
+ @brief Floating-point normalization of quaternions.
+ @param[in] pInputQuaternions points to the input vector of quaternions
+ @param[out] pNormalizedQuaternions points to the output vector of normalized quaternions
+ @param[in] nbQuaternions number of quaternions in each vector
+ @return none
+ */
+void arm_quaternion_normalize_f32(const float32_t *inputQuaternions,
+ float32_t *pNormalizedQuaternions,
+ uint32_t nbQuaternions);
+
+
+/**
+ @brief Floating-point product of two quaternions.
+ @param[in] qa First quaternion
+ @param[in] qb Second quaternion
+ @param[out] r Product of two quaternions
+ @return none
+ */
+void arm_quaternion_product_single_f32(const float32_t *qa,
+ const float32_t *qb,
+ float32_t *r);
+
+/**
+ @brief Floating-point elementwise product two quaternions.
+ @param[in] qa First array of quaternions
+ @param[in] qb Second array of quaternions
+ @param[out] r Elementwise product of quaternions
+ @param[in] nbQuaternions Number of quaternions in the array
+ @return none
+ */
+void arm_quaternion_product_f32(const float32_t *qa,
+ const float32_t *qb,
+ float32_t *r,
+ uint32_t nbQuaternions);
+
+/**
+ * @brief Conversion of quaternion to equivalent rotation matrix.
+ * @param[in] pInputQuaternions points to an array of normalized quaternions
+ * @param[out] pOutputRotations points to an array of 3x3 rotations (in row order)
+ * @param[in] nbQuaternions in the array
+ * @return none.
+ *
+ * <b>Format of rotation matrix</b>
+ * \par
+ * The quaternion a + ib + jc + kd is converted into rotation matrix:
+ * a^2 + b^2 - c^2 - d^2 2bc - 2ad 2bd + 2ac
+ * 2bc + 2ad a^2 - b^2 + c^2 - d^2 2cd - 2ab
+ * 2bd - 2ac 2cd + 2ab a^2 - b^2 - c^2 + d^2
+ *
+ * Rotation matrix is saved in row order : R00 R01 R02 R10 R11 R12 R20 R21 R22
+ */
+void arm_quaternion2rotation_f32(const float32_t *pInputQuaternions,
+ float32_t *pOutputRotations,
+ uint32_t nbQuaternions);
+
+/**
+ * @brief Conversion of a rotation matrix to equivalent quaternion.
+ * @param[in] pInputRotations points to an array 3x3 rotation matrix (in row order)
+ * @param[out] pOutputQuaternions points to an array of quaternions
+ * @param[in] nbQuaternions in the array
+ * @return none.
+*/
+void arm_rotation2quaternion_f32(const float32_t *pInputRotations,
+ float32_t *pOutputQuaternions,
+ uint32_t nbQuaternions);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _QUATERNION_MATH_FUNCTIONS_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/statistics_functions.h b/Drivers/CMSIS/DSP/Include/dsp/statistics_functions.h
new file mode 100644
index 0000000..c5224c6
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/statistics_functions.h
@@ -0,0 +1,977 @@
+/******************************************************************************
+ * @file statistics_functions.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _STATISTICS_FUNCTIONS_H_
+#define _STATISTICS_FUNCTIONS_H_
+
+#include "arm_math_types.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+#include "dsp/basic_math_functions.h"
+#include "dsp/fast_math_functions.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+
+/**
+ * @defgroup groupStats Statistics Functions
+ */
+
+/**
+ * @brief Computation of the LogSumExp
+ *
+ * In probabilistic computations, the dynamic of the probability values can be very
+ * wide because they come from gaussian functions.
+ * To avoid underflow and overflow issues, the values are represented by their log.
+ * In this representation, multiplying the original exp values is easy : their logs are added.
+ * But adding the original exp values is requiring some special handling and it is the
+ * goal of the LogSumExp function.
+ *
+ * If the values are x1...xn, the function is computing:
+ *
+ * ln(exp(x1) + ... + exp(xn)) and the computation is done in such a way that
+ * rounding issues are minimised.
+ *
+ * The max xm of the values is extracted and the function is computing:
+ * xm + ln(exp(x1 - xm) + ... + exp(xn - xm))
+ *
+ * @param[in] *in Pointer to an array of input values.
+ * @param[in] blockSize Number of samples in the input array.
+ * @return LogSumExp
+ *
+ */
+
+
+float32_t arm_logsumexp_f32(const float32_t *in, uint32_t blockSize);
+
+/**
+ * @brief Dot product with log arithmetic
+ *
+ * Vectors are containing the log of the samples
+ *
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[in] pTmpBuffer temporary buffer of length blockSize
+ * @return The log of the dot product .
+ *
+ */
+
+
+float32_t arm_logsumexp_dot_prod_f32(const float32_t * pSrcA,
+ const float32_t * pSrcB,
+ uint32_t blockSize,
+ float32_t *pTmpBuffer);
+
+/**
+ * @brief Entropy
+ *
+ * @param[in] pSrcA Array of input values.
+ * @param[in] blockSize Number of samples in the input array.
+ * @return Entropy -Sum(p ln p)
+ *
+ */
+
+
+float32_t arm_entropy_f32(const float32_t * pSrcA,uint32_t blockSize);
+
+
+/**
+ * @brief Entropy
+ *
+ * @param[in] pSrcA Array of input values.
+ * @param[in] blockSize Number of samples in the input array.
+ * @return Entropy -Sum(p ln p)
+ *
+ */
+
+
+float64_t arm_entropy_f64(const float64_t * pSrcA, uint32_t blockSize);
+
+
+/**
+ * @brief Kullback-Leibler
+ *
+ * @param[in] pSrcA Pointer to an array of input values for probability distribution A.
+ * @param[in] pSrcB Pointer to an array of input values for probability distribution B.
+ * @param[in] blockSize Number of samples in the input array.
+ * @return Kullback-Leibler Divergence D(A || B)
+ *
+ */
+float32_t arm_kullback_leibler_f32(const float32_t * pSrcA
+ ,const float32_t * pSrcB
+ ,uint32_t blockSize);
+
+
+/**
+ * @brief Kullback-Leibler
+ *
+ * @param[in] pSrcA Pointer to an array of input values for probability distribution A.
+ * @param[in] pSrcB Pointer to an array of input values for probability distribution B.
+ * @param[in] blockSize Number of samples in the input array.
+ * @return Kullback-Leibler Divergence D(A || B)
+ *
+ */
+float64_t arm_kullback_leibler_f64(const float64_t * pSrcA,
+ const float64_t * pSrcB,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Sum of the squares of the elements of a Q31 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_power_q31(
+ const q31_t * pSrc,
+ uint32_t blockSize,
+ q63_t * pResult);
+
+
+ /**
+ * @brief Sum of the squares of the elements of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_power_f32(
+ const float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+
+ /**
+ * @brief Sum of the squares of the elements of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_power_f64(
+ const float64_t * pSrc,
+ uint32_t blockSize,
+ float64_t * pResult);
+
+
+ /**
+ * @brief Sum of the squares of the elements of a Q15 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_power_q15(
+ const q15_t * pSrc,
+ uint32_t blockSize,
+ q63_t * pResult);
+
+
+ /**
+ * @brief Sum of the squares of the elements of a Q7 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_power_q7(
+ const q7_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+
+ /**
+ * @brief Mean value of a Q7 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_mean_q7(
+ const q7_t * pSrc,
+ uint32_t blockSize,
+ q7_t * pResult);
+
+
+ /**
+ * @brief Mean value of a Q15 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_mean_q15(
+ const q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult);
+
+
+ /**
+ * @brief Mean value of a Q31 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_mean_q31(
+ const q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+
+ /**
+ * @brief Mean value of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_mean_f32(
+ const float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+
+ /**
+ * @brief Mean value of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_mean_f64(
+ const float64_t * pSrc,
+ uint32_t blockSize,
+ float64_t * pResult);
+
+
+ /**
+ * @brief Variance of the elements of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_var_f32(
+ const float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+
+ /**
+ * @brief Variance of the elements of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_var_f64(
+ const float64_t * pSrc,
+ uint32_t blockSize,
+ float64_t * pResult);
+
+
+ /**
+ * @brief Variance of the elements of a Q31 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_var_q31(
+ const q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+
+ /**
+ * @brief Variance of the elements of a Q15 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_var_q15(
+ const q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult);
+
+
+ /**
+ * @brief Root Mean Square of the elements of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_rms_f32(
+ const float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+
+ /**
+ * @brief Root Mean Square of the elements of a Q31 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_rms_q31(
+ const q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+
+ /**
+ * @brief Root Mean Square of the elements of a Q15 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_rms_q15(
+ const q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult);
+
+
+ /**
+ * @brief Standard deviation of the elements of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_std_f32(
+ const float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+
+ /**
+ * @brief Standard deviation of the elements of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_std_f64(
+ const float64_t * pSrc,
+ uint32_t blockSize,
+ float64_t * pResult);
+
+
+ /**
+ * @brief Standard deviation of the elements of a Q31 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_std_q31(
+ const q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+
+ /**
+ * @brief Standard deviation of the elements of a Q15 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_std_q15(
+ const q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult);
+
+
+
+ /**
+ * @brief Minimum value of a Q7 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] result is output pointer
+ * @param[in] index is the array index of the minimum value in the input buffer.
+ */
+ void arm_min_q7(
+ const q7_t * pSrc,
+ uint32_t blockSize,
+ q7_t * result,
+ uint32_t * index);
+
+ /**
+ * @brief Minimum value of absolute values of a Q7 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] result is output pointer
+ * @param[in] index is the array index of the minimum value in the input buffer.
+ */
+ void arm_absmin_q7(
+ const q7_t * pSrc,
+ uint32_t blockSize,
+ q7_t * result,
+ uint32_t * index);
+
+ /**
+ * @brief Minimum value of absolute values of a Q7 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] result is output pointer
+ */
+ void arm_absmin_no_idx_q7(
+ const q7_t * pSrc,
+ uint32_t blockSize,
+ q7_t * result);
+
+
+ /**
+ * @brief Minimum value of a Q15 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ * @param[in] pIndex is the array index of the minimum value in the input buffer.
+ */
+ void arm_min_q15(
+ const q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult,
+ uint32_t * pIndex);
+
+/**
+ * @brief Minimum value of absolute values of a Q15 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ * @param[in] pIndex is the array index of the minimum value in the input buffer.
+ */
+ void arm_absmin_q15(
+ const q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult,
+ uint32_t * pIndex);
+
+ /**
+ * @brief Minimum value of absolute values of a Q15 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ */
+ void arm_absmin_no_idx_q15(
+ const q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult);
+
+
+ /**
+ * @brief Minimum value of a Q31 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ * @param[out] pIndex is the array index of the minimum value in the input buffer.
+ */
+ void arm_min_q31(
+ const q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult,
+ uint32_t * pIndex);
+
+ /**
+ * @brief Minimum value of absolute values of a Q31 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ * @param[out] pIndex is the array index of the minimum value in the input buffer.
+ */
+ void arm_absmin_q31(
+ const q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult,
+ uint32_t * pIndex);
+
+ /**
+ * @brief Minimum value of absolute values of a Q31 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ */
+ void arm_absmin_no_idx_q31(
+ const q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+
+ /**
+ * @brief Minimum value of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ * @param[out] pIndex is the array index of the minimum value in the input buffer.
+ */
+ void arm_min_f32(
+ const float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult,
+ uint32_t * pIndex);
+
+ /**
+ * @brief Minimum value of absolute values of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ * @param[out] pIndex is the array index of the minimum value in the input buffer.
+ */
+ void arm_absmin_f32(
+ const float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult,
+ uint32_t * pIndex);
+
+ /**
+ * @brief Minimum value of absolute values of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ */
+ void arm_absmin_no_idx_f32(
+ const float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+
+ /**
+ * @brief Minimum value of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ * @param[out] pIndex is the array index of the minimum value in the input buffer.
+ */
+ void arm_min_f64(
+ const float64_t * pSrc,
+ uint32_t blockSize,
+ float64_t * pResult,
+ uint32_t * pIndex);
+
+ /**
+ * @brief Minimum value of absolute values of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ * @param[out] pIndex is the array index of the minimum value in the input buffer.
+ */
+ void arm_absmin_f64(
+ const float64_t * pSrc,
+ uint32_t blockSize,
+ float64_t * pResult,
+ uint32_t * pIndex);
+
+ /**
+ * @brief Minimum value of absolute values of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ */
+ void arm_absmin_no_idx_f64(
+ const float64_t * pSrc,
+ uint32_t blockSize,
+ float64_t * pResult);
+
+
+/**
+ * @brief Maximum value of a Q7 vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
+ */
+ void arm_max_q7(
+ const q7_t * pSrc,
+ uint32_t blockSize,
+ q7_t * pResult,
+ uint32_t * pIndex);
+
+/**
+ * @brief Maximum value of absolute values of a Q7 vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
+ */
+ void arm_absmax_q7(
+ const q7_t * pSrc,
+ uint32_t blockSize,
+ q7_t * pResult,
+ uint32_t * pIndex);
+
+/**
+ * @brief Maximum value of absolute values of a Q7 vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ */
+ void arm_absmax_no_idx_q7(
+ const q7_t * pSrc,
+ uint32_t blockSize,
+ q7_t * pResult);
+
+
+/**
+ * @brief Maximum value of a Q15 vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
+ */
+ void arm_max_q15(
+ const q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult,
+ uint32_t * pIndex);
+
+/**
+ * @brief Maximum value of absolute values of a Q15 vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
+ */
+ void arm_absmax_q15(
+ const q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult,
+ uint32_t * pIndex);
+
+ /**
+ * @brief Maximum value of absolute values of a Q15 vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ */
+ void arm_absmax_no_idx_q15(
+ const q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult);
+
+/**
+ * @brief Maximum value of a Q31 vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
+ */
+ void arm_max_q31(
+ const q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult,
+ uint32_t * pIndex);
+
+/**
+ * @brief Maximum value of absolute values of a Q31 vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
+ */
+ void arm_absmax_q31(
+ const q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult,
+ uint32_t * pIndex);
+
+ /**
+ * @brief Maximum value of absolute values of a Q31 vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ */
+ void arm_absmax_no_idx_q31(
+ const q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+/**
+ * @brief Maximum value of a floating-point vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
+ */
+ void arm_max_f32(
+ const float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult,
+ uint32_t * pIndex);
+
+/**
+ * @brief Maximum value of absolute values of a floating-point vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
+ */
+ void arm_absmax_f32(
+ const float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult,
+ uint32_t * pIndex);
+
+ /**
+ * @brief Maximum value of absolute values of a floating-point vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ */
+ void arm_absmax_no_idx_f32(
+ const float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+/**
+ * @brief Maximum value of a floating-point vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
+ */
+ void arm_max_f64(
+ const float64_t * pSrc,
+ uint32_t blockSize,
+ float64_t * pResult,
+ uint32_t * pIndex);
+
+/**
+ * @brief Maximum value of absolute values of a floating-point vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
+ */
+ void arm_absmax_f64(
+ const float64_t * pSrc,
+ uint32_t blockSize,
+ float64_t * pResult,
+ uint32_t * pIndex);
+
+/**
+ * @brief Maximum value of absolute values of a floating-point vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ */
+ void arm_absmax_no_idx_f64(
+ const float64_t * pSrc,
+ uint32_t blockSize,
+ float64_t * pResult);
+
+ /**
+ @brief Maximum value of a floating-point vector.
+ @param[in] pSrc points to the input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult maximum value returned here
+ @return none
+ */
+ void arm_max_no_idx_f32(
+ const float32_t *pSrc,
+ uint32_t blockSize,
+ float32_t *pResult);
+
+ /**
+ @brief Minimum value of a floating-point vector.
+ @param[in] pSrc points to the input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult minimum value returned here
+ @return none
+ */
+ void arm_min_no_idx_f32(
+ const float32_t *pSrc,
+ uint32_t blockSize,
+ float32_t *pResult);
+
+ /**
+ @brief Maximum value of a floating-point vector.
+ @param[in] pSrc points to the input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult maximum value returned here
+ @return none
+ */
+ void arm_max_no_idx_f64(
+ const float64_t *pSrc,
+ uint32_t blockSize,
+ float64_t *pResult);
+
+ /**
+ @brief Maximum value of a q31 vector.
+ @param[in] pSrc points to the input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult maximum value returned here
+ @return none
+ */
+ void arm_max_no_idx_q31(
+ const q31_t *pSrc,
+ uint32_t blockSize,
+ q31_t *pResult);
+
+ /**
+ @brief Maximum value of a q15 vector.
+ @param[in] pSrc points to the input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult maximum value returned here
+ @return none
+ */
+ void arm_max_no_idx_q15(
+ const q15_t *pSrc,
+ uint32_t blockSize,
+ q15_t *pResult);
+
+ /**
+ @brief Maximum value of a q7 vector.
+ @param[in] pSrc points to the input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult maximum value returned here
+ @return none
+ */
+ void arm_max_no_idx_q7(
+ const q7_t *pSrc,
+ uint32_t blockSize,
+ q7_t *pResult);
+
+ /**
+ @brief Minimum value of a floating-point vector.
+ @param[in] pSrc points to the input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult minimum value returned here
+ @return none
+ */
+ void arm_min_no_idx_f64(
+ const float64_t *pSrc,
+ uint32_t blockSize,
+ float64_t *pResult);
+
+/**
+ @brief Minimum value of a q31 vector.
+ @param[in] pSrc points to the input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult minimum value returned here
+ @return none
+ */
+ void arm_min_no_idx_q31(
+ const q31_t *pSrc,
+ uint32_t blockSize,
+ q31_t *pResult);
+
+ /**
+ @brief Minimum value of a q15 vector.
+ @param[in] pSrc points to the input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult minimum value returned here
+ @return none
+ */
+ void arm_min_no_idx_q15(
+ const q15_t *pSrc,
+ uint32_t blockSize,
+ q15_t *pResult);
+
+ /**
+ @brief Minimum value of a q7 vector.
+ @param[in] pSrc points to the input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult minimum value returned here
+ @return none
+ */
+ void arm_min_no_idx_q7(
+ const q7_t *pSrc,
+ uint32_t blockSize,
+ q7_t *pResult);
+
+/**
+ @brief Mean square error between two Q7 vectors.
+ @param[in] pSrcA points to the first input vector
+ @param[in] pSrcB points to the second input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult mean square error
+ @return none
+*/
+
+void arm_mse_q7(
+ const q7_t * pSrcA,
+ const q7_t * pSrcB,
+ uint32_t blockSize,
+ q7_t * pResult);
+
+/**
+ @brief Mean square error between two Q15 vectors.
+ @param[in] pSrcA points to the first input vector
+ @param[in] pSrcB points to the second input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult mean square error
+ @return none
+*/
+
+void arm_mse_q15(
+ const q15_t * pSrcA,
+ const q15_t * pSrcB,
+ uint32_t blockSize,
+ q15_t * pResult);
+
+/**
+ @brief Mean square error between two Q31 vectors.
+ @param[in] pSrcA points to the first input vector
+ @param[in] pSrcB points to the second input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult mean square error
+ @return none
+*/
+
+void arm_mse_q31(
+ const q31_t * pSrcA,
+ const q31_t * pSrcB,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+/**
+ @brief Mean square error between two single precision float vectors.
+ @param[in] pSrcA points to the first input vector
+ @param[in] pSrcB points to the second input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult mean square error
+ @return none
+*/
+
+void arm_mse_f32(
+ const float32_t * pSrcA,
+ const float32_t * pSrcB,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+/**
+ @brief Mean square error between two double precision float vectors.
+ @param[in] pSrcA points to the first input vector
+ @param[in] pSrcB points to the second input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult mean square error
+ @return none
+*/
+
+void arm_mse_f64(
+ const float64_t * pSrcA,
+ const float64_t * pSrcB,
+ uint32_t blockSize,
+ float64_t * pResult);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _STATISTICS_FUNCTIONS_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/statistics_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/statistics_functions_f16.h
new file mode 100644
index 0000000..124c0a0
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/statistics_functions_f16.h
@@ -0,0 +1,266 @@
+/******************************************************************************
+ * @file statistics_functions_f16.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _STATISTICS_FUNCTIONS_F16_H_
+#define _STATISTICS_FUNCTIONS_F16_H_
+
+#include "arm_math_types_f16.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+#include "dsp/basic_math_functions_f16.h"
+#include "dsp/fast_math_functions_f16.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#if defined(ARM_FLOAT16_SUPPORTED)
+
+ /**
+ * @brief Sum of the squares of the elements of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_power_f16(
+ const float16_t * pSrc,
+ uint32_t blockSize,
+ float16_t * pResult);
+
+ /**
+ * @brief Mean value of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_mean_f16(
+ const float16_t * pSrc,
+ uint32_t blockSize,
+ float16_t * pResult);
+
+ /**
+ * @brief Variance of the elements of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_var_f16(
+ const float16_t * pSrc,
+ uint32_t blockSize,
+ float16_t * pResult);
+
+ /**
+ * @brief Root Mean Square of the elements of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_rms_f16(
+ const float16_t * pSrc,
+ uint32_t blockSize,
+ float16_t * pResult);
+
+ /**
+ * @brief Standard deviation of the elements of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_std_f16(
+ const float16_t * pSrc,
+ uint32_t blockSize,
+ float16_t * pResult);
+
+ /**
+ * @brief Minimum value of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ * @param[out] pIndex is the array index of the minimum value in the input buffer.
+ */
+ void arm_min_f16(
+ const float16_t * pSrc,
+ uint32_t blockSize,
+ float16_t * pResult,
+ uint32_t * pIndex);
+
+ /**
+ * @brief Minimum value of absolute values of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ * @param[out] pIndex is the array index of the minimum value in the input buffer.
+ */
+ void arm_absmin_f16(
+ const float16_t * pSrc,
+ uint32_t blockSize,
+ float16_t * pResult,
+ uint32_t * pIndex);
+
+/**
+ * @brief Maximum value of a floating-point vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
+ */
+ void arm_max_f16(
+ const float16_t * pSrc,
+ uint32_t blockSize,
+ float16_t * pResult,
+ uint32_t * pIndex);
+
+/**
+ * @brief Maximum value of absolute values of a floating-point vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
+ */
+ void arm_absmax_f16(
+ const float16_t * pSrc,
+ uint32_t blockSize,
+ float16_t * pResult,
+ uint32_t * pIndex);
+
+ /**
+ * @brief Minimum value of absolute values of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ */
+ void arm_absmin_no_idx_f16(
+ const float16_t * pSrc,
+ uint32_t blockSize,
+ float16_t * pResult);
+
+/**
+ * @brief Maximum value of a floating-point vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ */
+ void arm_absmax_no_idx_f16(
+ const float16_t * pSrc,
+ uint32_t blockSize,
+ float16_t * pResult);
+
+
+/**
+ * @brief Entropy
+ *
+ * @param[in] pSrcA Array of input values.
+ * @param[in] blockSize Number of samples in the input array.
+ * @return Entropy -Sum(p ln p)
+ *
+ */
+
+
+float16_t arm_entropy_f16(const float16_t * pSrcA,uint32_t blockSize);
+
+float16_t arm_logsumexp_f16(const float16_t *in, uint32_t blockSize);
+
+/**
+ * @brief Dot product with log arithmetic
+ *
+ * Vectors are containing the log of the samples
+ *
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[in] pTmpBuffer temporary buffer of length blockSize
+ * @return The log of the dot product .
+ *
+ */
+
+
+float16_t arm_logsumexp_dot_prod_f16(const float16_t * pSrcA,
+ const float16_t * pSrcB,
+ uint32_t blockSize,
+ float16_t *pTmpBuffer);
+
+/**
+ * @brief Kullback-Leibler
+ *
+ * @param[in] pSrcA Pointer to an array of input values for probability distribution A.
+ * @param[in] pSrcB Pointer to an array of input values for probability distribution B.
+ * @param[in] blockSize Number of samples in the input array.
+ * @return Kullback-Leibler Divergence D(A || B)
+ *
+ */
+float16_t arm_kullback_leibler_f16(const float16_t * pSrcA
+ ,const float16_t * pSrcB
+ ,uint32_t blockSize);
+
+/**
+ @brief Maximum value of a floating-point vector.
+ @param[in] pSrc points to the input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult maximum value returned here
+ @return none
+ */
+ void arm_max_no_idx_f16(
+ const float16_t *pSrc,
+ uint32_t blockSize,
+ float16_t *pResult);
+
+/**
+ @brief Minimum value of a floating-point vector.
+ @param[in] pSrc points to the input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult minimum value returned here
+ @return none
+ */
+ void arm_min_no_idx_f16(
+ const float16_t *pSrc,
+ uint32_t blockSize,
+ float16_t *pResult);
+
+/**
+ @brief Mean square error between two half precision float vectors.
+ @param[in] pSrcA points to the first input vector
+ @param[in] pSrcB points to the second input vector
+ @param[in] blockSize number of samples in input vector
+ @param[out] pResult mean square error
+ @return none
+*/
+
+void arm_mse_f16(
+ const float16_t * pSrcA,
+ const float16_t * pSrcB,
+ uint32_t blockSize,
+ float16_t * pResult);
+
+#endif /*defined(ARM_FLOAT16_SUPPORTED)*/
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _STATISTICS_FUNCTIONS_F16_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/support_functions.h b/Drivers/CMSIS/DSP/Include/dsp/support_functions.h
new file mode 100644
index 0000000..9c77593
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/support_functions.h
@@ -0,0 +1,453 @@
+/******************************************************************************
+ * @file support_functions.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _SUPPORT_FUNCTIONS_H_
+#define _SUPPORT_FUNCTIONS_H_
+
+#include "arm_math_types.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+/**
+ * @defgroup groupSupport Support Functions
+ */
+
+
+/**
+ * @brief Converts the elements of the floating-point vector to Q31 vector.
+ * @param[in] pSrc points to the floating-point input vector
+ * @param[out] pDst points to the Q31 output vector
+ * @param[in] blockSize length of the input vector
+ */
+ void arm_float_to_q31(
+ const float32_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the floating-point vector to Q15 vector.
+ * @param[in] pSrc points to the floating-point input vector
+ * @param[out] pDst points to the Q15 output vector
+ * @param[in] blockSize length of the input vector
+ */
+ void arm_float_to_q15(
+ const float32_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the floating-point vector to Q7 vector.
+ * @param[in] pSrc points to the floating-point input vector
+ * @param[out] pDst points to the Q7 output vector
+ * @param[in] blockSize length of the input vector
+ */
+ void arm_float_to_q7(
+ const float32_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q31 vector to floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ */
+ void arm_q31_to_float(
+ const q31_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q31 vector to Q15 vector.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ */
+ void arm_q31_to_q15(
+ const q31_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q31 vector to Q7 vector.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ */
+ void arm_q31_to_q7(
+ const q31_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q15 vector to floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ */
+ void arm_q15_to_float(
+ const q15_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q15 vector to Q31 vector.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ */
+ void arm_q15_to_q31(
+ const q15_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q15 vector to Q7 vector.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ */
+ void arm_q15_to_q7(
+ const q15_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q7 vector to floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ */
+ void arm_q7_to_float(
+ const q7_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q7 vector to Q31 vector.
+ * @param[in] pSrc input pointer
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_q7_to_q31(
+ const q7_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q7 vector to Q15 vector.
+ * @param[in] pSrc input pointer
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_q7_to_q15(
+ const q7_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+
+
+
+ /**
+ * @brief Struct for specifying sorting algorithm
+ */
+ typedef enum
+ {
+ ARM_SORT_BITONIC = 0,
+ /**< Bitonic sort */
+ ARM_SORT_BUBBLE = 1,
+ /**< Bubble sort */
+ ARM_SORT_HEAP = 2,
+ /**< Heap sort */
+ ARM_SORT_INSERTION = 3,
+ /**< Insertion sort */
+ ARM_SORT_QUICK = 4,
+ /**< Quick sort */
+ ARM_SORT_SELECTION = 5
+ /**< Selection sort */
+ } arm_sort_alg;
+
+ /**
+ * @brief Struct for specifying sorting algorithm
+ */
+ typedef enum
+ {
+ ARM_SORT_DESCENDING = 0,
+ /**< Descending order (9 to 0) */
+ ARM_SORT_ASCENDING = 1
+ /**< Ascending order (0 to 9) */
+ } arm_sort_dir;
+
+ /**
+ * @brief Instance structure for the sorting algorithms.
+ */
+ typedef struct
+ {
+ arm_sort_alg alg; /**< Sorting algorithm selected */
+ arm_sort_dir dir; /**< Sorting order (direction) */
+ } arm_sort_instance_f32;
+
+ /**
+ * @param[in] S points to an instance of the sorting structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_sort_f32(
+ const arm_sort_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @param[in,out] S points to an instance of the sorting structure.
+ * @param[in] alg Selected algorithm.
+ * @param[in] dir Sorting order.
+ */
+ void arm_sort_init_f32(
+ arm_sort_instance_f32 * S,
+ arm_sort_alg alg,
+ arm_sort_dir dir);
+
+ /**
+ * @brief Instance structure for the sorting algorithms.
+ */
+ typedef struct
+ {
+ arm_sort_dir dir; /**< Sorting order (direction) */
+ float32_t * buffer; /**< Working buffer */
+ } arm_merge_sort_instance_f32;
+
+ /**
+ * @param[in] S points to an instance of the sorting structure.
+ * @param[in,out] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_merge_sort_f32(
+ const arm_merge_sort_instance_f32 * S,
+ float32_t *pSrc,
+ float32_t *pDst,
+ uint32_t blockSize);
+
+ /**
+ * @param[in,out] S points to an instance of the sorting structure.
+ * @param[in] dir Sorting order.
+ * @param[in] buffer Working buffer.
+ */
+ void arm_merge_sort_init_f32(
+ arm_merge_sort_instance_f32 * S,
+ arm_sort_dir dir,
+ float32_t * buffer);
+
+
+
+ /**
+ * @brief Copies the elements of a floating-point vector.
+ * @param[in] pSrc input pointer
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_copy_f32(
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @brief Copies the elements of a floating-point vector.
+ * @param[in] pSrc input pointer
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_copy_f64(
+ const float64_t * pSrc,
+ float64_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @brief Copies the elements of a Q7 vector.
+ * @param[in] pSrc input pointer
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_copy_q7(
+ const q7_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Copies the elements of a Q15 vector.
+ * @param[in] pSrc input pointer
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_copy_q15(
+ const q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Copies the elements of a Q31 vector.
+ * @param[in] pSrc input pointer
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_copy_q31(
+ const q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Fills a constant value into a floating-point vector.
+ * @param[in] value input value to be filled
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_fill_f32(
+ float32_t value,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Fills a constant value into a floating-point vector.
+ * @param[in] value input value to be filled
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_fill_f64(
+ float64_t value,
+ float64_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Fills a constant value into a Q7 vector.
+ * @param[in] value input value to be filled
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_fill_q7(
+ q7_t value,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Fills a constant value into a Q15 vector.
+ * @param[in] value input value to be filled
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_fill_q15(
+ q15_t value,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Fills a constant value into a Q31 vector.
+ * @param[in] value input value to be filled
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_fill_q31(
+ q31_t value,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+
+
+
+
+
+/**
+ * @brief Weighted sum
+ *
+ *
+ * @param[in] *in Array of input values.
+ * @param[in] *weigths Weights
+ * @param[in] blockSize Number of samples in the input array.
+ * @return Weighted sum
+ *
+ */
+float32_t arm_weighted_sum_f32(const float32_t *in
+ , const float32_t *weigths
+ , uint32_t blockSize);
+
+
+/**
+ * @brief Barycenter
+ *
+ *
+ * @param[in] in List of vectors
+ * @param[in] weights Weights of the vectors
+ * @param[out] out Barycenter
+ * @param[in] nbVectors Number of vectors
+ * @param[in] vecDim Dimension of space (vector dimension)
+ * @return None
+ *
+ */
+void arm_barycenter_f32(const float32_t *in
+ , const float32_t *weights
+ , float32_t *out
+ , uint32_t nbVectors
+ , uint32_t vecDim);
+
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _SUPPORT_FUNCTIONS_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/support_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/support_functions_f16.h
new file mode 100644
index 0000000..bc3f266
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/support_functions_f16.h
@@ -0,0 +1,187 @@
+/******************************************************************************
+ * @file support_functions_f16.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _SUPPORT_FUNCTIONS_F16_H_
+#define _SUPPORT_FUNCTIONS_F16_H_
+
+#include "arm_math_types_f16.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#if defined(ARM_FLOAT16_SUPPORTED)
+
+ /**
+ * @brief Copies the elements of a floating-point vector.
+ * @param[in] pSrc input pointer
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+void arm_copy_f16(const float16_t * pSrc, float16_t * pDst, uint32_t blockSize);
+
+ /**
+ * @brief Fills a constant value into a floating-point vector.
+ * @param[in] value input value to be filled
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+void arm_fill_f16(float16_t value, float16_t * pDst, uint32_t blockSize);
+
+/**
+ * @brief Converts the elements of the floating-point vector to Q31 vector.
+ * @param[in] pSrc points to the f16 input vector
+ * @param[out] pDst points to the q15 output vector
+ * @param[in] blockSize length of the input vector
+ */
+void arm_f16_to_q15(const float16_t * pSrc, q15_t * pDst, uint32_t blockSize);
+
+/**
+ * @brief Converts the elements of the floating-point vector to Q31 vector.
+ * @param[in] pSrc points to the q15 input vector
+ * @param[out] pDst points to the f16 output vector
+ * @param[in] blockSize length of the input vector
+ */
+void arm_q15_to_f16(const q15_t * pSrc, float16_t * pDst, uint32_t blockSize);
+
+
+/**
+ * @brief Converts the elements of the floating-point vector to Q31 vector.
+ * @param[in] pSrc points to the f32 input vector
+ * @param[out] pDst points to the f16 output vector
+ * @param[in] blockSize length of the input vector
+ */
+void arm_float_to_f16(const float32_t * pSrc, float16_t * pDst, uint32_t blockSize);
+
+/**
+ * @brief Converts the elements of the floating-point vector to Q31 vector.
+ * @param[in] pSrc points to the f16 input vector
+ * @param[out] pDst points to the f32 output vector
+ * @param[in] blockSize length of the input vector
+ */
+void arm_f16_to_float(const float16_t * pSrc, float32_t * pDst, uint32_t blockSize);
+
+/**
+ * @brief Weighted sum
+ *
+ *
+ * @param[in] *in Array of input values.
+ * @param[in] *weigths Weights
+ * @param[in] blockSize Number of samples in the input array.
+ * @return Weighted sum
+ *
+ */
+float16_t arm_weighted_sum_f16(const float16_t *in
+ , const float16_t *weigths
+ , uint32_t blockSize);
+
+/**
+ * @brief Barycenter
+ *
+ *
+ * @param[in] in List of vectors
+ * @param[in] weights Weights of the vectors
+ * @param[out] out Barycenter
+ * @param[in] nbVectors Number of vectors
+ * @param[in] vecDim Dimension of space (vector dimension)
+ * @return None
+ *
+ */
+void arm_barycenter_f16(const float16_t *in
+ , const float16_t *weights
+ , float16_t *out
+ , uint32_t nbVectors
+ , uint32_t vecDim);
+
+
+/**
+ @ingroup groupSupport
+ */
+
+/**
+ * @defgroup typecast Typecasting
+ */
+
+/**
+ @addtogroup typecast
+ @{
+ */
+
+/**
+ * @brief Interpret a f16 as an s16 value
+ * @param[in] x input value.
+ * @return return value.
+ *
+ * @par Description
+ * It is a typecast. No conversion of the float to int is done.
+ * The memcpy will be optimized out by the compiler.
+ * memcpy is used to prevent type punning issues.
+ * With gcc, -fno-builtins MUST not be used or the
+ * memcpy will not be optimized out.
+ */
+__STATIC_INLINE int16_t arm_typecast_s16_f16(float16_t x)
+{
+ int16_t res;
+ res=*(int16_t*)memcpy((char*)&res,(char*)&x,sizeof(float16_t));
+ return(res);
+}
+
+/**
+ * @brief Interpret an s16 as an f16 value
+ * @param[in] x input value.
+ * @return return value.
+ *
+ * @par Description
+ * It is a typecast. No conversion of the int to float is done.
+ * The memcpy will be optimized out by the compiler.
+ * memcpy is used to prevent type punning issues.
+ * With gcc, -fno-builtins MUST not be used or the
+ * memcpy will not be optimized out.
+ */
+__STATIC_INLINE float16_t arm_typecast_f16_s16(int16_t x)
+{
+ float16_t res;
+ res=*(float16_t*)memcpy((char*)&res,(char*)&x,sizeof(int16_t));
+ return(res);
+}
+
+
+/**
+ @} end of typecast group
+ */
+
+
+#endif /*defined(ARM_FLOAT16_SUPPORTED)*/
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _SUPPORT_FUNCTIONS_F16_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/svm_defines.h b/Drivers/CMSIS/DSP/Include/dsp/svm_defines.h
new file mode 100644
index 0000000..f93e953
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/svm_defines.h
@@ -0,0 +1,46 @@
+/******************************************************************************
+ * @file svm_defines.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ *
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _SVM_DEFINES_H_
+#define _SVM_DEFINES_H_
+
+/**
+ * @brief Struct for specifying SVM Kernel
+ */
+typedef enum
+{
+ ARM_ML_KERNEL_LINEAR = 0,
+ /**< Linear kernel */
+ ARM_ML_KERNEL_POLYNOMIAL = 1,
+ /**< Polynomial kernel */
+ ARM_ML_KERNEL_RBF = 2,
+ /**< Radial Basis Function kernel */
+ ARM_ML_KERNEL_SIGMOID = 3
+ /**< Sigmoid kernel */
+} arm_ml_kernel_type;
+
+#endif
diff --git a/Drivers/CMSIS/DSP/Include/dsp/svm_functions.h b/Drivers/CMSIS/DSP/Include/dsp/svm_functions.h
new file mode 100644
index 0000000..3acc621
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/svm_functions.h
@@ -0,0 +1,299 @@
+/******************************************************************************
+ * @file svm_functions.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _SVM_FUNCTIONS_H_
+#define _SVM_FUNCTIONS_H_
+
+#include "arm_math_types.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+#include "dsp/svm_defines.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#define STEP(x) (x) <= 0 ? 0 : 1
+
+/**
+ * @defgroup groupSVM SVM Functions
+ * This set of functions is implementing SVM classification on 2 classes.
+ * The training must be done from scikit-learn. The parameters can be easily
+ * generated from the scikit-learn object. Some examples are given in
+ * DSP/Testing/PatternGeneration/SVM.py
+ *
+ * If more than 2 classes are needed, the functions in this folder
+ * will have to be used, as building blocks, to do multi-class classification.
+ *
+ * No multi-class classification is provided in this SVM folder.
+ *
+ */
+
+/**
+ * @brief Integer exponentiation
+ * @param[in] x value
+ * @param[in] nb integer exponent >= 1
+ * @return x^nb
+ *
+ */
+__STATIC_INLINE float32_t arm_exponent_f32(float32_t x, int32_t nb)
+{
+ float32_t r = x;
+ nb --;
+ while(nb > 0)
+ {
+ r = r * x;
+ nb--;
+ }
+ return(r);
+}
+
+
+
+
+
+/**
+ * @brief Instance structure for linear SVM prediction function.
+ */
+typedef struct
+{
+ uint32_t nbOfSupportVectors; /**< Number of support vectors */
+ uint32_t vectorDimension; /**< Dimension of vector space */
+ float32_t intercept; /**< Intercept */
+ const float32_t *dualCoefficients; /**< Dual coefficients */
+ const float32_t *supportVectors; /**< Support vectors */
+ const int32_t *classes; /**< The two SVM classes */
+} arm_svm_linear_instance_f32;
+
+
+/**
+ * @brief Instance structure for polynomial SVM prediction function.
+ */
+typedef struct
+{
+ uint32_t nbOfSupportVectors; /**< Number of support vectors */
+ uint32_t vectorDimension; /**< Dimension of vector space */
+ float32_t intercept; /**< Intercept */
+ const float32_t *dualCoefficients; /**< Dual coefficients */
+ const float32_t *supportVectors; /**< Support vectors */
+ const int32_t *classes; /**< The two SVM classes */
+ int32_t degree; /**< Polynomial degree */
+ float32_t coef0; /**< Polynomial constant */
+ float32_t gamma; /**< Gamma factor */
+} arm_svm_polynomial_instance_f32;
+
+/**
+ * @brief Instance structure for rbf SVM prediction function.
+ */
+typedef struct
+{
+ uint32_t nbOfSupportVectors; /**< Number of support vectors */
+ uint32_t vectorDimension; /**< Dimension of vector space */
+ float32_t intercept; /**< Intercept */
+ const float32_t *dualCoefficients; /**< Dual coefficients */
+ const float32_t *supportVectors; /**< Support vectors */
+ const int32_t *classes; /**< The two SVM classes */
+ float32_t gamma; /**< Gamma factor */
+} arm_svm_rbf_instance_f32;
+
+/**
+ * @brief Instance structure for sigmoid SVM prediction function.
+ */
+typedef struct
+{
+ uint32_t nbOfSupportVectors; /**< Number of support vectors */
+ uint32_t vectorDimension; /**< Dimension of vector space */
+ float32_t intercept; /**< Intercept */
+ const float32_t *dualCoefficients; /**< Dual coefficients */
+ const float32_t *supportVectors; /**< Support vectors */
+ const int32_t *classes; /**< The two SVM classes */
+ float32_t coef0; /**< Independent constant */
+ float32_t gamma; /**< Gamma factor */
+} arm_svm_sigmoid_instance_f32;
+
+/**
+ * @brief SVM linear instance init function
+ * @param[in] S Parameters for SVM functions
+ * @param[in] nbOfSupportVectors Number of support vectors
+ * @param[in] vectorDimension Dimension of vector space
+ * @param[in] intercept Intercept
+ * @param[in] dualCoefficients Array of dual coefficients
+ * @param[in] supportVectors Array of support vectors
+ * @param[in] classes Array of 2 classes ID
+ * @return none.
+ *
+ */
+
+
+void arm_svm_linear_init_f32(arm_svm_linear_instance_f32 *S,
+ uint32_t nbOfSupportVectors,
+ uint32_t vectorDimension,
+ float32_t intercept,
+ const float32_t *dualCoefficients,
+ const float32_t *supportVectors,
+ const int32_t *classes);
+
+/**
+ * @brief SVM linear prediction
+ * @param[in] S Pointer to an instance of the linear SVM structure.
+ * @param[in] in Pointer to input vector
+ * @param[out] pResult Decision value
+ * @return none.
+ *
+ */
+
+void arm_svm_linear_predict_f32(const arm_svm_linear_instance_f32 *S,
+ const float32_t * in,
+ int32_t * pResult);
+
+
+/**
+ * @brief SVM polynomial instance init function
+ * @param[in] S points to an instance of the polynomial SVM structure.
+ * @param[in] nbOfSupportVectors Number of support vectors
+ * @param[in] vectorDimension Dimension of vector space
+ * @param[in] intercept Intercept
+ * @param[in] dualCoefficients Array of dual coefficients
+ * @param[in] supportVectors Array of support vectors
+ * @param[in] classes Array of 2 classes ID
+ * @param[in] degree Polynomial degree
+ * @param[in] coef0 coeff0 (scikit-learn terminology)
+ * @param[in] gamma gamma (scikit-learn terminology)
+ * @return none.
+ *
+ */
+
+
+void arm_svm_polynomial_init_f32(arm_svm_polynomial_instance_f32 *S,
+ uint32_t nbOfSupportVectors,
+ uint32_t vectorDimension,
+ float32_t intercept,
+ const float32_t *dualCoefficients,
+ const float32_t *supportVectors,
+ const int32_t *classes,
+ int32_t degree,
+ float32_t coef0,
+ float32_t gamma
+ );
+
+/**
+ * @brief SVM polynomial prediction
+ * @param[in] S Pointer to an instance of the polynomial SVM structure.
+ * @param[in] in Pointer to input vector
+ * @param[out] pResult Decision value
+ * @return none.
+ *
+ */
+void arm_svm_polynomial_predict_f32(const arm_svm_polynomial_instance_f32 *S,
+ const float32_t * in,
+ int32_t * pResult);
+
+
+/**
+ * @brief SVM radial basis function instance init function
+ * @param[in] S points to an instance of the polynomial SVM structure.
+ * @param[in] nbOfSupportVectors Number of support vectors
+ * @param[in] vectorDimension Dimension of vector space
+ * @param[in] intercept Intercept
+ * @param[in] dualCoefficients Array of dual coefficients
+ * @param[in] supportVectors Array of support vectors
+ * @param[in] classes Array of 2 classes ID
+ * @param[in] gamma gamma (scikit-learn terminology)
+ * @return none.
+ *
+ */
+
+void arm_svm_rbf_init_f32(arm_svm_rbf_instance_f32 *S,
+ uint32_t nbOfSupportVectors,
+ uint32_t vectorDimension,
+ float32_t intercept,
+ const float32_t *dualCoefficients,
+ const float32_t *supportVectors,
+ const int32_t *classes,
+ float32_t gamma
+ );
+
+/**
+ * @brief SVM rbf prediction
+ * @param[in] S Pointer to an instance of the rbf SVM structure.
+ * @param[in] in Pointer to input vector
+ * @param[out] pResult decision value
+ * @return none.
+ *
+ */
+void arm_svm_rbf_predict_f32(const arm_svm_rbf_instance_f32 *S,
+ const float32_t * in,
+ int32_t * pResult);
+
+/**
+ * @brief SVM sigmoid instance init function
+ * @param[in] S points to an instance of the rbf SVM structure.
+ * @param[in] nbOfSupportVectors Number of support vectors
+ * @param[in] vectorDimension Dimension of vector space
+ * @param[in] intercept Intercept
+ * @param[in] dualCoefficients Array of dual coefficients
+ * @param[in] supportVectors Array of support vectors
+ * @param[in] classes Array of 2 classes ID
+ * @param[in] coef0 coeff0 (scikit-learn terminology)
+ * @param[in] gamma gamma (scikit-learn terminology)
+ * @return none.
+ *
+ */
+
+void arm_svm_sigmoid_init_f32(arm_svm_sigmoid_instance_f32 *S,
+ uint32_t nbOfSupportVectors,
+ uint32_t vectorDimension,
+ float32_t intercept,
+ const float32_t *dualCoefficients,
+ const float32_t *supportVectors,
+ const int32_t *classes,
+ float32_t coef0,
+ float32_t gamma
+ );
+
+/**
+ * @brief SVM sigmoid prediction
+ * @param[in] S Pointer to an instance of the rbf SVM structure.
+ * @param[in] in Pointer to input vector
+ * @param[out] pResult Decision value
+ * @return none.
+ *
+ */
+void arm_svm_sigmoid_predict_f32(const arm_svm_sigmoid_instance_f32 *S,
+ const float32_t * in,
+ int32_t * pResult);
+
+
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _SVM_FUNCTIONS_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/svm_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/svm_functions_f16.h
new file mode 100644
index 0000000..7c9fbab
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/svm_functions_f16.h
@@ -0,0 +1,281 @@
+/******************************************************************************
+ * @file svm_functions_f16.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _SVM_FUNCTIONS_F16_H_
+#define _SVM_FUNCTIONS_F16_H_
+
+#include "arm_math_types_f16.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+#include "dsp/svm_defines.h"
+
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#if defined(ARM_FLOAT16_SUPPORTED)
+
+#define STEP(x) (x) <= 0 ? 0 : 1
+
+/**
+ * @defgroup groupSVM SVM Functions
+ * This set of functions is implementing SVM classification on 2 classes.
+ * The training must be done from scikit-learn. The parameters can be easily
+ * generated from the scikit-learn object. Some examples are given in
+ * DSP/Testing/PatternGeneration/SVM.py
+ *
+ * If more than 2 classes are needed, the functions in this folder
+ * will have to be used, as building blocks, to do multi-class classification.
+ *
+ * No multi-class classification is provided in this SVM folder.
+ *
+ */
+
+
+
+/**
+ * @brief Instance structure for linear SVM prediction function.
+ */
+typedef struct
+{
+ uint32_t nbOfSupportVectors; /**< Number of support vectors */
+ uint32_t vectorDimension; /**< Dimension of vector space */
+ float16_t intercept; /**< Intercept */
+ const float16_t *dualCoefficients; /**< Dual coefficients */
+ const float16_t *supportVectors; /**< Support vectors */
+ const int32_t *classes; /**< The two SVM classes */
+} arm_svm_linear_instance_f16;
+
+
+/**
+ * @brief Instance structure for polynomial SVM prediction function.
+ */
+typedef struct
+{
+ uint32_t nbOfSupportVectors; /**< Number of support vectors */
+ uint32_t vectorDimension; /**< Dimension of vector space */
+ float16_t intercept; /**< Intercept */
+ const float16_t *dualCoefficients; /**< Dual coefficients */
+ const float16_t *supportVectors; /**< Support vectors */
+ const int32_t *classes; /**< The two SVM classes */
+ int32_t degree; /**< Polynomial degree */
+ float16_t coef0; /**< Polynomial constant */
+ float16_t gamma; /**< Gamma factor */
+} arm_svm_polynomial_instance_f16;
+
+/**
+ * @brief Instance structure for rbf SVM prediction function.
+ */
+typedef struct
+{
+ uint32_t nbOfSupportVectors; /**< Number of support vectors */
+ uint32_t vectorDimension; /**< Dimension of vector space */
+ float16_t intercept; /**< Intercept */
+ const float16_t *dualCoefficients; /**< Dual coefficients */
+ const float16_t *supportVectors; /**< Support vectors */
+ const int32_t *classes; /**< The two SVM classes */
+ float16_t gamma; /**< Gamma factor */
+} arm_svm_rbf_instance_f16;
+
+/**
+ * @brief Instance structure for sigmoid SVM prediction function.
+ */
+typedef struct
+{
+ uint32_t nbOfSupportVectors; /**< Number of support vectors */
+ uint32_t vectorDimension; /**< Dimension of vector space */
+ float16_t intercept; /**< Intercept */
+ const float16_t *dualCoefficients; /**< Dual coefficients */
+ const float16_t *supportVectors; /**< Support vectors */
+ const int32_t *classes; /**< The two SVM classes */
+ float16_t coef0; /**< Independent constant */
+ float16_t gamma; /**< Gamma factor */
+} arm_svm_sigmoid_instance_f16;
+
+/**
+ * @brief SVM linear instance init function
+ * @param[in] S Parameters for SVM functions
+ * @param[in] nbOfSupportVectors Number of support vectors
+ * @param[in] vectorDimension Dimension of vector space
+ * @param[in] intercept Intercept
+ * @param[in] dualCoefficients Array of dual coefficients
+ * @param[in] supportVectors Array of support vectors
+ * @param[in] classes Array of 2 classes ID
+ * @return none.
+ *
+ */
+
+
+void arm_svm_linear_init_f16(arm_svm_linear_instance_f16 *S,
+ uint32_t nbOfSupportVectors,
+ uint32_t vectorDimension,
+ float16_t intercept,
+ const float16_t *dualCoefficients,
+ const float16_t *supportVectors,
+ const int32_t *classes);
+
+/**
+ * @brief SVM linear prediction
+ * @param[in] S Pointer to an instance of the linear SVM structure.
+ * @param[in] in Pointer to input vector
+ * @param[out] pResult Decision value
+ * @return none.
+ *
+ */
+
+void arm_svm_linear_predict_f16(const arm_svm_linear_instance_f16 *S,
+ const float16_t * in,
+ int32_t * pResult);
+
+
+/**
+ * @brief SVM polynomial instance init function
+ * @param[in] S points to an instance of the polynomial SVM structure.
+ * @param[in] nbOfSupportVectors Number of support vectors
+ * @param[in] vectorDimension Dimension of vector space
+ * @param[in] intercept Intercept
+ * @param[in] dualCoefficients Array of dual coefficients
+ * @param[in] supportVectors Array of support vectors
+ * @param[in] classes Array of 2 classes ID
+ * @param[in] degree Polynomial degree
+ * @param[in] coef0 coeff0 (scikit-learn terminology)
+ * @param[in] gamma gamma (scikit-learn terminology)
+ * @return none.
+ *
+ */
+
+
+void arm_svm_polynomial_init_f16(arm_svm_polynomial_instance_f16 *S,
+ uint32_t nbOfSupportVectors,
+ uint32_t vectorDimension,
+ float16_t intercept,
+ const float16_t *dualCoefficients,
+ const float16_t *supportVectors,
+ const int32_t *classes,
+ int32_t degree,
+ float16_t coef0,
+ float16_t gamma
+ );
+
+/**
+ * @brief SVM polynomial prediction
+ * @param[in] S Pointer to an instance of the polynomial SVM structure.
+ * @param[in] in Pointer to input vector
+ * @param[out] pResult Decision value
+ * @return none.
+ *
+ */
+void arm_svm_polynomial_predict_f16(const arm_svm_polynomial_instance_f16 *S,
+ const float16_t * in,
+ int32_t * pResult);
+
+
+/**
+ * @brief SVM radial basis function instance init function
+ * @param[in] S points to an instance of the polynomial SVM structure.
+ * @param[in] nbOfSupportVectors Number of support vectors
+ * @param[in] vectorDimension Dimension of vector space
+ * @param[in] intercept Intercept
+ * @param[in] dualCoefficients Array of dual coefficients
+ * @param[in] supportVectors Array of support vectors
+ * @param[in] classes Array of 2 classes ID
+ * @param[in] gamma gamma (scikit-learn terminology)
+ * @return none.
+ *
+ */
+
+void arm_svm_rbf_init_f16(arm_svm_rbf_instance_f16 *S,
+ uint32_t nbOfSupportVectors,
+ uint32_t vectorDimension,
+ float16_t intercept,
+ const float16_t *dualCoefficients,
+ const float16_t *supportVectors,
+ const int32_t *classes,
+ float16_t gamma
+ );
+
+/**
+ * @brief SVM rbf prediction
+ * @param[in] S Pointer to an instance of the rbf SVM structure.
+ * @param[in] in Pointer to input vector
+ * @param[out] pResult decision value
+ * @return none.
+ *
+ */
+void arm_svm_rbf_predict_f16(const arm_svm_rbf_instance_f16 *S,
+ const float16_t * in,
+ int32_t * pResult);
+
+/**
+ * @brief SVM sigmoid instance init function
+ * @param[in] S points to an instance of the rbf SVM structure.
+ * @param[in] nbOfSupportVectors Number of support vectors
+ * @param[in] vectorDimension Dimension of vector space
+ * @param[in] intercept Intercept
+ * @param[in] dualCoefficients Array of dual coefficients
+ * @param[in] supportVectors Array of support vectors
+ * @param[in] classes Array of 2 classes ID
+ * @param[in] coef0 coeff0 (scikit-learn terminology)
+ * @param[in] gamma gamma (scikit-learn terminology)
+ * @return none.
+ *
+ */
+
+void arm_svm_sigmoid_init_f16(arm_svm_sigmoid_instance_f16 *S,
+ uint32_t nbOfSupportVectors,
+ uint32_t vectorDimension,
+ float16_t intercept,
+ const float16_t *dualCoefficients,
+ const float16_t *supportVectors,
+ const int32_t *classes,
+ float16_t coef0,
+ float16_t gamma
+ );
+
+/**
+ * @brief SVM sigmoid prediction
+ * @param[in] S Pointer to an instance of the rbf SVM structure.
+ * @param[in] in Pointer to input vector
+ * @param[out] pResult Decision value
+ * @return none.
+ *
+ */
+void arm_svm_sigmoid_predict_f16(const arm_svm_sigmoid_instance_f16 *S,
+ const float16_t * in,
+ int32_t * pResult);
+
+
+
+#endif /*defined(ARM_FLOAT16_SUPPORTED)*/
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _SVM_FUNCTIONS_F16_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/transform_functions.h b/Drivers/CMSIS/DSP/Include/dsp/transform_functions.h
new file mode 100644
index 0000000..6270e10
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/transform_functions.h
@@ -0,0 +1,735 @@
+/******************************************************************************
+ * @file transform_functions.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _TRANSFORM_FUNCTIONS_H_
+#define _TRANSFORM_FUNCTIONS_H_
+
+#include "arm_math_types.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+#include "dsp/basic_math_functions.h"
+#include "dsp/complex_math_functions.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+
+/**
+ * @defgroup groupTransforms Transform Functions
+ */
+
+
+ /**
+ * @brief Instance structure for the Q15 CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ const q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */
+ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ } arm_cfft_radix2_instance_q15;
+
+/* Deprecated */
+ arm_status arm_cfft_radix2_init_q15(
+ arm_cfft_radix2_instance_q15 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+/* Deprecated */
+ void arm_cfft_radix2_q15(
+ const arm_cfft_radix2_instance_q15 * S,
+ q15_t * pSrc);
+
+
+ /**
+ * @brief Instance structure for the Q15 CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ const q15_t *pTwiddle; /**< points to the twiddle factor table. */
+ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ } arm_cfft_radix4_instance_q15;
+
+/* Deprecated */
+ arm_status arm_cfft_radix4_init_q15(
+ arm_cfft_radix4_instance_q15 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+/* Deprecated */
+ void arm_cfft_radix4_q15(
+ const arm_cfft_radix4_instance_q15 * S,
+ q15_t * pSrc);
+
+ /**
+ * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ const q31_t *pTwiddle; /**< points to the Twiddle factor table. */
+ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ } arm_cfft_radix2_instance_q31;
+
+/* Deprecated */
+ arm_status arm_cfft_radix2_init_q31(
+ arm_cfft_radix2_instance_q31 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+/* Deprecated */
+ void arm_cfft_radix2_q31(
+ const arm_cfft_radix2_instance_q31 * S,
+ q31_t * pSrc);
+
+ /**
+ * @brief Instance structure for the Q31 CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ const q31_t *pTwiddle; /**< points to the twiddle factor table. */
+ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ } arm_cfft_radix4_instance_q31;
+
+/* Deprecated */
+ void arm_cfft_radix4_q31(
+ const arm_cfft_radix4_instance_q31 * S,
+ q31_t * pSrc);
+
+/* Deprecated */
+ arm_status arm_cfft_radix4_init_q31(
+ arm_cfft_radix4_instance_q31 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+ /**
+ * @brief Instance structure for the floating-point CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ const float32_t *pTwiddle; /**< points to the Twiddle factor table. */
+ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ float32_t onebyfftLen; /**< value of 1/fftLen. */
+ } arm_cfft_radix2_instance_f32;
+
+
+/* Deprecated */
+ arm_status arm_cfft_radix2_init_f32(
+ arm_cfft_radix2_instance_f32 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+/* Deprecated */
+ void arm_cfft_radix2_f32(
+ const arm_cfft_radix2_instance_f32 * S,
+ float32_t * pSrc);
+
+ /**
+ * @brief Instance structure for the floating-point CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ const float32_t *pTwiddle; /**< points to the Twiddle factor table. */
+ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ float32_t onebyfftLen; /**< value of 1/fftLen. */
+ } arm_cfft_radix4_instance_f32;
+
+
+
+/* Deprecated */
+ arm_status arm_cfft_radix4_init_f32(
+ arm_cfft_radix4_instance_f32 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+/* Deprecated */
+ void arm_cfft_radix4_f32(
+ const arm_cfft_radix4_instance_f32 * S,
+ float32_t * pSrc);
+
+ /**
+ * @brief Instance structure for the fixed-point CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ const q15_t *pTwiddle; /**< points to the Twiddle factor table. */
+ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t bitRevLength; /**< bit reversal table length. */
+#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
+ const uint32_t *rearranged_twiddle_tab_stride1_arr; /**< Per stage reordered twiddle pointer (offset 1) */ \
+ const uint32_t *rearranged_twiddle_tab_stride2_arr; /**< Per stage reordered twiddle pointer (offset 2) */ \
+ const uint32_t *rearranged_twiddle_tab_stride3_arr; /**< Per stage reordered twiddle pointer (offset 3) */ \
+ const q15_t *rearranged_twiddle_stride1; /**< reordered twiddle offset 1 storage */ \
+ const q15_t *rearranged_twiddle_stride2; /**< reordered twiddle offset 2 storage */ \
+ const q15_t *rearranged_twiddle_stride3;
+#endif
+ } arm_cfft_instance_q15;
+
+arm_status arm_cfft_init_q15(
+ arm_cfft_instance_q15 * S,
+ uint16_t fftLen);
+
+void arm_cfft_q15(
+ const arm_cfft_instance_q15 * S,
+ q15_t * p1,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+ /**
+ * @brief Instance structure for the fixed-point CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ const q31_t *pTwiddle; /**< points to the Twiddle factor table. */
+ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t bitRevLength; /**< bit reversal table length. */
+#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
+ const uint32_t *rearranged_twiddle_tab_stride1_arr; /**< Per stage reordered twiddle pointer (offset 1) */ \
+ const uint32_t *rearranged_twiddle_tab_stride2_arr; /**< Per stage reordered twiddle pointer (offset 2) */ \
+ const uint32_t *rearranged_twiddle_tab_stride3_arr; /**< Per stage reordered twiddle pointer (offset 3) */ \
+ const q31_t *rearranged_twiddle_stride1; /**< reordered twiddle offset 1 storage */ \
+ const q31_t *rearranged_twiddle_stride2; /**< reordered twiddle offset 2 storage */ \
+ const q31_t *rearranged_twiddle_stride3;
+#endif
+ } arm_cfft_instance_q31;
+
+arm_status arm_cfft_init_q31(
+ arm_cfft_instance_q31 * S,
+ uint16_t fftLen);
+
+void arm_cfft_q31(
+ const arm_cfft_instance_q31 * S,
+ q31_t * p1,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+ /**
+ * @brief Instance structure for the floating-point CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ const float32_t *pTwiddle; /**< points to the Twiddle factor table. */
+ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t bitRevLength; /**< bit reversal table length. */
+#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
+ const uint32_t *rearranged_twiddle_tab_stride1_arr; /**< Per stage reordered twiddle pointer (offset 1) */ \
+ const uint32_t *rearranged_twiddle_tab_stride2_arr; /**< Per stage reordered twiddle pointer (offset 2) */ \
+ const uint32_t *rearranged_twiddle_tab_stride3_arr; /**< Per stage reordered twiddle pointer (offset 3) */ \
+ const float32_t *rearranged_twiddle_stride1; /**< reordered twiddle offset 1 storage */ \
+ const float32_t *rearranged_twiddle_stride2; /**< reordered twiddle offset 2 storage */ \
+ const float32_t *rearranged_twiddle_stride3;
+#endif
+ } arm_cfft_instance_f32;
+
+
+
+ arm_status arm_cfft_init_f32(
+ arm_cfft_instance_f32 * S,
+ uint16_t fftLen);
+
+ void arm_cfft_f32(
+ const arm_cfft_instance_f32 * S,
+ float32_t * p1,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+
+ /**
+ * @brief Instance structure for the Double Precision Floating-point CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ const float64_t *pTwiddle; /**< points to the Twiddle factor table. */
+ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t bitRevLength; /**< bit reversal table length. */
+ } arm_cfft_instance_f64;
+
+ arm_status arm_cfft_init_f64(
+ arm_cfft_instance_f64 * S,
+ uint16_t fftLen);
+
+ void arm_cfft_f64(
+ const arm_cfft_instance_f64 * S,
+ float64_t * p1,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+ /**
+ * @brief Instance structure for the Q15 RFFT/RIFFT function.
+ */
+ typedef struct
+ {
+ uint32_t fftLenReal; /**< length of the real FFT. */
+ uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
+ uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
+ uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ const q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
+ const q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
+#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
+ arm_cfft_instance_q15 cfftInst;
+#else
+ const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */
+#endif
+ } arm_rfft_instance_q15;
+
+ arm_status arm_rfft_init_q15(
+ arm_rfft_instance_q15 * S,
+ uint32_t fftLenReal,
+ uint32_t ifftFlagR,
+ uint32_t bitReverseFlag);
+
+ void arm_rfft_q15(
+ const arm_rfft_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst);
+
+ /**
+ * @brief Instance structure for the Q31 RFFT/RIFFT function.
+ */
+ typedef struct
+ {
+ uint32_t fftLenReal; /**< length of the real FFT. */
+ uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
+ uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
+ uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ const q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
+ const q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
+#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
+ arm_cfft_instance_q31 cfftInst;
+#else
+ const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */
+#endif
+ } arm_rfft_instance_q31;
+
+ arm_status arm_rfft_init_q31(
+ arm_rfft_instance_q31 * S,
+ uint32_t fftLenReal,
+ uint32_t ifftFlagR,
+ uint32_t bitReverseFlag);
+
+ void arm_rfft_q31(
+ const arm_rfft_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst);
+
+ /**
+ * @brief Instance structure for the floating-point RFFT/RIFFT function.
+ */
+ typedef struct
+ {
+ uint32_t fftLenReal; /**< length of the real FFT. */
+ uint16_t fftLenBy2; /**< length of the complex FFT. */
+ uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
+ uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
+ uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ const float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
+ const float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
+ arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
+ } arm_rfft_instance_f32;
+
+ arm_status arm_rfft_init_f32(
+ arm_rfft_instance_f32 * S,
+ arm_cfft_radix4_instance_f32 * S_CFFT,
+ uint32_t fftLenReal,
+ uint32_t ifftFlagR,
+ uint32_t bitReverseFlag);
+
+ void arm_rfft_f32(
+ const arm_rfft_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst);
+
+ /**
+ * @brief Instance structure for the Double Precision Floating-point RFFT/RIFFT function.
+ */
+typedef struct
+ {
+ arm_cfft_instance_f64 Sint; /**< Internal CFFT structure. */
+ uint16_t fftLenRFFT; /**< length of the real sequence */
+ const float64_t * pTwiddleRFFT; /**< Twiddle factors real stage */
+ } arm_rfft_fast_instance_f64 ;
+
+arm_status arm_rfft_fast_init_f64 (
+ arm_rfft_fast_instance_f64 * S,
+ uint16_t fftLen);
+
+
+void arm_rfft_fast_f64(
+ arm_rfft_fast_instance_f64 * S,
+ float64_t * p, float64_t * pOut,
+ uint8_t ifftFlag);
+
+
+ /**
+ * @brief Instance structure for the floating-point RFFT/RIFFT function.
+ */
+typedef struct
+ {
+ arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */
+ uint16_t fftLenRFFT; /**< length of the real sequence */
+ const float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */
+ } arm_rfft_fast_instance_f32 ;
+
+arm_status arm_rfft_fast_init_f32 (
+ arm_rfft_fast_instance_f32 * S,
+ uint16_t fftLen);
+
+
+ void arm_rfft_fast_f32(
+ const arm_rfft_fast_instance_f32 * S,
+ float32_t * p, float32_t * pOut,
+ uint8_t ifftFlag);
+
+ /**
+ * @brief Instance structure for the floating-point DCT4/IDCT4 function.
+ */
+ typedef struct
+ {
+ uint16_t N; /**< length of the DCT4. */
+ uint16_t Nby2; /**< half of the length of the DCT4. */
+ float32_t normalize; /**< normalizing factor. */
+ const float32_t *pTwiddle; /**< points to the twiddle factor table. */
+ const float32_t *pCosFactor; /**< points to the cosFactor table. */
+ arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */
+ arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
+ } arm_dct4_instance_f32;
+
+
+ /**
+ * @brief Initialization function for the floating-point DCT4/IDCT4.
+ * @param[in,out] S points to an instance of floating-point DCT4/IDCT4 structure.
+ * @param[in] S_RFFT points to an instance of floating-point RFFT/RIFFT structure.
+ * @param[in] S_CFFT points to an instance of floating-point CFFT/CIFFT structure.
+ * @param[in] N length of the DCT4.
+ * @param[in] Nby2 half of the length of the DCT4.
+ * @param[in] normalize normalizing factor.
+ * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length.
+ */
+ arm_status arm_dct4_init_f32(
+ arm_dct4_instance_f32 * S,
+ arm_rfft_instance_f32 * S_RFFT,
+ arm_cfft_radix4_instance_f32 * S_CFFT,
+ uint16_t N,
+ uint16_t Nby2,
+ float32_t normalize);
+
+
+ /**
+ * @brief Processing function for the floating-point DCT4/IDCT4.
+ * @param[in] S points to an instance of the floating-point DCT4/IDCT4 structure.
+ * @param[in] pState points to state buffer.
+ * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
+ */
+ void arm_dct4_f32(
+ const arm_dct4_instance_f32 * S,
+ float32_t * pState,
+ float32_t * pInlineBuffer);
+
+
+ /**
+ * @brief Instance structure for the Q31 DCT4/IDCT4 function.
+ */
+ typedef struct
+ {
+ uint16_t N; /**< length of the DCT4. */
+ uint16_t Nby2; /**< half of the length of the DCT4. */
+ q31_t normalize; /**< normalizing factor. */
+ const q31_t *pTwiddle; /**< points to the twiddle factor table. */
+ const q31_t *pCosFactor; /**< points to the cosFactor table. */
+ arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */
+ arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
+ } arm_dct4_instance_q31;
+
+
+ /**
+ * @brief Initialization function for the Q31 DCT4/IDCT4.
+ * @param[in,out] S points to an instance of Q31 DCT4/IDCT4 structure.
+ * @param[in] S_RFFT points to an instance of Q31 RFFT/RIFFT structure
+ * @param[in] S_CFFT points to an instance of Q31 CFFT/CIFFT structure
+ * @param[in] N length of the DCT4.
+ * @param[in] Nby2 half of the length of the DCT4.
+ * @param[in] normalize normalizing factor.
+ * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
+ */
+ arm_status arm_dct4_init_q31(
+ arm_dct4_instance_q31 * S,
+ arm_rfft_instance_q31 * S_RFFT,
+ arm_cfft_radix4_instance_q31 * S_CFFT,
+ uint16_t N,
+ uint16_t Nby2,
+ q31_t normalize);
+
+
+ /**
+ * @brief Processing function for the Q31 DCT4/IDCT4.
+ * @param[in] S points to an instance of the Q31 DCT4 structure.
+ * @param[in] pState points to state buffer.
+ * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
+ */
+ void arm_dct4_q31(
+ const arm_dct4_instance_q31 * S,
+ q31_t * pState,
+ q31_t * pInlineBuffer);
+
+
+ /**
+ * @brief Instance structure for the Q15 DCT4/IDCT4 function.
+ */
+ typedef struct
+ {
+ uint16_t N; /**< length of the DCT4. */
+ uint16_t Nby2; /**< half of the length of the DCT4. */
+ q15_t normalize; /**< normalizing factor. */
+ const q15_t *pTwiddle; /**< points to the twiddle factor table. */
+ const q15_t *pCosFactor; /**< points to the cosFactor table. */
+ arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */
+ arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
+ } arm_dct4_instance_q15;
+
+
+ /**
+ * @brief Initialization function for the Q15 DCT4/IDCT4.
+ * @param[in,out] S points to an instance of Q15 DCT4/IDCT4 structure.
+ * @param[in] S_RFFT points to an instance of Q15 RFFT/RIFFT structure.
+ * @param[in] S_CFFT points to an instance of Q15 CFFT/CIFFT structure.
+ * @param[in] N length of the DCT4.
+ * @param[in] Nby2 half of the length of the DCT4.
+ * @param[in] normalize normalizing factor.
+ * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
+ */
+ arm_status arm_dct4_init_q15(
+ arm_dct4_instance_q15 * S,
+ arm_rfft_instance_q15 * S_RFFT,
+ arm_cfft_radix4_instance_q15 * S_CFFT,
+ uint16_t N,
+ uint16_t Nby2,
+ q15_t normalize);
+
+
+ /**
+ * @brief Processing function for the Q15 DCT4/IDCT4.
+ * @param[in] S points to an instance of the Q15 DCT4 structure.
+ * @param[in] pState points to state buffer.
+ * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
+ */
+ void arm_dct4_q15(
+ const arm_dct4_instance_q15 * S,
+ q15_t * pState,
+ q15_t * pInlineBuffer);
+
+ /**
+ * @brief Instance structure for the Floating-point MFCC function.
+ */
+typedef struct
+ {
+ const float32_t *dctCoefs; /**< Internal DCT coefficients */
+ const float32_t *filterCoefs; /**< Internal Mel filter coefficients */
+ const float32_t *windowCoefs; /**< Windowing coefficients */
+ const uint32_t *filterPos; /**< Internal Mel filter positions in spectrum */
+ const uint32_t *filterLengths; /**< Internal Mel filter lengths */
+ uint32_t fftLen; /**< FFT length */
+ uint32_t nbMelFilters; /**< Number of Mel filters */
+ uint32_t nbDctOutputs; /**< Number of DCT outputs */
+#if defined(ARM_MFCC_CFFT_BASED)
+ /* Implementation of the MFCC is using a CFFT */
+ arm_cfft_instance_f32 cfft; /**< Internal CFFT instance */
+#else
+ /* Implementation of the MFCC is using a RFFT (default) */
+ arm_rfft_fast_instance_f32 rfft;
+#endif
+ } arm_mfcc_instance_f32 ;
+
+arm_status arm_mfcc_init_f32(
+ arm_mfcc_instance_f32 * S,
+ uint32_t fftLen,
+ uint32_t nbMelFilters,
+ uint32_t nbDctOutputs,
+ const float32_t *dctCoefs,
+ const uint32_t *filterPos,
+ const uint32_t *filterLengths,
+ const float32_t *filterCoefs,
+ const float32_t *windowCoefs
+ );
+
+
+/**
+ @brief MFCC F32
+ @param[in] S points to the mfcc instance structure
+ @param[in] pSrc points to the input samples
+ @param[out] pDst points to the output MFCC values
+ @param[inout] pTmp points to a temporary buffer of complex
+ @return none
+ */
+ void arm_mfcc_f32(
+ const arm_mfcc_instance_f32 * S,
+ float32_t *pSrc,
+ float32_t *pDst,
+ float32_t *pTmp
+ );
+
+typedef struct
+ {
+ const q31_t *dctCoefs; /**< Internal DCT coefficients */
+ const q31_t *filterCoefs; /**< Internal Mel filter coefficients */
+ const q31_t *windowCoefs; /**< Windowing coefficients */
+ const uint32_t *filterPos; /**< Internal Mel filter positions in spectrum */
+ const uint32_t *filterLengths; /**< Internal Mel filter lengths */
+ uint32_t fftLen; /**< FFT length */
+ uint32_t nbMelFilters; /**< Number of Mel filters */
+ uint32_t nbDctOutputs; /**< Number of DCT outputs */
+#if defined(ARM_MFCC_CFFT_BASED)
+ /* Implementation of the MFCC is using a CFFT */
+ arm_cfft_instance_q31 cfft; /**< Internal CFFT instance */
+#else
+ /* Implementation of the MFCC is using a RFFT (default) */
+ arm_rfft_instance_q31 rfft;
+#endif
+ } arm_mfcc_instance_q31 ;
+
+arm_status arm_mfcc_init_q31(
+ arm_mfcc_instance_q31 * S,
+ uint32_t fftLen,
+ uint32_t nbMelFilters,
+ uint32_t nbDctOutputs,
+ const q31_t *dctCoefs,
+ const uint32_t *filterPos,
+ const uint32_t *filterLengths,
+ const q31_t *filterCoefs,
+ const q31_t *windowCoefs
+ );
+
+
+/**
+ @brief MFCC Q31
+ @param[in] S points to the mfcc instance structure
+ @param[in] pSrc points to the input samples
+ @param[out] pDst points to the output MFCC values
+ @param[inout] pTmp points to a temporary buffer of complex
+ @return none
+ */
+ arm_status arm_mfcc_q31(
+ const arm_mfcc_instance_q31 * S,
+ q31_t *pSrc,
+ q31_t *pDst,
+ q31_t *pTmp
+ );
+
+typedef struct
+ {
+ const q15_t *dctCoefs; /**< Internal DCT coefficients */
+ const q15_t *filterCoefs; /**< Internal Mel filter coefficients */
+ const q15_t *windowCoefs; /**< Windowing coefficients */
+ const uint32_t *filterPos; /**< Internal Mel filter positions in spectrum */
+ const uint32_t *filterLengths; /**< Internal Mel filter lengths */
+ uint32_t fftLen; /**< FFT length */
+ uint32_t nbMelFilters; /**< Number of Mel filters */
+ uint32_t nbDctOutputs; /**< Number of DCT outputs */
+#if defined(ARM_MFCC_CFFT_BASED)
+ /* Implementation of the MFCC is using a CFFT */
+ arm_cfft_instance_q15 cfft; /**< Internal CFFT instance */
+#else
+ /* Implementation of the MFCC is using a RFFT (default) */
+ arm_rfft_instance_q15 rfft;
+#endif
+ } arm_mfcc_instance_q15 ;
+
+arm_status arm_mfcc_init_q15(
+ arm_mfcc_instance_q15 * S,
+ uint32_t fftLen,
+ uint32_t nbMelFilters,
+ uint32_t nbDctOutputs,
+ const q15_t *dctCoefs,
+ const uint32_t *filterPos,
+ const uint32_t *filterLengths,
+ const q15_t *filterCoefs,
+ const q15_t *windowCoefs
+ );
+
+
+/**
+ @brief MFCC Q15
+ @param[in] S points to the mfcc instance structure
+ @param[in] pSrc points to the input samples
+ @param[out] pDst points to the output MFCC values in q8.7 format
+ @param[inout] pTmp points to a temporary buffer of complex
+ @return error status
+ */
+ arm_status arm_mfcc_q15(
+ const arm_mfcc_instance_q15 * S,
+ q15_t *pSrc,
+ q15_t *pDst,
+ q31_t *pTmp
+ );
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _TRANSFORM_FUNCTIONS_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/transform_functions_f16.h b/Drivers/CMSIS/DSP/Include/dsp/transform_functions_f16.h
new file mode 100644
index 0000000..4d8cc22
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/transform_functions_f16.h
@@ -0,0 +1,208 @@
+/******************************************************************************
+ * @file transform_functions_f16.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.10.0
+ * @date 08 July 2021
+ * Target Processor: Cortex-M and Cortex-A cores
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+#ifndef _TRANSFORM_FUNCTIONS_F16_H_
+#define _TRANSFORM_FUNCTIONS_F16_H_
+
+#include "arm_math_types_f16.h"
+#include "arm_math_memory.h"
+
+#include "dsp/none.h"
+#include "dsp/utils.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+
+
+#if defined(ARM_FLOAT16_SUPPORTED)
+
+
+ /**
+ * @brief Instance structure for the floating-point CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ const float16_t *pTwiddle; /**< points to the Twiddle factor table. */
+ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ float16_t onebyfftLen; /**< value of 1/fftLen. */
+ } arm_cfft_radix2_instance_f16;
+
+ /**
+ * @brief Instance structure for the floating-point CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ const float16_t *pTwiddle; /**< points to the Twiddle factor table. */
+ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ float16_t onebyfftLen; /**< value of 1/fftLen. */
+ } arm_cfft_radix4_instance_f16;
+
+ /**
+ * @brief Instance structure for the floating-point CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ const float16_t *pTwiddle; /**< points to the Twiddle factor table. */
+ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t bitRevLength; /**< bit reversal table length. */
+#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
+ const uint32_t *rearranged_twiddle_tab_stride1_arr; /**< Per stage reordered twiddle pointer (offset 1) */ \
+ const uint32_t *rearranged_twiddle_tab_stride2_arr; /**< Per stage reordered twiddle pointer (offset 2) */ \
+ const uint32_t *rearranged_twiddle_tab_stride3_arr; /**< Per stage reordered twiddle pointer (offset 3) */ \
+ const float16_t *rearranged_twiddle_stride1; /**< reordered twiddle offset 1 storage */ \
+ const float16_t *rearranged_twiddle_stride2; /**< reordered twiddle offset 2 storage */ \
+ const float16_t *rearranged_twiddle_stride3;
+#endif
+ } arm_cfft_instance_f16;
+
+
+ arm_status arm_cfft_init_f16(
+ arm_cfft_instance_f16 * S,
+ uint16_t fftLen);
+
+ void arm_cfft_f16(
+ const arm_cfft_instance_f16 * S,
+ float16_t * p1,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+ /**
+ * @brief Instance structure for the floating-point RFFT/RIFFT function.
+ */
+typedef struct
+ {
+ arm_cfft_instance_f16 Sint; /**< Internal CFFT structure. */
+ uint16_t fftLenRFFT; /**< length of the real sequence */
+ const float16_t * pTwiddleRFFT; /**< Twiddle factors real stage */
+ } arm_rfft_fast_instance_f16 ;
+
+arm_status arm_rfft_fast_init_f16 (
+ arm_rfft_fast_instance_f16 * S,
+ uint16_t fftLen);
+
+
+ void arm_rfft_fast_f16(
+ const arm_rfft_fast_instance_f16 * S,
+ float16_t * p, float16_t * pOut,
+ uint8_t ifftFlag);
+
+/* Deprecated */
+ arm_status arm_cfft_radix4_init_f16(
+ arm_cfft_radix4_instance_f16 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+/* Deprecated */
+ void arm_cfft_radix4_f16(
+ const arm_cfft_radix4_instance_f16 * S,
+ float16_t * pSrc);
+
+
+/* Deprecated */
+ arm_status arm_cfft_radix2_init_f16(
+ arm_cfft_radix2_instance_f16 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+/* Deprecated */
+ void arm_cfft_radix2_f16(
+ const arm_cfft_radix2_instance_f16 * S,
+ float16_t * pSrc);
+
+ /**
+ * @brief Instance structure for the Floating-point MFCC function.
+ */
+typedef struct
+ {
+ const float16_t *dctCoefs; /**< Internal DCT coefficients */
+ const float16_t *filterCoefs; /**< Internal Mel filter coefficients */
+ const float16_t *windowCoefs; /**< Windowing coefficients */
+ const uint32_t *filterPos; /**< Internal Mel filter positions in spectrum */
+ const uint32_t *filterLengths; /**< Internal Mel filter lengths */
+ uint32_t fftLen; /**< FFT length */
+ uint32_t nbMelFilters; /**< Number of Mel filters */
+ uint32_t nbDctOutputs; /**< Number of DCT outputs */
+#if defined(ARM_MFCC_CFFT_BASED)
+ /* Implementation of the MFCC is using a CFFT */
+ arm_cfft_instance_f16 cfft; /**< Internal CFFT instance */
+#else
+ /* Implementation of the MFCC is using a RFFT (default) */
+ arm_rfft_fast_instance_f16 rfft;
+#endif
+ } arm_mfcc_instance_f16 ;
+
+arm_status arm_mfcc_init_f16(
+ arm_mfcc_instance_f16 * S,
+ uint32_t fftLen,
+ uint32_t nbMelFilters,
+ uint32_t nbDctOutputs,
+ const float16_t *dctCoefs,
+ const uint32_t *filterPos,
+ const uint32_t *filterLengths,
+ const float16_t *filterCoefs,
+ const float16_t *windowCoefs
+ );
+
+
+/**
+ @brief MFCC F16
+ @param[in] S points to the mfcc instance structure
+ @param[in] pSrc points to the input samples
+ @param[out] pDst points to the output MFCC values
+ @param[inout] pTmp points to a temporary buffer of complex
+ @return none
+ */
+ void arm_mfcc_f16(
+ const arm_mfcc_instance_f16 * S,
+ float16_t *pSrc,
+ float16_t *pDst,
+ float16_t *pTmp
+ );
+
+
+#endif /* defined(ARM_FLOAT16_SUPPORTED)*/
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ifndef _TRANSFORM_FUNCTIONS_F16_H_ */
diff --git a/Drivers/CMSIS/DSP/Include/dsp/utils.h b/Drivers/CMSIS/DSP/Include/dsp/utils.h
new file mode 100644
index 0000000..7f5acb3
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Include/dsp/utils.h
@@ -0,0 +1,240 @@
+/******************************************************************************
+ * @file arm_math_utils.h
+ * @brief Public header file for CMSIS DSP Library
+ * @version V1.9.0
+ * @date 20. July 2020
+ ******************************************************************************/
+/*
+ * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef _ARM_MATH_UTILS_H_
+
+#define _ARM_MATH_UTILS_H_
+
+#include "arm_math_types.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+ /**
+ * @brief Macros required for reciprocal calculation in Normalized LMS
+ */
+
+#define INDEX_MASK 0x0000003F
+
+
+#define SQ(x) ((x) * (x))
+
+#define ROUND_UP(N, S) ((((N) + (S) - 1) / (S)) * (S))
+
+
+ /**
+ * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type.
+ */
+ __STATIC_FORCEINLINE uint32_t arm_recip_q31(
+ q31_t in,
+ q31_t * dst,
+ const q31_t * pRecipTable)
+ {
+ q31_t out;
+ uint32_t tempVal;
+ uint32_t index, i;
+ uint32_t signBits;
+
+ if (in > 0)
+ {
+ signBits = ((uint32_t) (__CLZ( in) - 1));
+ }
+ else
+ {
+ signBits = ((uint32_t) (__CLZ(-in) - 1));
+ }
+
+ /* Convert input sample to 1.31 format */
+ in = (in << signBits);
+
+ /* calculation of index for initial approximated Val */
+ index = (uint32_t)(in >> 24);
+ index = (index & INDEX_MASK);
+
+ /* 1.31 with exp 1 */
+ out = pRecipTable[index];
+
+ /* calculation of reciprocal value */
+ /* running approximation for two iterations */
+ for (i = 0U; i < 2U; i++)
+ {
+ tempVal = (uint32_t) (((q63_t) in * out) >> 31);
+ tempVal = 0x7FFFFFFFu - tempVal;
+ /* 1.31 with exp 1 */
+ /* out = (q31_t) (((q63_t) out * tempVal) >> 30); */
+ out = clip_q63_to_q31(((q63_t) out * tempVal) >> 30);
+ }
+
+ /* write output */
+ *dst = out;
+
+ /* return num of signbits of out = 1/in value */
+ return (signBits + 1U);
+ }
+
+
+ /**
+ * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type.
+ */
+ __STATIC_FORCEINLINE uint32_t arm_recip_q15(
+ q15_t in,
+ q15_t * dst,
+ const q15_t * pRecipTable)
+ {
+ q15_t out = 0;
+ uint32_t tempVal = 0;
+ uint32_t index = 0, i = 0;
+ uint32_t signBits = 0;
+
+ if (in > 0)
+ {
+ signBits = ((uint32_t)(__CLZ( in) - 17));
+ }
+ else
+ {
+ signBits = ((uint32_t)(__CLZ(-in) - 17));
+ }
+
+ /* Convert input sample to 1.15 format */
+ in = (in << signBits);
+
+ /* calculation of index for initial approximated Val */
+ index = (uint32_t)(in >> 8);
+ index = (index & INDEX_MASK);
+
+ /* 1.15 with exp 1 */
+ out = pRecipTable[index];
+
+ /* calculation of reciprocal value */
+ /* running approximation for two iterations */
+ for (i = 0U; i < 2U; i++)
+ {
+ tempVal = (uint32_t) (((q31_t) in * out) >> 15);
+ tempVal = 0x7FFFu - tempVal;
+ /* 1.15 with exp 1 */
+ out = (q15_t) (((q31_t) out * tempVal) >> 14);
+ /* out = clip_q31_to_q15(((q31_t) out * tempVal) >> 14); */
+ }
+
+ /* write output */
+ *dst = out;
+
+ /* return num of signbits of out = 1/in value */
+ return (signBits + 1);
+ }
+
+
+/**
+ * @brief 64-bit to 32-bit unsigned normalization
+ * @param[in] in is input unsigned long long value
+ * @param[out] normalized is the 32-bit normalized value
+ * @param[out] norm is norm scale
+ */
+__STATIC_INLINE void arm_norm_64_to_32u(uint64_t in, int32_t * normalized, int32_t *norm)
+{
+ int32_t n1;
+ int32_t hi = (int32_t) (in >> 32);
+ int32_t lo = (int32_t) ((in << 32) >> 32);
+
+ n1 = __CLZ(hi) - 32;
+ if (!n1)
+ {
+ /*
+ * input fits in 32-bit
+ */
+ n1 = __CLZ(lo);
+ if (!n1)
+ {
+ /*
+ * MSB set, need to scale down by 1
+ */
+ *norm = -1;
+ *normalized = (((uint32_t) lo) >> 1);
+ } else
+ {
+ if (n1 == 32)
+ {
+ /*
+ * input is zero
+ */
+ *norm = 0;
+ *normalized = 0;
+ } else
+ {
+ /*
+ * 32-bit normalization
+ */
+ *norm = n1 - 1;
+ *normalized = lo << *norm;
+ }
+ }
+ } else
+ {
+ /*
+ * input fits in 64-bit
+ */
+ n1 = 1 - n1;
+ *norm = -n1;
+ /*
+ * 64 bit normalization
+ */
+ *normalized = (((uint32_t) lo) >> n1) | (hi << (32 - n1));
+ }
+}
+
+__STATIC_INLINE q31_t arm_div_q63_to_q31(q63_t num, q31_t den)
+{
+ q31_t result;
+ uint64_t absNum;
+ int32_t normalized;
+ int32_t norm;
+
+ /*
+ * if sum fits in 32bits
+ * avoid costly 64-bit division
+ */
+ absNum = num > 0 ? num : -num;
+ arm_norm_64_to_32u(absNum, &normalized, &norm);
+ if (norm > 0)
+ /*
+ * 32-bit division
+ */
+ result = (q31_t) num / den;
+ else
+ /*
+ * 64-bit division
+ */
+ result = (q31_t) (num / den);
+
+ return result;
+}
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /*ifndef _ARM_MATH_UTILS_H_ */